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Abstract 

Inflammatory bowel disease (IBD) is an idiopathic intestinal inflammatory disease that comprises ulcerative colitis (UC) 
and Crohn’s disease (CD). IBD involves the ileum, rectum, and colon, and common clinical manifestations of IBD are 
diarrhea, abdominal pain, and even bloody stools. Currently, non-steroidal anti-inflammatory drugs, glucocorticoids, 
and immunosuppressive agents are used for the treatment of IBD, while their clinical application is severely limited 
due to unwanted side effects. Chinese medicine (CM) is appealing more and more attention and investigation for the 
treatment of IBD owing to the potent anti-inflammation pharmacological efficacy and high acceptance by patients. In 
recent years, novel drug delivery systems are introduced apace to encapsulate CM and many CM-derived active con-
stituents in order to improve solubility, stability and targeting ability. In this review, advanced drug delivery systems 
developed in the past and present to deliver CM for the treatment of IBD are summarized and future directions are 
discussed.
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Background
Inflammatory bowel disease (IBD) is a chronic and mul-
tifactorial inflammatory disorder of the intestinal tract, 
associating with an immunological imbalance of the 
intestinal mucosa [1]. IBD is commonly known to be 
classified into two major subtypes, namely ulcerative 
colitis (UC) and Crohn’s disease (CD). UC is a continu-
ous inflammation of the colonic mucosa, while CD is a 
non-continuous whole-layer inflammation and can affect 
any region of the whole gastrointestinal tract (GIT) from 
the mouth to the anus [2, 3]. Typically, clinical manifesta-
tions of IBD are characterized as abdominal pain, diar-
rhea, weight loss, and even bloody stools. Moreover, a 
relentless climb in incidence has been observed among 
the younger in recent decades [4]. With the development 

and progression of IBD, various complications and other 
conditions occasionally develop, such as stenosis, fis-
tula and colitis-associated cancer. Given its early onset, 
chronic nature and the need for treatment till the end of 
life, the cost of medical treatment for IBD would be enor-
mous and impose a significant economic burden on IBD 
patients.

Historically, patients with IBD were treated with 
non-biological therapies, containing 5-aminosalicylic 
acid (5-ASA), antibiotics, and in some cases, steroids. 
Among these conventional therapies, corticosteroids 
are considered to be the most effective therapies, pro-
viding symptomatic improvement for patients with IBD 
[5]. However, with the emerging side effect and steroid-
dependent remission by non-biological treatment, new 
biological therapies have been clinically developed, such 
as anti-tumor necrosis factor (TNF) agents (infliximab, 
adalimumab, and certolizumab), anti-adhesion molecules 
(vedolizumab), some blockage of downstream signaling 
(tofacitinib), proinflammatory cytokines (ustekinumab), 
and others agents like ozanimod [6–10]. Although these 
new biological therapies have been reported to be well 
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tolerated, their effectiveness in treating all patients is 
moderate and the safety problems associated with risks 
of GIT ulcers, bleeding and perforation, metabolic disor-
ders or myelosuppression have become more and more 
conspicuous [11, 12]. Therefore, the development of 
effective and low-cost therapeutics is of high importance 
and necessity for patients with IBD.

Due to limited effective medications and concerns of 
side effects, the estimated prevalence of patients with 
IBD in North America and Europe using complementary 
and alternative medicines (CAM) has ranged from 21 to 
60%, ranking among the highest users of CAM [13, 14]. 
Chinese medicine (CM) as one of the most developed 
branches of CAM has been widely used to treat IBD. 
Substantial studies have revealed that CM and many CM-
derived active constituents, such as rutin, quercetin, res-
veratrol, curcumin and berberine, can effectively reduce 
the intestinal inflammation and promote the wound 
healing through multiple mechanisms [15, 16]. Although 
the application of a majority of CM or their extracts has 
achieved decent therapeutic efficacy in experimental IBD 
models [17–20], the widely use of CM is severely limited 
because of poor water-solubility, instability at different 
environmental factors, and short half-life.

Novel drug delivery systems (DDS), which enclose ther-
apeutic drugs in different preparations through a series of 
nanotechnology and excipients, have revolutionized the 
treatment of IBD in recent years. Novel DDS can be engi-
neered to improve the solubility and stability, increase the 
bioavailability, control the drug release rate, increase the 
accumulated concentration at the desired site and reduce 
the systemic toxicity of the drugs [21]. Varieties of DDS 
are designed according to the physiological and patho-
logical features of IBD, which is characterized by the 
change of pH, gastric empty time, unique enzymes and 
micro-flora, higher pressure and overexpression of spe-
cific proteins. The emergence of novel DDS has provided 
new platforms for CM to exert their potentials in treat-
ment of IBD and relieve the related symptoms of IBD [22, 
23]. Here, the rationale of this review is to summarize the 
DDS developed in the past and present to deliver CM for 
the treatment of IBD.

The complex pathogenic mechanisms of IBD
Nowadays, IBD is recognized as a chronic relapsing intes-
tinal inflammation with unknown etiology and patho-
genesis. People with IBD could suffer from the course 
of episodic or persistent symptoms, as well as recurring 
bowel trouble. Generally, it is worldwide accepted that a 
complex interaction between the genetic, environmen-
tal, microbial and immunological factors involves in IBD 
pathogenesis [24]. Among four components, immune 
disorders are considered to be the most essential factor 

contributing to the development of IBD. The dysregula-
tion of intestinal epithelial barrier indicates the incidence 
of IBD.

Over the past decades, rapid successes in genetic analy-
sis and sequencing uncover more and more IBD-related/
causing genes and pathways. These genes and signal-
ing pathways mainly implicated in the maintenance of 
intestinal homeostasis, such as mucus barrier (GNA12, 
HNF4A, CDH1, MUC19), epithelial restitution (REL, 
PTGER4, STAT3, ERRFI1), regulation of innate immune 
(CCL11, CCL2, CCL7, MST1), autophagy (ATG16L1, 
XBP1, NOD2, LRRK2, CUL2, IRGM) and adaptive 
immunity (NDFIP1, TNFSF8, TAGAP, IL2, IFNG, IL5, 
IL7R, IRF5, IL10, IL27, CREM), IL-23/TH17 signaling 
(IL23R, JAK2, IL21, TNFSF15), endoplasmic reticulum 
(ER) stress (CPEB4, ORMDL3, SERINC3, XBP1) [25]. 
Recently, the largest genetic association studies and tran-
sethnic analysis documented about 200 susceptibility loci 
and over 300 potential genes for IBD [26]. However, these 
identified genetic factors and susceptibility loci disclosed 
so far account for only 20–25% of the genetic risk of IBD. 
In addition, several environmental factors play risky 
roles in the pathogenesis of IBD, including smoking, diet, 
some nonsteroidal anti-inflammatory drugs (NSAIDs), 
antibiotics, social stress or psychological element [24]. 
Although the relationships among them remain poorly 
understood, accumulating evidences have shown that 
smoking and drugs, including NSAIDs and antibiotic, 
have significant impacts on triggering onset or relapse 
of IBD, while high levels of stress and the psychological 
changes from perceived stress could partly medicate the 
deterioration of IBD [27–32]. Furthermore, many stud-
ies have established the association between the changes 
in intestinal microbiota and IBD. A significant reduc-
tion in biodiversity and stability of gut microbiota and a 
marked increase in adherent and invasive bacteria have 
been found in patients with IBD in comparison with that 
of healthy people [33–36].

Currently, more and more efforts have been domi-
nated in investigating the relationships between gut 
inflammation and IBD pathogenesis. The dysfunctions 
of innate and adaptive immune signaling have been 
well-documented to play crucial roles in contributing 
to the abnormalities of gut inflammatory response in 
IBD. Immunological studies focused on innate immune 
responses in IBD show the importance of epithelial bar-
rier integrity, innate microbial sensing and autophagy 
in contributing to IBD pathogenesis [37–40]. On the 
other hand, most recent studies indicated that CD has 
been associated with an aberrant Th1 response-driven 
gut inflammation while UC has been mediated by a 
non-conventional Th2 immune response in gut when 
it comes to an adaptive immune response in IBD [41]. 
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Taken together, these components are responsible for 
IBD, which facilitated by defects in the intestinal epithe-
lial barrier, causing innate and adaptive immune response 
with a large amount of cytokines, and then leading to 
the activation of subclinical or acute mucosal immune 
system, eventually resulting in an active and chronic 
inflammation and tissue destruction like fibrosis, abscess, 
fistula, and even cancers.

Therapeutic potential of CM for the treatment 
of IBD
In recent years, various CM and CM-derived active con-
stituents have been employed in the treatment of IBD 
and displayed great potential and effectiveness from 
bench to clinical application. It has been reported that 
CM can be used to treat a series of acute and chronic 
gastrointestinal diseases by clearing body heat and damp-
ness, detoxifying, and invigorating the circulation of 
blood [42, 43]. Notably, CM is appealing more and more 
attention and investigation in the treatment of IBD due 
to the potential benefits of high acceptance by patients, 
less undesirable side effects, and relatively low cost. The 
existing CM for the treatment of IBD can be classified 
according to preclinical drugs, drugs in clinical trials, and 
listed drugs. Some of the drugs currently in preclinical 
studies are described below, and there are many others 
that have not been mentioned in this article. Periplaneta 
Americana, a medicinal insect, its ethanol extract could 
attenuate the dextran sulfate sodium (DSS)-induced UC 
in rats, by means of ameliorating intestinal inflammation, 
improving intestinal barrier function, and regulating the 
disturbed gut microbiota, modulating the flora structure, 
and restoring the intestinal immune system [44]. Wedelia 
chinensis, the whole grass of Wedelia chinensis (Osbeck) 
Merr, can significantly ameliorate the symptoms of coli-
tis in animal models, such as diarrhea, rectal bleeding 
and weight loss, reduce colonic atrophy and histopatho-
logical damage caused by inflammation [45]. Tanshinone 
IIA, the major active lipophilic components of Danshen, 
and Notoginsenoside R1, the main bioactive component 
of Panax Notoginseng, could both attenuate experimen-
tal inflammatory bowel disease via pregnane X receptor 
activation [46, 47]. Several CM products have been intro-
duced to trials of IBD patients after passing animal stud-
ies successfully. In UC, aloe vera gel, tormentil extracts, 
wheat grass juice (Triticum aestivum), Andrographis pan-
iculata extract (HMPL-004) and topical Xilei-san were 
better to placebo in inducing remission or response, and 
curcumin was superior to placebo in maintaining remis-
sion [48–53]. In CD, Artemisia absinthium (wormwood) 
and Tripterygium wilfordii were superior to placebo in 
inducing remission and preventing clinical recurrence 
of post-operative CD respectively [54, 55]. A multicenter 

study showed that the efficacy of Andrographis panicu-
lata (HMPL-004) was as potent as mesalazine after an 
8-week therapy in mild-to-moderate UC patients, thus 
indicating that HMPL-004 is a promising alternative to 
mesalazine in UC [56]. In a randomized, placebo-con-
trolled trial, 39 adult postoperative CD patients were 
treated with Tripterygium wilfordii (TW)  or SASP for 
2  weeks. The recurrence rate of CD in the TW treated 
group was significantly lower than that in the SASP-
treated group [54]. CM that have been introduced into 
the market for the treatment of IBD are mainly  com-
pound preparations, including Gubenyichang Tablets, 
Bupiyichang Pills, Guchang Zhixie Pills, Changweining 
Tablets and Shenqi Baizhu Pills, etc. Therefore, the thera-
peutic potential of CM in the IBD therapy is large and the 
development of advanced CM or CM-derived formula-
tions is promising.

Novel DDS of CM for the treatment of IBD
Substantial CM are found to have potent anti-inflam-
matory effects, but their wide application into clinic was 
challenged due to poor water-soluble ability, instability 
and rapid metabolism. Fortunately, nanotechnology and 
related technologies advanced the development of novel 
DDS and thus addressed these problems to some extent. 
In this section, the following DDS were introduced to 
overcome undesirable features of CM, such as nanopar-
ticle, self-nanoemulsifying DDS (SNEDDS), nanoemul-
sion, nanosphere, nanotube, solid lipid microparticle, 
capsule and lipid-based nanocarriers.

pH‑dependent DDS
The pH of GIT is elevated from the stomach to the colon. 
The pH value of the colon can be achieved 7.0–7.4 and 
this character can be exploited to design a pH-depend-
ent DDS to specifically release the drug in the colon 
inflammation site [57]. The most commonly used carrier 
material for pH-dependent drug carriers is the acrylate 
copolymer (Eudragit). It is an anionic polymer in which 
the carboxylic acid group does not dissociate at a low pH 
and is therefore insoluble in the stomach. After entering 
the small intestine, the polymer molecules become ion-
ized and gradually dissolve as the pH increases [58]. The 
greater the proportion of carboxyl groups in the mol-
ecule, the higher the pH required for dissolution. Several 
Eudragit-based products have been approved as pharma-
ceutical excipients to achieve pH-dependent drug release 
in the colon, currently.

Silybin is a flavonolignan and extracted from the seeds 
of Silybum marianum L. Since ancient times, it has been 
used for the treatment of various gastrointestinal and 
liver diseases, which is attributed to its radical scaveng-
ing activities [59]. Eudragit RL PO NPs were prepared 
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using solvent evaporation emulsification technique and 
then were coated by Eudragit FS30D to deliver silybin in 
the inflamed intestinal site. Animal experimental results 
demonstrated the significant reduction of TNF-α, IL-6 
and myeloperoxidase (MPO) activity and the amelio-
ration of macroscopic and histopathological scores by 
the optimized NPs in the acetic acid-induced rat colitis 
model compared to control group [60].

Curcumin is a bioactive polyphenol isolated from the 
rhizome of the Curcuma longa L. (turmeric) [61, 62]. 
Extensive researches on curcumin have proven that it 
is a molecule with anti-oxidant, anti-inflammatory and 
antitumorigenic properties [63–65]. As a BCS IV drugs, 
the solubility and permeability of curcumin are both 
poor. The microsponge of curcumin was developed by 
quasi emulsion solvent diffusion method. Release stud-
ies revealed that microsponges prevented the prema-
ture release of curcumin in upper GIT and specifically 
released curcumin at colonic pH. Pharmacodynamic 
study demonstrated that, compared to free curcumin, 
curcumin microsponges can ameliorate edema, necrosis, 
and hemorrhage of colon. In addition to microsponge, 
curcumin-loaded poly (lactic-co-glycolic acid) (PLGA) 
NP/microparticle and microsphere (zein and PVMMA) 
[66–68] were prepared and then coated with pH-sensitive 
materials Eudragit S100 and FS30D. In vitro and in vivo 
assays of the three curcumin-loaded DDS exhibited pH-
dependent release behavior and delivered curcumin to 
the colon lesion to exert excellent anti-inflammation effi-
cacy [69].

Rutin is a citrus flavonoid glycoside found in many 
plants. Like other flavonoid compounds, rutin possesses 
strong anti-oxidant activity. So starch and acrylic acid 
were copolymerized using the direct gamma radiation 
technique to form the hydrogel and then encapsulated 
rutin. In  vitro release of rutin-loaded hydrogel revealed 
strong pH-dependent release behavior. The reduction 
of colon/body weight ratio, MPO activity, TNF-α, nitric 
oxide and histopathological results confirmed the effi-
cacy of the poly (starch/acrylic acid) hydrogel loaded 
rutin [70]. Ellagic acid, a natural phenol, has the anti-
proliferative and antioxidant properties. The micro-
sphere of ellagic acid was prepared using a pH-sensitive 
polymer, Eudragit P-4135F, carmellose sodium and Span 
80. Release behavior suggested that the pH-responsive 
microsphere was prepared successfully and can be used 
to deliver drug in the colon for the treatment of IBD [71].

Shikimic acid (SA), more commonly known as its ani-
onic form shikimate, affects arachidonic acid metabo-
lism, inhibits platelet aggregation, inhibits arterial and 
venous thrombosis, and has anti-inflammatory effects. 
Butyric acid (BA), a short chain fatty acid, has good ther-
apeutic effects on UC confirmed by many experiments. 

But the short half-life of oral administration limited its 
application. 3,4,5-Tributyryl shikimic acid (TBS), a novel 
prodrug, was synthesized through an ester bond between 
SA and BA. Amberlite 717, the anion-exchange resin, was 
employed as the carrier to encapsulate TBS through the 
ion-exchange reaction. Simultaneously, Eudragit S100, 
the enteric coating material, was introduced to encapsu-
late the drug-loaded resin to form the drug-loaded resin 
microcapsule (TBSS-DRM). The TBSS-DRM exhibited 
a good therapeutic effect on 2,4,6-trinitrobenzenesul-
fonic acid (TNBS)-induced experimental colitis mouse 
[72]. Rectal administration of Piceatannol, an analog and 
metabolite of resveratrol, by colon-targeted capsule also 
ameliorated rat colitis and reproduced the molecular 
effects in the inflamed colonic tissues [73].

Time‑delayed and pressure‑dependent DDS
Although the gastric emptying time is extremely irregu-
lar, the transit time of the material in the small intes-
tine is relatively constant, usually 3 to 4 h [74]. Based on 
this feature, a time-delayed colon targeting system was 
designed to ensure that the drug began to release after 3 
to 4 h of leaving the stomach. At present, it is common to 
encapsulate drugs with poorly soluble coating materials 
that are difficult to decompose. Adjusting the proportion 
and amount of material is used to control drug release 
time.

Acetylharpagide, extracted from Ajuga decumbens, is 
widely used for remedying infectious and inflammatory 
diseases in Southern China. But it can be destroyed by 
the stomach acid due to the hemiaceta structure. Acetyl-
harpagide tablets were formulated with the dual mecha-
nism, pH-dependency and time-delay release. The core 
tablets were coated with the ethyl cellulose and suitable 
channeling agent followed by coating with pH dependent 
polymers. In vitro drug release and the pharmacokinetic 
evaluation in dogs showed that acetylharpagide colon-
targeted tablets could target the drug to the colon [75].

There are peristaltic waves in the GIT of the body, but 
a large amount of small intestinal fluid in the small intes-
tine can effectively buffer the intracavity pressure, and 
the intracavitary pressure of the intestinal contents is 
reduced. However, the colon absorbs a large amount of 
liquid, the contents solidify, and the intracavitary pres-
sure is increased in the colon [76]. Pressure-controlled 
DDS are constructed to bear up against luminal pressure 
in the small intestine, but to collapse at the higher colonic 
pressure with a final drug release in the colon 3–7 h after 
peroral administration. Usually, the preparation of pres-
sure-dependent DDS is based on the coating of gelatine 
capsules with ethyl cellulose. To date, there is no report 
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about the pressure-dependent DDS for the delivery of 
CM to treat IBD.

Variation in GI transit times, altered gastro-intesti-
nal motility and water absorption in IBD may limit the 
therapeutic benefits of these two types DDS. The change 
of transit times and pressure in IBD patients should be 
furtherly investigated and discussed to guide a definite 
direction. More pharmaceutical investigations for time-
delayed and pressure-dependent DDS of CM are essen-
tial to evaluate the therapeutic potential for the therapy 
of IBD.

Enzyme/microbiota‑activated DDS
The human colon begins with the cecum and ends with 
the rectum. The physiological structure is divided into 
four parts, namely ascending colon, transverse colon, 
descending colon and sigmoid colon. The colon is mainly 
used to absorb water and electrolytes, store the body’s 
metabolites, solidify them into feces, and excrete them 
through the rectum. At the same time, the colon also pro-
vides a suitable living environment for the inside micro-
organisms. Studies have shown that the colon is rich in 
more than 400 beneficial bacteria, and the bacteria in the 
colon fluid is about 1 × 1011/mL, which forms a very large 
flora gradient with the small intestine. In the colon, these 
bacteria can produce a large number of highly active 
proteolytic enzymes and peptidases, which can catalyze 
many metabolic reactions. The anaerobic environment 
in which the colon is located makes the enzymatic reac-
tion at the colon mainly degradation [77–79]. Using a 
material that can be degraded by enzymes specific to the 
colon (such as azo degrading enzyme, glycosidase, pec-
tinase, etc.) as a targeting carrier material, the formula-
tion is degraded and the drug can be released and then 
absorbed by the colon site to increase the bioavailability 
of the drugs.

Rutin pellets were successfully prepared and showed 
very good characteristics. Pellets presented desirable 
rutin dissolution profiles and excellent stability when 
coated with sodium alginate/chitosan. The combination 
of rutin chitosan, sodium alginate and pellets could form 
a promising preparation free of side effects for life-long 
therapy of IBD [80].

Resveratrol is also a polyphenol bioactive agent present 
in vegetables, fruits and plants and it has various biologi-
cal activities, such as antitumor, antiviral and antioxidant 
effect [81]. However, rapid absorption and extensive 
metabolism in the liver and gastrointestinal tract lead 
to its low oral bioavailability [82]. Ca-pectinate beads 
were designed to deliver resveratrol in the treatment of 
IBD. Animal experiments showed that the lowest disease 
activity index (DAI) and histopathological score have 

been recorded in the group treated by Ca-pectinate beads 
and the anti-inflammatory effects of resveratrol could be 
attributed to its inhibitory effect on sphingosinekinase 1 
(SphK1) [83].

Icariin, isolated from CM Horny Goat Weed (Epi-
medium alpinum L.), is commonly used by mouth for 
sexual performance problems and inflammation-related 
diseases. The poor solubility and low bioavailability lim-
ited its application in the clinic [84]. Alginate–chitosan 
microspheres loaded with icariin were investigated in 
TNBS/ethanol-induced colonic mucosal injury rats. 
Pharmacodynamics studies indicated that it could not 
only reduce the colonic injury, but also inhibit the inflam-
matory response in colonic mucosa [85].

To achieve colon targeted delivery, chitosan and 
nutriose were coated on the surface of the quercetin 
nanovesicles. A marked amelioration of symptoms of 
TNBS-induced colitis was observed in animals treated 
with quercetin-loaded coated vesicles, favoring the resto-
ration of physiological conditions [86].

Curcumin polymer (polycurcumin, PCur) was synthe-
sized through disulfide bond between hydrophilic PEG 
and hydrophobic curcumin (Fig.  1). PCur led to prefer-
ential accumulation of curcumin in the inflamed regions 
owing to the good solubility, proper size and neutral 
properties. Moreover, from the release curve, we can 
observe a significantly elevated release of curcumin when 
responding to a bacterial reduction in the colon. Finally, 
in DSS-induced murine model of IBD, orally adminis-
tered PCur ameliorated the inflammatory progression 
and could protect mice from IBD [87]. Novel polyacryla-
mide-grafted-xanthan gum (PAAm-g-XG) NPs were pre-
pared for colonic delivery of curcumin. Release studies 
indicated microflora-dependent drug release property 
of NPs. Curcumin NPs reduced nitrite and myeloperoxi-
dase levels, prevented weight loss and attenuated colonic 
inflammation in acetic acid-induced IBD in rats [88].

Sinomenine, a pure alkaloid extracted from Sinome-
nium acutum (Thumb.) Rehd. et Wils., is widely known 
for its anti-inflammatory and immunosuppressive effects 
[89]. Due to its low oral bioavailability, chitosan micro-
spheres coated by Eudragit were prepared to delivery 
sinomenine to the colon lesion for IBD therapy. In DSS-
induced experimental colitis, DAI of the sinomenine 
enteric-coated microspheres-treated group was signifi-
cantly lower than that of the SASP-treated group, which 
might be attributed to the suppression of the TLR/NF-κB 
signaling [90]. Similarly, curcumin (CN)-containing chi-
tosan NPs (CS-NPs) coated with Eudragit FS30D were 
prepared by ionic gelation and solvent evaporation 
method. In vivo distribution revealed good accumulation 
of CS-NPs in the colonic region [91].
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From the above examples, it is not difficult to see that 
chitosan and sodium alginate are used as the main car-
rier materials of enzyme-sensitive (mucoadhesive) colon-
targeted DDS to deliver CM for the treatment of IBD. 
Therefore, for the specific azo reductase and disulfide 
reductase in the colon, the DDS by connecting disulfide 
bonds and azo bonds between the drug and the carrier 
would be a good choice to treat IBD.

Co‑delivery systems for the treatment of IBD
Co-delivery of different kinds of drugs can overcome the 
unsatisfactory disadvantage and improve therapeutic 
efficacy through synergistic interaction. CD98 is highly 
overexpressed on epithelial cells and macrophages in the 
colon tissue under mucosal damage and inflammation. 

Previous research has proved that siRNA targeting CD98 
(siCD98) could decrease the severity of UC by down-
regulating the expression of CD98 in colitis tissue. Hyalu-
ronic acid (HA)-functionalized NPs can realize targeted 
delivery of siCD98 and curcumin to colonic epithelial 
cells and macrophages (Fig. 2). Furthermore, siCD98 and 
curcumin can synergistically prevent mucosal damage 
and reduce inflammation [92].

Piperine (PIP), an important bioactive compound 
of black pepper, could inhibit metabolizing enzymes, 
retard clearance rate of P-glycoprotein (P-gp) efflux 
pump and downregulate the expression of NF-κB, 
thus enhancing the absorption of curcumin and pro-
tecting against oxidative damage. Treatment with 
CUR-PIP-SMEDDS has an equivalent effect to 5-ASA 

Fig. 1  Polycurcumin conjugate for the treatment of IBD. a Synthetic scheme of polycurcumin conjugate. b In vitro release behavior in the different 
conditions. c Change in body weight, d DAI evaluation. e Colon length of normal mice and DSS-induced mice receiving different treatments. f 
Quantitative scores of inflamed degree. g MPO activity, h MDA. i IL-6 and j TNF-α levels in colonic tissues after administration of polycurcumin 
(Reprinted with permission from Ref. [87]. Copyright Taylor and Francis Online 2016)
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in maintaining remission of UC by retention enema 
administration. In addition, it could directly inter-
act with the inflamed epithelium tissue of the mice 
colon and release curcumin immediately to increase 
the local concentration in colonic lesion site [93]. In 
a similar way, thiolated chitosan/alginate composite 
microparticulates (CMPs) coated by Eudragit S-100 
were developed for colon-specific delivery of 5-ASA 
and curcumin. The combination of pH-sensitive, 
mucoadhesion and controlled delivery properties could 

specifically deliver 5-ASA and curcumin to the site of 
the colon, and markedly alleviate the colon inflamma-
tion of colitis rats [94].

Celecoxib, belonging to the nonsteroidal anti-inflam-
matory drug, is widely used for the treatment of inflam-
mation through inhibiting cyclooxygenase-2 (COX-2) 
enzyme. But the bioavailability of the drug is poor and 
it has severe cardiac, gastric and renal toxicity. pH-sen-
sitive NPs loading curcumin and celecoxib were pre-
pared by solvent emulsification evaporation method. This 

Fig. 2  Orally targeted HA-siCD98/CUR-NPs against UC through synergistic effects. a The fabrication process of HA-siCD98/CUR-NPs. b Scheme 
illustration of HA-siCD98/CUR-NPs embedded in hydrogel (chitosan/alginate) in vivo. c Accumulation of HA-functionalized NPs embedded in 
hydrogel in colon at four different time points after oral administration. d The concentration of fecal Lcn-2 and e H&E-stained colon sections of mice 
treated with different NPs for 6 days, Healthy control (1), DSS control (2), DSS + HA-siCD98-NPs (3), DSS + HA-CUR-NPs (4) and DSS + HA-siCD98/
CUR-NPs (5) (Reprinted with permission from Ref. [92]. Copyright Ivyspring International Publisher 2016)
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local delivery would be more effectively taken up by the 
colonic milieu, improve their solubility and bioavailability 
and circumvent the other organ toxicity of celecoxib [95].

Other colon‑targeted DDS
Apart from above mentioned DDS, other delivery sys-
tems, including fibroin NPs and SNEDDS, are also 
exploited and advanced for the treatment of IBD 
(Table 1). Epigallo-catechin 3-gallate (EGCG) is a natural 
polyphenol compound extracted from green tea [96, 97]. 
A large number of studies have shown that it has anti-
oxidant and anti-inflammatory effects. [98]. Moreover, 
ECGC can relieve the symptoms of colonic inflamma-
tion and maintain the integrative structure of intestinal 
epithelial layer in IL-10 knockout mice [99, 100]. Despite 
this, its clinical translation has been constrained by lim-
ited bioavailability [97]. In a recent study, EGCG-loaded 
ovalbumin (OVA) NPs were facilely produced via self-
assembling method and subsequently were used to treat 
UC mouse. In vivo results showed that the EGCG-loaded 
NPs EGCG increased the accumulation of EGCG in coli-
tis tissue sites and showed significantly better therapeutic 
efficacy in alleviating UC than pristine EGCG [101].

Resveratrol-loaded silk fibroin NPs (RL-FNPs) were 
prepared through precipitation and incubation methods 
to overcome its drawbacks. In this DDS, silk fibroin, as 
a good delivery carrier, harbors the anti-inflammatory 
and healing effects and could simultaneously enhance 
the efficacy of resveratrol. The anti-inflammatory effect 
of RL-FNPs was similar to that of dexamethasone [102]. 
Similar to resveratrol, quercetin, a potent anti-inflamma-
tory, antioxidant agent [103] was encapsulated into the 
silk fibroin NPs and the antioxidant activity of quercetin 
was enhanced due to the synergistic effect of quercetin 
and silk fibroin [104].

Berberine (BR) is an isoquinoline alkaloid with a long 
history of medicinal use. BR is usually administered 
in a salt form for several clinical applications, such as 
anti-bacterial, anti-inflammatory, and gastrointestinal 
diseases [105]. However, poor stability and low bioavail-
ability limited the application of BR for long time. Based 
on the solubility studies and the pseudo-ternary phase 
diagrams, SNEDDS of berberine was developed using 
Acrysol K-150, Capmul MCM and polyethylene glycol 
400. Chick chorioallantoic membrane and in vivo efficacy 
assay individually revealed potent anti-angiogenic activ-
ity and anti-inflammatory effect of SNEDDS of BR [106]. 
Bruceine D (BD) is a natural quassinoid derived from B. 
javanica fruit and has various pharmacological activities 
including anti-cancer, anti-virus and anti-inflammatory 
effects [107]. However, the low solubility of BD is a bar-
rier for its absorption and release, which results in poor 
bioavailability. To address this problem, SNEDDS of BD 

was developed and composed of MCT, solutol HS-15, 
propylene glycol. According to the pharmacokinetic sta-
tistics, pharmacokinetic parameters of BD-SNEDDS were 
enhanced as compared with BD-suspension. In addi-
tion, the colon length and body weight were significantly 
restored, and TLR4, NF-κB p65 protein expressions were 
suppressed in TNBS-induced UC rat model [108]. Dif-
ferent from SNEDDS, the composition of nanoemulsion 
(NE) increased water phase. Andrographolide (AG) is 
a natural diterpenoid isolated from Andrographis pan-
iculata. Previous studies have shown that it has been 
utilized extensively for the treatment of IBD, because 
it can inhibit TNF-α, IL-1β, and NF-κB activities [109]. 
However, the low oral bioavailability seriously limited its 
application in the treatment of IBD [110]. AG-NE was 
prepared using high-pressure homogenization technique 
and composed of α-tocopherol, ethanol, cremophor EL, 
and water. In the pharmacokinetic assay, the bioavailabil-
ity of AG from AG-NE was almost six times in compari-
son with that from the AG suspension [111].

Embelin is a benzoquinone derivative found in Ardisia 
japonica. It is reported that embelin targets microsomal 
prostaglandin E2 synthase (MPGES) and eicosanoid syn-
thesizing proteins 5-lipoxygenase (5-LO), thus exhibit-
ing potent anti-inflammation effect [112]. Embelin lipid 
nanospheres (LNs) were developed by hot homogeniza-
tion followed by ultrasonication technique. Treatment 
with embelin LNs significantly reduced clinical activity 
and macroscopic scores compared to embelin conven-
tional suspension in acetic acid-induced UC rat model. 
Meanwhile, MPO, lactate dehydrogenase (LDH) and lipid 
peroxides (LPO) levels were decreased and reduced glu-
tathione (GSH) level was increased [113].

Anthocyanins are sugar conjugates of flavonoids and 
they are prevalent in flowers, fruits, and vegetables. 
Numerous studies have shown that anthocyanin-rich 
berries provide strong antioxidants and anticarcinogenic 
properties. However, poor bioavailability after oral con-
sumption makes it difficult to reach sufficient concentra-
tion in the target sites. To increase the concentration of 
anthocyanins in the colon, three types of encapsulation 
systems, PA (pectin amide, CaCl2, glycerine), WPI (whey 
protein isolate) and SL (pectin amide, citric acid malto-
dextrin, schellac), were developed and evaluated in the 
simulated gastrointestinal fluid. Release result indicated 
that encapsulation can potentially stabilize anthocyanins 
in the GIT [114].

Three kinds of curcumin DDS, including SNEDDS, 
nanostructured lipid carrier (NLC) and lipid nanocap-
sules (NC) was conducted to treat IBD. Although the 
permeability of curcumin across Caco-2 cell monolayers 
in the NC group was better, another two groups could 
significantly reduce the secretion of TNF-α secretion in 
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J774 cells. In  vivo, decreased neutrophil infiltration and 
colonic inflammation were only found in the NLC group 
[115]. Another study prepared curcumin-loaded solid 
lipid microparticle (SLM) and investigated anti-inflam-
matory activity using rat colitis models. Rat treated with 
curcumin-loaded SLM showed faster weight gain and an 
increase of the whole colon length compared with DSS-
induced rats [116].

CM‑based DDS for the treatment of IBD
Ginger‑derived DDS for the treatment of IBD
Ginger, derived from the rhizome of Zingiber officinale 
Rosc., is consumed as a spice and also used as an 
alternative medicine for a range of disorders like cold, 
fever, as well as many digestive tract problems like 
diarrhea and dyspepsia [117]. Studies have also shown 
that ginger and its active constituents, such as 6-gingerol 
and 6-shogaol, exhibit anti-oxidative, anti-inflammatory, 
and anti-cancer activities [118]. It is reported that a kind 
of NPs derived from edible ginger (GDNPs) exhibited 
efficient colon targeting following oral administration. 
GDNPs could also increase the survival and proliferation 
of intestinal epithelial cells (IECs), reduce the pro-
inflammatory cytokines (TNF-a, IL-6 and IL-1β), and 
increased the anti-inflammatory cytokines (IL-10 and 
IL-22) in colitis models, suggesting that GDNPs has the 
potential to attenuate damaging factors while promoting 
the healing effect [119].

In addition, ginger-derived nanolipids are also 
developed as carrier material for the delivery of siRNA 
to treat UC. Ginger-derived lipid vesicles can encapsulate 
siCD98 and a very low dose of siCD98 after oral 
administration can specifically and efficiently reduce 
colonic CD98 gene expression [120]. Even the researcher 
suggested that siCD98/GDLVs have the potential to 
shift the current paradigm of siRNA delivery away from 
artificially synthesized NPs toward the use of nature-
derived nanovectors from edible plants. 6-shogaol, the 
active ingredient of dried ginger, was loaded with folate-
functionalized PLGA/poly-lactic acid (PLA) NPs using 
a versatile single step surface-functionalizing technique 
[121]. In vivo results showed that oral administration of 
NPs-PEG-FA/6-shogaol in a hydrogel system (chitosan/
alginate) significantly alleviated colitis symptoms 
and accelerated colitis wound repair in DSS-treated 
colitis mice, by regulating the expression levels of pro-
inflammatory (TNF-α, IL-6, IL-1β, and iNOS) and anti-
inflammatory (Nrf-2 and HO-1) factors. Here, folic acid, 
a ligand for folate receptor which is overexpressed in 
IBD, was modified on the surface of the carrier to achieve 
colonic targeted delivery of the drug. In 2012, grape 
exosome-like NPs (GELNs) were proved by Zhang’s 
group that it can promote the intestinal tissue remodeling 

and protect against DSS-induced colitis [122]. Six years 
later, the group found that ginger exosome-like NPs 
(ELNs) are preferentially taken up by gut bacteria in an 
ELN lipid-dependent manner. ELN RNAs regulate gut 
microbiota composition and localization as well as host 
physiology, notably enhancing gut barrier function to 
alleviate colitis. More substances consisting of natural 
plants will be found and can be used for the treatment of 
IBD as therapeutic agents, drug carrier or both [123].

CM‑derived polysaccharide as drug carrier 
for the treatment of IBD
In recent years, polysaccharides are attracting more and 
more attention as a new class of colon targeting materi-
als. Polysaccharides are usually not absorbed in the upper 
part of the digestive tract (stomach and small intestine), 
but can be specifically degraded by colon bacteria. As 
natural products, polysaccharides are not only cheap 
and easy to obtain, while their safety has been proven for 
long time and collected as a pharmaceutical excipient in 
various national pharmacopoeias [124]. Such compounds 
mainly include amylose, dextran, pectin, guar gum and 
chondroitin sulfate. In addition to the above polysaccha-
ride macromolecules, other natural polysaccharides from 
CM were also developed to achieve colon-target drug 
delivery.

Angelica polysaccharide was extracted from fresh roots 
of Angelica sinensis. (Oliv.) Diels, which has been used 
as a CM to treat various diseases for thousands of years. 
There is mounting evidence revealing that Angelica poly-
saccharide possesses anti-ulcer and immunomodulation 
capabilities [125]. Zhou et al. chose Angelica polysaccha-
ride as a drug carrier and succinate as a cross-linker, then 
dexamethasone (Dex)-polysaccharide conjugate was syn-
thesized [126]. The newly synthesized dexamethasone-
polysaccharide conjugate was found to greatly reduce the 
systemic immunosuppression caused by Dex and effec-
tively convey Dex to the large intestine. Furthermore, the 
conjugate also showed promising therapeutic effect on 
TNBS-induced UC in rats.

Psyllium, viscous polysaccharides derived from the 
dried, ripe seeds of Plantago genus, has been reported as 
a medicinally active natural polysaccharide and used for 
the treatment of constipation, diarrhea, irritable bowel 
syndrome (IBS), UC, colon cancer, diabetes and hyper-
cholesterolemia [127]. Due to its biodegradability and 
digestibility, psyllium is rapidly emerging as a low-cost 
drug carrier and has been verified in some researches 
[128]. Inulin, consisting of linear polydisperse chains of 
β(2,1) fructan, is another natural polysaccharide derived 
from natural plants. The presence of β(2,1) bonds in inu-
lin prevents its degradation in the stomach and small 
intestinal. Abundance of hydroxyl groups makes it easy 
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to interact with common coupling reagents [129]. A 
novel amphiphilic inulin by grafting it with a hydro-
phobic peptide can enable the resulting conjugate to 
self-assemble into nanostructures and then encapsulate 
therapeutic agents [130]. Another amphiphilic inulin 
derivative was developed by Sun et  al. and was used to 
specifically deliver budesonide to the inflamed colon tis-
sue [131]. Besides, Ulva lactuca (ULP) polysaccharide 
displays several biological features like lowering choles-
terol, immunomodulatory and anti-heptotoxic property 
[132]. ULP can also stabilize the functional status of bio-
membranes and act as an antioxidant compound and sur-
factant. Selenium (Se) is an essential micronutrient trace 
element and low Se status has been demonstrated in 

association with IBD progression. Se NPs (SeNPs) exert 
anti-inflammatory activity accompanied by low toxicity, 
especially when decorated with natural biological com-
pounds. SeNPs decorated with Ulva lactuca polysac-
charide (ULP) can mitigate body weight loss and colonic 
inflammatory damage on DSS-induced acute colitis in 
mice [133].

CM as gas donors for the treatment of IBD
Gases such as nitric oxide, carbon monoxide and hydro-
gen sulfide play important roles in human physiological 
processes. Previous studies prepared styrene-maleic acid 
copolymer (SMA) micelles encapsulating tricarbonyl-
dichlororuthenium (II) dimer (CORM2), a commonly 

Table 2  CM-based DDS for the treatment of IBD

Carrier Experiment model Encapsulated cargoes Status Therapeutic application 
and observations

References

NPs derived from ginger DSS-induced colitis mouse 
model

– In vitro and in vivo Oral administration of 
GDNPs increased the 
survival and proliferation 
of IECs, reduced pro-
inflammatory cytokines, 
and increased the anti-
inflammatory cytokines in 
colitis models

[119]

NPs derived from ginger Colon-26 and RAW 264.7 
cells, normal mice

siCD98 In vitro and in vivo Ginger-derived lipid vesicles 
can encapsulate siCD98 
and a very low dose of 
siCD98 after oral admin-
istration specifically and 
efficiently reduced colonic 
CD98 gene expression

[120]

Angelica polysaccharide TNBS-induced UC in rats Dexamethasone (Dex) In vivo The Angelica polysaccha-
ride-Dex conjugate greatly 
reduced the systemic 
immunosuppression 
caused by Dex and effec-
tively conveyed Dex to the 
large intestine

[126]

Inulin DSS-induced colitis mouse 
model

Budesonide In vivo The redox-sensitive NPs, 
based on amphiphilic 
inulin, specifically deliv-
ered budesonide to the 
inflamed colon tissue and 
exerted excellent thera-
peutic efficacy in compari-
son to drug suspension in 
colitis mice model

[131]

In situ self-spray coating 
system (DTPA dianhydride, 
SBC, SDS)

Caco-2 cells, raw 264.7 
macrophage, DSS-induced 
rat colitis

Diallyl trisulfide (DATS) In vitro and in vivo Rectal administration of the 
DATS-loaded self-spray sys-
tem produced exogenous 
H2S and suppressed the 
overproduction of pro-
inflammatory cytokines, 
inhibited the adhesion 
of macrophages on the 
vascular endothelium, and 
repaired colonic inflamed 
tissues

[136]
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used CO donor, and evaluated the therapeutic potential 
of SMA/CORM2 in DSS-induced inflammatory colitis 
murine model [134]. After treatment with SMA/CORM2 
micelles, colitis symptoms (loss of body weight, diar-
rhea, and hematochezia) and histopathological colonic 
changes (shortening of the colon and necrosis or ulcers 
in the colonic mucosa) were significantly improved. It 
is reported that the first therapeutic-gas NO-respon-
sive hydrogel was prepared and that it may prove use-
ful in many applications, such as drug-delivery vehicles, 
inflammation modulators, and a tissue scaffold [135]. 
Hydrogen sulfide (H2S) is generated throughout the 
GI tract. Following colonic mucosal inflammation, the 
synthesis of H2S is significantly increased, accelerating 
the repair of ulcerative tissues, suggesting that H2S may 
function as an anti-inflammatory mediator. Diallyl tri-
sulfide (DATS) is an oil-soluble sulfur compound of natu-
ral origin that is isolated from garlic. Theoretically, one 
molecule of DATS can produce three molecules of H2S 
in the presence of biological thiols, including GSH. How-
ever, owing to its insolubility in water, an ideal method 
of administering DATS has yet to be developed. As an 
exogenous H2S donor, a self-spray coating system that is 
derived from a DATS-loaded capsule with foaming capa-
bility is prepared. In vivo assay indicated that this system 
can suppress the overproduction of proinflammatory 
cytokines, inhibit the adhesion of macrophages on the 
vascular endothelium, and repair colonic inflamed tissues 
[136]. The representative examples of CM-based DDS for 
the treatment of IBD are showed in the Table 2.

Conclusion and future perspectives
IBD, as a chronic inflammatory disease of the GIT, is 
common in young people and seriously affects the life 
quality of patients. As a long-standing cultural treasure, 
CM has always been favored by us. However, the unsat-
isfactory physical and chemical properties of CM have 
seriously affected their clinical application, and the emer-
gence of various new DDS has solved these problems to 
some extent. The three major systems of active targeting, 
passive targeting, and tumor microenvironment-respon-
sive DDS can also be mapped to the drug delivery strat-
egy for IBD. The receptors that are known to be highly 
expressed in IBD are folate receptor, transferrin receptor, 
CD44 and CD98 glycoproteins, and more specific recep-
tors are yet to be further explored. Secondly, the changes 
of various physiological conditions such as pH, tempera-
ture, oxygen and enzyme in the colon during the develop-
ment of IBD are also worthy of further discussion. The 
existing theory is seriously lacking, which hinders the 
development of colon-targeted DDS.

One of the critical challenges in the IBD therapy is the 
drug-related adverse effects. The application of novel 

DDS into CM for the treatment of IBD has the potential 
to accumulate sufficient drug concentration at the dis-
ease region, enhance the solubility and bioavailability, 
prevent drug degradation, thus reducing the administra-
tion dose and systemic side effects and maximizing drug 
efficacy. Although various different functions DDS have 
been developed and investigated, further studies should 
be conducted to push good products into the clinic.

Ginger, as a member of CM, has been well developed 
for the treatment of IBD as therapeutic molecules, lipid 
nanovectors, and exosomal miRNAs, which could be a 
model CM worth learning. As an important signal mol-
ecule in the physiological process of human body, gas can 
be used as a therapeutic molecule, and can also be pre-
pared as a gas-responsive DDS to deliver drugs. The com-
ponents of plants that can be used as donors of such gas 
molecules are subject to our excavation and research. As 
a large class of molecules composed of CM, polysaccha-
rides have long been unexplored as drug carriers. More 
plant polysaccharides as therapeutic drugs for IBD and 
CM delivery vehicles will greatly improve the safety and 
reduce the cost of treatment. For the treatment of IBD, 
the co-delivery of drugs and the design of prodrugs are 
also very promising development directions.
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