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Abstract

Background: Whole exome sequencing (WES) is a cost-effective method that identifies clinical variants but it
demands accurate variant caller tools. Currently available tools have variable accuracy in predicting specific clinical
variants. But it may be possible to find the best combination of aligner-variant caller tools for detecting accurate single
nucleotide variants (SNVs) and small insertion and deletion (InDels) separately. Moreover, many important aspects of
InDel detection are overlooked while comparing the performance of tools, particularly its base pair length.

Results: We assessed the performance of variant calling pipelines using the combinations of four variant callers and
five aligners on human NA12878 and simulated exome data. We used high confidence variant calls from Genome in a
Bottle (GiaB) consortium for validation, and GRCh37 and GRCh38 as the human reference genome. Based on the
performance metrics, both BWA and Novoalign aligners performed better with DeepVariant and SAMtools callers for
detecting SNVs, and with DeepVariant and GATK for InDels. Furthermore, we obtained similar results on human
NA24385 and NA24631 exome data from GiaB.

Conclusion: In this study, DeepVariant with BWA and Novoalign performed best for detecting accurate SNVs and
InDels. The accuracy of variant calling was improved by merging the top performing pipelines. The results of our study
provide useful recommendations for analysis of WES data in clinical genomics.

Keywords: Whole exome sequencing, Simulated exome data, Human reference genome, Variant calling pipelines,
SNVs and InDels

Background
Whole genome sequencing (WGS) and Whole exome
sequencing (WES) methods are applied in clinical set-
tings for detecting patient’s genomic variants and eti-
ology of the disease. Whole exome sequencing (WES), is
becoming a standard, more economic approach to gen-
ome sequencing [1]. Although it covers only exonic re-
gions (< 2% of the whole genome), it produces a large
quantity of data (raw reads) that requires a significant
amount of bioinformatics analysis to create biologically
meaningful information [2].
WES output must be accurate and consistent in detect-

ing specific variants that impact a particular phenotype.
The first obstacle to accurate variant detection is the

technical error when exome capturing kits do not capture
the regions of interest which increases the possibility of
missing some potential variants [3]. Secondly, variants de-
tection may be missed by the variant calling pipelines.
Though many variant callers are available [4, 5], each per-
forms best with the data obtained from a particular se-
quencing platform. For example, SAMtools is best for Ion
Proton data [6], and GATK is best for Illumina data [7].
They have also shown low concordance when examining
the same set of sequencing data. Thus the accuracy of the
variant callers is still not adequate [8, 9].
No single pipeline with the combination of aligner and

variant caller has demonstrated superiority in detecting
all the variants. Applying multiple tools can result in
more misleading output [10]. It has also been reported
that read aligners influence the accuracy of variant de-
tection [9, 11]. Thus, it is essential to evaluate variant
calling pipelines with the optimal combination of
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aligners and variant callers that may produce accurate
variant calls including single nucleotide variants (SNVs)
and small insertion and deletion (InDels).
Several benchmarking studies have been conducted to

assess the performance of different variant calling pipe-
lines in detecting accurate variants. Liu et al. compared
the performance of four variant callers using single and
multi-sample variant-calling strategies. They reported
that GATK performed best on real and simulated exome
data, while SAMtools could be used to detect higher
true positive SNVs on simulated whole genome sequen-
cing data [12]. In another study, based on the read-
depth, allele balance and mapping quality, GATK out-
performed SAMtools on low coverage exome data [13].
In a separate study, Roberts et al. used cancer-normal
exome sequencing data in detecting only SNVs. They re-
ported a substantial difference in detecting SNVs by dif-
ferent algorithms with respect to the number and the
character of sites [14]. Many benchmarking studies use
the set of NA12878 Genome in a Bottle (GiaB) high confi-
dence GRCh37 variants as a gold standard reference set
[6, 8, 11, 15, 16]. However, several questions remain to be
answered about how different pipelines perform with the
improved version of the human reference genome
GRCh38 and how the newly developed tools perform.
The accurate detection of InDels is more challenging

than SNVs because of the limited guidelines [17, 18].
The issues in InDel detection are low concordance rate
among different sequencing platforms, realignment
error, error near perfect repeat regions and incomplete
reference genome in some cases [19, 20]. Even though
recent advancements in NGS have improved the sensi-
tivity of different sequencing platforms, enhancing InDel
calling accuracy is still a significant issue [21]. In order
to identify the most accurate InDel calling tools, recent
studies have attempted to evaluate these tools focusing
only on InDel calling. One comparative study of four
variant callers using the human exome data reported
that GATK had a high sensitivity for InDel detection.
The study further indicated that most InDels called
by variant callers were < 10 bp in length and that the
performance of four algorithms was unaffected by
InDel size [21]. However, another comparative study
of seven InDel callers using 78 human genome data
indicated that performance differed depending on the
number and size [18]. Similarly, based on the simu-
lated data, Neuman et al. reported a discrepancy in
InDel calling efficiency at higher InDel size [22].
Other studies noted that the detection of large sized
InDels is more difficult than identification of small
InDels [19, 23]. Yet, despite the existence of many
tools for InDel detection, a study focusing on the
evaluation of current tools with respect to various
performance metrics is sparse.

In the present study, we sought to assess the best com-
bination of aligner with variant caller tools for detecting
SNVs and InDels separately. To achieve this aim, we
used the real whole human exome sequencing dataset
NA12878 and the simulated exome data. Additionally,
we compared the performance of pipelines using two
new exome data sets NA24385 and NA24632 available
from GiaB consortium. We report here several perform-
ance metrics with respect to F-score aimed to build an
extensive benchmark study to asses the performance of
pipelines with currently available well-known tools, used
for detecting SNVs and InDels.

Results
In order to assess the performance of variant calling pipe-
lines in terms of their capacity to accurately detect SNVs
and InDels from WES datasets, we developed 20 pipelines
with the combinations of four variant caller and five aligner
tools. The results were validated with high confidence truth
set from GiaB for both the human GRCh37 and GRCh38
reference and compared the results with gold standard
truth variants provided by GiaB consortium.

Performance of variant calling pipelines
Initially, we checked the quality of human exome dataset
NA12878 and trimmed the adapter sequence. Then, we
used five different aligners to map the reads with the refer-
ence genomes GRCh37 and GRCh38, as shown in Fig. 1
(further details are given in Additional file 6: Table S1).
After the post-alignment process, we used four different
variant calling tools, namely GATK, SAMtools, FreeBayes,
and DeepVariant. Next, using 20 different pipelines, SNVs
were detected in four exome datasets (i) NA12878 aligned
with GRCh38 genome (exome-1), (ii) simulated exome
using GRCh38 genome (exome-2), (iii) NA12878 aligned
with GRCh37 genome (exome-3), and (iv) simulated ex-
ome using GRCh37 genome (exome-4). We ran the pipe-
lines on our server (340 GB RAM with 40 core for exome-
1 and exome-2 and 320 GB RAM with 32 core for exome-
3 and exome-4; and the run time for each pipeline was
showed in Additional file 7: Table S2). To assess the per-
formance of pipelines, we calculated true positive (TP),
false positive (FP) and false negative (FN) variants using
GiaB truth set, as it contains 23,686 SNVs and 1258
InDels for NA12878 exome. We used F-score as the
measure of performance quality.
In all the exome datasets, BWA_DeepVariant, Novoa-

lign_DeepVariant, BWA_SAMtools and Novoalign_
SAMtools were the top performing pipelines for the
SNVs (Additional file 8: Table S3). The F-scores of these
four pipelines were 0.97 on exome-1; 0.99 (except
BWA_SAMtools) on exome-2; 0.98 (except BWA_SAM-
tools) on exome-3; and 0.98 on exome-4. In the case of
InDels, BWA_DeepVariant and Novoalign_DeepVariant
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performed best followed by BWA_GATK and Novoa-
lign_GATK. Moreover, DeepVariant based pipelines per-
formed better than those based on GATK, which
showed the highest F-score of 0.99 on all exomes (Add-
itional file 8: Table S3). Further, to explore how the se-
quencing depth affects the performance, we plotted the
receiver operating characteristic (ROC) curves, repre-
senting F-score of top six performing pipelines as a func-
tion of the depth detected at variant positions on all
exomes (Fig. 2 and Additional file 1:Figure S1). The top
three pipelines showed a similar profile for both SNVs
and InDels. The next three pipelines performed roughly
at the same level for SNVs; while they showed a subtle
difference in performance for InDels only at 175X depth
of coverage (Fig. 2d and Additional file 1: Figure S1d).
Most of the SNVs and InDels were detected at about
150X depth of coverage, suggesting that this depth is a
sufficient parameter for detecting the variants.
Next, we assessed the performance of each pipeline using

F-score with respect to genotype quality (GQ). At GQ> 60,
all the top six pipelines showed better performance for both
SNVs and InDels on all four exomes (Additional file 9:
Table S4). BWA_DeepVariant and Novoalign_DeepVariant
performed the best among the six pipelines for both SNVs

and InDels on all exomes (Fig. 3 and Additional file 2:
Figure S2), followed by BWA_SAMtools and Novoalign_
SAMtools in case of SNVs; and Novoalign_GATK and
BWA_GATK in case of InDels. We observed that the per-
formance of pipelines increased along with the increased
GQ value. However, BWA_DeepVariant and Novoalign_
DeepVariant performed well, even at low GQ values on sim-
ulated exome data (Fig. 3d and Additional file 2: Figure S2).
To further evaluate the pipelines, we used F-score with

respect to genotype concordance. We observed that the top
six pipelines performed comparably well as observed using
Depth of coverage and GQ metrics (Additional file 10:
Table S5). We also investigated the ratio of heterozygous to
homozygous (het/hom) and found that the ratio for detect-
ing SNVs was higher than InDels. The ratio for SNVs was
~ 1.6 on exome-1 and exome-2; ~ 1.5 on exome-3 and
exome-4. While the ratio for InDels was ~ 1.2 for exome-1
and exome-2; ~ 1.2 on exome-3; and ~ 1.3 on exome-4. In-
deed, we observed the difference in the performance of
pipelines when we compared the heterozygous and homo-
zygous detection with respect to F-score (Additional file 11:
Table S6). Based on this F-score, BWA_DeepVariant,
Novoalign_DeepVariant, BWA_SAMtools, and Novoalign_
SAMtools (F-score > 0.96) performed comparably well in
detecting SNVs on all exomes. While BWA_DeepVariant,
Novoalign_DeepVariant, BWA_GATK and Novoalign_
GATK performed well (F-score > 0.9) in detecting InDels.

Performance in detecting SNVs using Ti/Tv ratio
We calculated the ratio of transition (Ti) to transversion
(Tv), one of the key quality metrics in detecting SNVs. The
Ti/Tv ratio was ~ 3.4 on exome-1 and exome-2, and ~ 3.2
on exome-3 and exome-4. Indeed, we also investigated F-
score with respect to transition (Ti) and transversion (Tv)
compared to gold standards. Based on the F-score, Novoa-
lign_DeepVariant and BWA_DeepVariant performed best
on all exomes followed by Novoalign_SAMtools and BWA_
SAMtools (Additional file 12: Table S7).

Performance in detecting InDel at different base pair
(bp) length
We analyzed the InDel detection performance of the pipe-
lines using F-score with respect to base pair length of inser-
tion and deletion. DeepVariant and GATK pipelines, along
with the aligners BWA and Novoalign, performed compar-
ably well at higher base pair length on all the exomes. How-
ever, the performance of each pipeline differed at particular
bp length of InDels. Mostly, the pipelines performed better
at 17, 23, 25 and 26 bp length deletions; and at 22 and 35 bp
length insertions (Figs. 4, 5 and Additional file 3: Figure S3
and Additional file 4: Figure S4). BWA_DeepVariant and
Novoalign_DeepVariant performed best in terms of detect-
ing the number of insertions on exome-2 and exome-4. All
pipelines failed to detect the deletions with 24 and 27 bp

Fig. 1 Schematic of the NGS data analysis pipeline
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Fig. 3 F-score with respect to genotype quality (GQ) for top six pipelines. ROC curves were plotted using the GQ of SNVs (a, c) and InDels (b, d)
against F-score using exome-1 (a, b) and exome-2 (c, d)

Fig. 2 F-score with respect to depth of coverage for top six pipelines. ROC curves were plotted using F-score of each pipeline against the depth
at the SNVs (a, c) and InDels (b, d) positions on exome-1 (a, b) and exome-2 (c, d)
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length on exome-1, exome-3 and exome-4, and inser-
tions with 13, 23, 24 and 27 bp length on exome-1
and exome-3; 59 bp length on exome-1, exome-2 and
exome-3 (Additional file 13: Table S8). We pointed out
the possible reasons for the failure in detecting InDels at
particular base pair length in the discussion section.

Comparison of best-performing pipelines
In order to improve the accuracy in detecting variants, we
compared the GiaB truth variants against the specific vari-
ants detected by the top four pipelines (mentioned earlier).
We compared BWA_DeepVariant, Novoalign_DeepVariant,
BWA_SAMtools, and Novoalign_SAMtools for SNVs
(Fig. 6a, c), and BWA_GATK, Novoalign_GATK, BWA_
DeepVariant, and Novoalign_DeepVariant for InDels detec-
tion (Fig. 6b, d) on exome-1 and exome-2. We illustrated a
similar analysis of comparison on exome-3 and exome-4 in
Additional file 5: Figure S5.
We observed high concordance of the variants with

GiaB truth set by merging four pipelines (Figures 6 and
Additional file 5: Figure S5). We showed that the accur-
acy in detecting true positive (TP) SNVs improved to ~
99% on exome-1 and exome-2, and ~ 98% on exome-3
and exome-4. We also observed ~ 96% on exome-1 and

exome-3, and ~ 98% on exome-2 and exome-4 (simu-
lated exomes) for InDels. Further, we investigated the
performance improvement by merging the top two vari-
ant calling pipelines DeepVariant_BWA and DeepVar-
iant_Novoalign, which improved TP detection to ~ 98%
and ~ 96% for SNVs and InDels respectively on all the
exomes. Our results showed that merged pipelines per-
formed better than the independent pipelines; despite
the increased FDR.
Even though each variant caller uses different algo-

rithms (strategy to identify the variants as given in
Additional file 6: Table S1), we observed ~ 0.5–1.5%
and ~ 0.5–4% false negative (FN) SNVs and InDels re-
spectively on all the exomes. To investigate further,
we plotted depth and the genotype quality (GQ) of
the FN variants obtained by BWA and Novoalign
alignments (Fig. 7). We observed that they all fell
under the upper limit of 30X depth on all the exomes
(Fig. 7a-h). However, the presence of outliers suggesting that
the depth might not be the only reason for the true missing
variants (FNs). Based on the GQ analysis (Fig. 7i-p), we ob-
served that all FNs had < 10 GQ on all the exomes, which
suggested that variant callers possibly missed the true vari-
ants due to the low GQ.

Fig. 4 The InDels detection performance of pipelines on exome-1. F-scores of InDels were plotted against the base pair length of the InDels. The
negative value of x-axis indicates the deletion and positive value for insertion
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Performance comparison of variant calling pipelines
using NA24385 and NA24631 datasets
In addition to NA12878, we assessed the performance of
variant calling pipelines using two human whole exome
datasets NA24385 and NA24631. By comparing the aver-
age and standard deviation of F-score of three human ex-
ome data sets for each pipeline, we observed no
significant change in the top performing pipelines (Fig. 8).
Indeed, we observed that DeepVariant with the aligners
BWA and Novoalign performed best invariably with all
data sets (Fig. 8 and Additional file 14: Table S9).

Discussion
A major challenge in whole exome sequencing (WES) is
how to process the data to detect accurate variants that
cause the disease. This process requires an alignment
and variant calling tool. Since many aligner and variant
caller tools are available, in this study, we have com-
pared 20 pipelines that consist of a combination between
five popular aligners and four popular variant callers.
We have used the human exome NA12878, which has a
high confidence truth variant set, for assessing the per-
formance of each pipeline. We have also used simulated
exome data, which is being most popular for evaluating

biological models or understanding about specific datasets
[24]. Both real and simulated data are necessary to com-
pare the results as they provide different assessment strat-
egies. Our results show that the overall performance of
each pipeline is similar in real and simulated exome data.
However, the false discovery rate (FDR) is much lesser in
simulated than real data, which could be due to the under-
lying error model of experimental exome sequencing.
Although we use F-score with respect to several per-

formance metrics, the Ti/Tv ratio is one of the key per-
formance metrics in detecting SNVs. Therefore, we first
calculated the ratio to assess performance for SNVs de-
tection. We have indicated that the ratio is transiently
following the reported range of 2.6–3.3 [25] on all
exomes; except SOAP_GATK on exome-3 (3.55) and
Mosaik_GATK on exome-4 (3.94). However, the Ti/Tv
ratio may not always necessarily mean an accurate per-
formance metric because low-frequency SNVs some-
times have a higher ratio than the moderate-frequency
SNVs [7]. In this study, as reported by McKenna et al.
[26], we have observed the higher ratio with the accurate
variant set. Therefore, we have used the Ti/Tv ratio to
examine the accuracy in detecting true positive SNVs
and F-score to assess the overall pipeline performance.

Fig. 5 The InDels detection performance of pipelines on exome-2. F-scores of InDels were plotted against the base pair length of the InDels. The
negative value of x-axis indicates the deletion and positive value for insertion
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Our results [Additional file 15: Table S10] along with the
previous report by Hwang et al. [6] highlight that SAM-
tools outperforms GATK in detecting SNVs; in contrast
to other reports [12, 13]. However, DeepVariant per-
formed best among the variant callers.
The overall performance of pipelines in detecting InDels

is comparatively lower than SNVs detection. This low per-
formance could be due to WES data as they miss many
large InDels [19]. Further, we have compared our results
with previous benchmarking studies that used GiaB gold
standard variant dataset NA12878 (Additional file 15:
Table S10) [6, 8, 11, 15, 16]. Our results show that Deep-
Variant outperformed all the variant callers in contrast to
previous studies that GATK consistently performed well
for InDel detection. Moreover, DeepVariant has detected
more InDels at higher base pair length size than GATK.
Further, we have investigated the influence of aligners,

particularly BWA and Novoalign (non-commercial ver-
sion). The algorithm of BWA balances between running

time, memory usage, and accuracy, while Novoalign
shows slow and high memory usage that contribute to
better mapping. BWA performs better for SNVs and
Novoalign for InDels using NA12878 in an agreement
with previous reports (Additional file 15: Table S10).
Also both aligners perform equally well with subtle dif-
ferences using NA24385 and NA24631. However, our
results indicate that variant caller has more influence in
detecting SNVs and InDels than the aligners.
Finally, the selection of the human reference genome is

a prerequisite for successful analysis of WES; we have con-
ducted the analysis comparing SNVs and InDels detected
based on GRCh38 and GRCh37. Our results show that
the pipelines perform slightly better with GRCh38 than
GRCh37, possibly due to more true positive (TP) SNVs
and InDels detected. In case of missing variants (FNs),
GRCh38 has lower (~ 8%) and much lower (~ 20%) num-
ber of FNs for SNVs and InDels respectively than
GRCh37. Furthermore, our investigation on FNs has

Fig. 6 Venn diagram depicting the comparison of top four pipelines. GiaB variants (a) compared against the top 4 performing pipelines (b)
BWA_SAMtools, (c) BWA_DeepVariant, (d) Novoalign_DeepVariant, (e) Novoalign_SAMtools, (f) BWA_GATK and (g) Novoalign_GATK for SNVs (a, c)
and InDels (b, d) on exome-1 (top row) and exome-2 (bottom row)

Kumaran et al. BMC Bioinformatics          (2019) 20:342 Page 7 of 11



indicated that show genotype quality and depth of the
coverage influence the FN detection (Fig. 7). In this study,
we report GRCh38 is preferred genome for evaluation
studies. Moreover, it is reported to offer high coverage,
more accurate genomic analysis and improved annotation
of the centromere regions [27].

Conclusions
In this study, we demonstrated that the variant caller
DeepVariant in combination with aligner BWA or
Novoalign perform best in detecting accurate SNVs and
InDels. Furthermore, we recommend that merging of
BWA and Novoalign aligners with DeepVariant and
SAMtools callers improve accuracy for SNVs detection;
and with DeepVariant and GATK for InDels detection.

However, the users should be aware that the pipelines
may fail to detect ~ 1% to ~ 2% of true variants. To con-
clude, our benchmarking analysis can assist the investi-
gators in choosing a variant calling pipeline for accurate
detection of SNVs and InDels, and will greatly aid
disease-causing variants detection from WES data.

Methods
Datasets
FASTQ files of human exome HapMap/1000 CEU fe-
male NA12878 (accession No.: SRR098401) was down-
loaded from NCBI-Sequence Read Archive (SRA-
https://www.ncbi.nlm.nih.gov/sra). The whole exome se-
quencing of NA12878 was performed using the HiSeq
Illumina 2000 platform and SureSelect human all exon

Fig. 7 Analysis of depth and GQ of true SNVs missed (FN) by BWA and Novoalign alignments. Depth of the false negative SNVs on exome-1(a), − 2
(b), − 3(c) and− 4 (d) and InDels on exome-1(e), − 2(f), − 3(g) and− 4(h). Genotype quality of false negative SNVs on exome-1 to - 4 (i, j, k, and l) and
InDels on exome-1 to − 4 (m, n, o and p) respectively
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v2 target capture kit [28]. The target region BED file was
downloaded from Agilent SureDesgin (https://earray.
chem.agilent.com/suredesign/, ELID: S0293689). The
human reference genomes GRCh37 and GRCh38 were
downloaded from the Ensembl [29]. Next, NA12878
high confidence call set version 2.19 by Genome in a
Bottle (GiaB) consortium was used for pipeline perform-
ance validation. The variant set along with a BED file
was downloaded from NCBI and was further filtered to
highly accurate call set using the BED file. This GiaB
variant set, created by integrating 14 different datasets
from five sequencers, is the only ‘gold standard’ variant
dataset publically available for systematic comparison of
variant callers. Furthermore, two recently released datasets
NA24385 (Ashkenazim male; accession No.: SRR2962669)
and NA24631 (Chinese male; SRR2962693) from GiaB were
downloaded for the comparison. These datasets were gener-
ated using Agilent SureSelect Human All Exon v5 kit for
capturing and HiSeq Illumina 2500 platform for sequencing.
Further, to test the certainty of the performance of the

pipelines, simulated human whole exome data was gener-
ated by ART toolkit [30]. ART takes a reference genome
in FASTA format and generates ‘synthetic’ sequencing
reads. The reference genomes GRCh37, GRCh38, and se-
quencing target BED (SureSelect human all exon v2 target
capture region) file were inputs of the simulator. The sim-
ulated short paired-end reads were generated with param-
eters of 150 bp length; the depth of 150X covering

sequencing targets; and Illumina HiSeq 2000 sequencing
technology with 0.01% error model. This simulated exome
data mimic the technology-specific sequencing process
with customized read length and error characteristics.

Pipeline development
We developed the modular pipeline (Fig. 1) that consist of
the aligner and variant caller tool, to analyze both the real
and simulated exome data sets. The pipeline involves sev-
eral steps to produce high-quality alignment files and to
predict particular variants. Initially, the quality of the raw
reads obtained from SRA was checked by FastQC [31],
and the low-quality reads and adapter sequences were re-
moved by Cutadapt [32]. Next, high-quality reads were
aligned with the human reference genome GRCh37 and
GRCh38. After the alignment, PCR duplicates were re-
moved using PiCard Tools [33]. Finally, SNVs and InDels
were detected using different variant calling tools. Based
on prevalence and popularity, five aligners and four vari-
ant callers were used in combination to develop 20 differ-
ent pipelines (Additional file 6: Table S1). The pipeline
was written using UNIX shell script with default parame-
ters (available on https://github.com/bharani-lab/WES-
pipelines.git).

Performance evaluation of variant calling pipelines
The variants determined by pipelines were compared
with standard variants provided by GiaB using VCFtools

Fig. 8 Performance comparison of pipelines using F-score on NA12878, NA24385, and NA24631. The values and the error bars represent the
average and standard deviation of F-score respectively, obtained from all three datasets. Performance comparison of pipelines in detecting SNVs
GRCh38 (a, b) and InDels GRCh37 (c, d)
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[34]. The SureSelect Human All Exon v2 target captured
kit bed file (https://earray.chem.agilent.com/suredesign/,
ELID: S0293689) was used to capture the locations of
variants. Tabix was used to extract the variants using
this target capture bed file, and vcflib tool vcfallelicpri-
mitives was used to pre-process the vcf files. The variant
calling pipeline performance was measured statistically
as sensitivity = TP / (TP + FN), precision = TP / (TP +
FP), false discovery rate (FDR) = FP / (TP + FP) and F-
score = 2TP / (2TP + FP + FN). TP is a true positive vari-
ant that exists in GiaB data set and also is detected by
the pipeline; FP is a false positive variant that does not
exist in GiaB and is detected by the pipeline; FN is a
false negative variant that exists in GiaB and is not de-
tected by the pipeline. F-score was used as the key
metric for evaluating the performance of the pipelines.
Furthermore, F-score with respect to depth of cover-

age, heterozygous (Het) and homozygous (Hom) detec-
tion, transition (Ti) and transversion (Tv) conversion of
SNVs, genotype quality, genotype concordance, insertion
and deletion size were calculated for the pipeline per-
formance evaluation. Depth of coverage, which is the
total number of bases sequenced and aligned at a given
reference base position, was calculated by the GATK
package DepthOfCoverage. The metrics Het/Hom and
Ti/Tv ratios were calculated as described by Wang et al.
[35]. The genotype quality is used to estimate the accur-
acy of a genotype call and is defined by GQ = − 10 *
log10(Error rate). The genotype (allele) concordance,
which is the intersection of the ‘test’ and ‘truth’ datasets,
was determined by Concordance package of SnpSift.
Venn diagram was plotted to compare the performance
of top performing pipelines.

Additional files

Additional file 1: Figure S1. F-score with respect to depth of coverage
for top six pipelines. ROC curves were plotted using the depth of SNVs (a,
c) and InDels (b, d) against F-score using exome-3 (a, b) and exome-4 (c,
d). (PNG 148 kb)

Additional file 2: Figure S2. F-score with respect to genotype quality
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