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Abstract

Rationale: The contributions of diverse cell populations in the
human lung to pulmonary fibrosis pathogenesis are poorly
understood. Single-cell RNA sequencing can reveal changes within
individual cell populations during pulmonary fibrosis that are
important for disease pathogenesis.

Objectives: To determine whether single-cell RNA sequencing can
reveal disease-related heterogeneity within alveolar macrophages,
epithelial cells, or other cell types in lung tissue from subjects with
pulmonary fibrosis compared with control subjects.

Methods:We performed single-cell RNA sequencing on lung tissue
obtained from eight transplant donors and eight recipients with
pulmonaryfibrosis andononebronchoscopic cryobiospy sample from
a patient with idiopathic pulmonary fibrosis. We validated these data
using in situ RNA hybridization, immunohistochemistry, and bulk
RNA-sequencing on flow-sorted cells from 22 additional subjects.

Measurements and Main Results:We identified a distinct, novel
population of profibrotic alveolar macrophages exclusively in
patients with fibrosis. Within epithelial cells, the expression of
genes involved in Wnt secretion and response was restricted to
nonoverlapping cells. We identified rare cell populations including
airway stem cells and senescent cells emerging during pulmonary
fibrosis. We developed a web-based tool to explore these data.

Conclusions:We generated a single-cell atlas of pulmonary
fibrosis. Using this atlas, we demonstrated heterogeneity within
alveolar macrophages and epithelial cells from subjects with
pulmonary fibrosis. These results support the feasibility of
discovery-based approaches using next-generation sequencing
technologies to identify signaling pathways for targeting in
the development of personalized therapies for patients with
pulmonary fibrosis.
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Pulmonary fibrosis is defined as the
progressive replacement of alveolar tissue
with fibrotic scar that threatens alveolar gas
exchange and reduces lung compliance (1).
The resulting increased work of breathing
and hypoxemia lead to progressive
respiratory failure and eventual death.
Although the cause of pulmonary fibrosis is
often not identified (idiopathic pulmonary
fibrosis [IPF]), in some patients pulmonary
fibrosis can be attributed to connective
tissue disease, environmental exposures
(hypersensitivity pneumonitis),
occupational exposures (silicosis,
asbestosis), or drugs. Diagnostic approaches
to distinguish between these causes of
pulmonary fibrosis, including surgical
lung biopsy, are imprecise, and there are
few laboratory features that predict
responsiveness to therapy (2, 3). The
clinical and economic burden of pulmonary

fibrosis is sizeable: the worldwide incidence
of IPF is increasing and attributable
medical costs for patients with IPF in the
United States alone have been estimated at
nearly 2 billion dollars (4, 5). Despite
decades of research, only a handful of
therapies are available. Although these
therapies slow disease progression,
the response is variable, and lung
transplantation represents the only option
for temporary cure. Accordingly, there has
been a call to leverage cutting-edge genomic
techniques and systems biology approaches
to provide molecular insights into
pulmonary fibrosis that can be used to
develop personalized approaches to
diagnosis and therapy (6, 7).

Although every cell in the body has an
identical genome, the quantity of mRNA
molecules encoded by individual genes,
collectively referred to as the transcriptome,
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At a Glance Commentary

Scientific Knowledge on the
Subject: The contributions of diverse
cell populations in the human lung to
pulmonary fibrosis pathogenesis are
poorly understood. Single-cell RNA
sequencing can reveal changes within
individual cell populations during
pulmonary fibrosis that are important
for disease pathogenesis.

What This Study Adds to the
Field: We generated a single-cell atlas
of pulmonary fibrosis. Using this atlas,
we demonstrated heterogeneity within
alveolar macrophages and epithelial
cells from subjects with pulmonary
fibrosis.
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differs widely as a function of cell type.
Indeed, investigators have used next-
generation sequencing technology
(RNA-Seq) to develop an organ-level
transcriptomic map of the human body (8).
The lung is a complex tissue comprised of
more than 40 cell populations (9). Because
each of these populations has a distinct
transcriptome, previous investigations of
the “lung transcriptome” during fibrosis
using whole-lung tissue were limited by
changes in the cellular composition of the
lung during disease, which could mask
relevant changes in individual cell
populations (10–13). Transcriptomic
analysis of flow cytometry–sorted cell
populations from the lung provides an
alternative, but requires a priori
assumptions about cell surface markers
whose expression may change during
disease. The advent of single-cell RNA-Seq
allows reliable identification of even
closely related cell populations (14).
Single-cell RNA-Seq methods also allow
for the identification of known or novel
cell populations for which there are no
reliable surface markers, and provide
the opportunity to assess heterogeneity
of gene expression in individual lung
cell populations during health and
disease (15).

Methods

Here, we used single-cell RNA-Seq to
analyze lung tissue from patients with
pulmonary fibrosis and lung tissue from
transplant donors, which we used as a
normal comparison. We compared these
data with bulk RNA-Seq data from whole-
lung tissue and flow cytometry–sorted
alveolar macrophages and alveolar type II
cells generated from a separate cohort.
Combined with in situ RNA hybridization,
these data provide a molecular atlas of
disease pathobiology. We observed
emergence of a distinct, novel population of
macrophages exclusively in patients with
fibrosis that demonstrated enhanced
expression of profibrotic genes. Within
epithelial cells, we observed that the
expression of genes involved in Wnt
secretion and response was restricted to
nonoverlapping cells. We identified rare
cell populations including airway stem cells
and senescent cells emerging during
pulmonary fibrosis in the single-cell

RNA-Seq data. We performed analysis of
a cryobiopsy specimen from a patient
with early disease, supporting the
clinical application of single-cell RNA-Seq
to develop personalized approaches
to therapy. Some of the results of
these studies have been previously
reported in the form of a preprint
(https://doi.org/10.1101/296608) and
conference abstracts (16, 17). The dataset is
available at nupulmonary.org/resources/.

Results

Study Population
Single-cell RNA-Seq was performed on
eight donor lung biopsies and eight lung
explants from patients with pulmonary
fibrosis attributed to IPF (four patients),
systemic sclerosis (two patients),
polymyositis (one patient), and chronic
hypersensitivity pneumonitis (one patient).
All samples were obtained at the time of
transplantation. Separately, we performed
single-cell RNA-Seq using one
bronchoscopic cryobiopsy sample from a
patient subsequently diagnosed with IPF.
Bulk RNA-Seq was performed on samples of
lung biopsy tissue obtained from 14 donors
before transplantation and eight lung
explants from transplant recipients with
pulmonary fibrosis. The median age of
patients with pulmonary fibrosis was 56.0
years (interquartile range, 41.5–70.5 yr).
Eight (47.0%) were male and six (35.3%)
were former smokers. Characteristics of
patients with pulmonary fibrosis are
reported in Table 1, and representative
histology from these lungs is provided in
Figure E1A in the online supplement.
Clinical characteristics of donors are
reported in Table 2, and representative
histology from donor lung samples adjacent
to the region used for single-cell RNA-Seq
analysis is provided in Figure E1B.

Single-Cell RNA-Seq Identifies
Multiple Cell Populations in the
Human Lung
In total, 76,070 cells were used for integrated
single-cell RNA-Seq analysis. We performed
a similar analysis on 13,822 cells from two
normal mouse lungs. We assigned cell types
to each cluster based on the expression of
establishedmarkers from the LungMAP and
ImmGen databases (Figures 1A–1D; see
Figures E2A–E2D and Tables E1 and E2)
(interactive web tool is available at

nupulmonary.org/resources/) (18, 19). In
the human lung, we identified alveolar type
II cells; alveolar type I cells; ciliated, club,
and basal airway epithelial cells; alveolar
macrophages; dendritic cells; T cells and
natural killer T cells; plasma cells and
B cells; fibroblasts; and endothelial and
lymphatic cells (Figure 1A; see Table E1).
Each cluster included cells from donors
and patients with pulmonary fibrosis
(Figure 1B). In the mouse, we were able to
identify all cell types seen in the human
lung and several rare and difficult to isolate
cell populations, including additional
endothelial and lymphatic cell populations;
megakaryocytes; innate lymphoid cells;
and mesothelial cells (see Figure E2B and
Table E2). Each cluster included cells
from each individual mouse (see Figure
E2D). Expression of cell cycle genes was
similar between donor and fibrotic lungs
within the 14 clusters (see Figures E3A and
E3B).

Single-Cell RNA-Seq Analysis
Reveals Fibrosis-associated
Transcriptomic Changes in Key Lung
Cell Populations
We estimated differential gene expression
between cells from normal and fibrotic lungs
in three key cell populations: macrophages,
alveolar type II cells, and fibroblasts (Figures
2A–2C; see Table E3). Gene Ontology
enrichment analysis of the differentially
expressed genes identified cell type–specific
processes relevant to pulmonary fibrosis
(Figures 2D–2F) (20–23). We performed
Gene Set Enrichment Analysis to determine
whether integrated single-cell RNA-Seq
data can recapitulate gene expression
signatures associated with pulmonary
fibrosis in the literature using the
Comparative Toxicogenomics Database
Pulmonary Fibrosis Gene Set (24–26). All
three cell populations showed significant
enrichment for genes in this dataset with
normalized enrichment scores of 1.24, 1.30,
and 1.49 for macrophages, alveolar type II
cells, and fibroblasts, respectively (false
discovery rate q value, 0.01) (Figures
2G–2I). Violin plots for representative
differentially expressed genes from each of
the populations are shown (Figures 2J–2L).
It should be noted that for each of the three
cell populations examined, differentially
expressed genes included some that are
not normally expressed by individual cell
populations (e.g., surfactant proteins genes
or immunoglobulin genes; see Table E3).
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This likely resulted from contaminating
ambient RNA released during tissue
processing, a known problem in single-cell
RNA-Seq experiments (27). Computational
methods to address this problem are

being developed, but are not yet
validated (28).

We compared the single-cell RNA-Seq
analysis with bulk RNA-Seq analysis of flow
cytometry–sorted alveolar macrophages,

alveolar type II cells, and whole-lung tissue
from 14 donor lung biopsies compared with
explants from eight transplant recipients
with pulmonary fibrosis (Tables 1 and 2).
Estimation of differential gene expression

Table 1. Characteristics of Patients with Pulmonary Fibrosis

Age (yr) Sex Diagnosis History of Smoking
Supplemental Oxygen Use

before Transplant Sample ID

66* M IPF Yes Yes IPF 1
60* M IPF No Yes IPF 2
68* M IPF Yes Yes IPF 3
72* F IPF No Yes IPF 4
55* F Hypersensitivity pneumonitis No Yes HP
39* F Systemic sclerosis–associated ILD No Yes SSc-ILD 1
53* F Systemic sclerosis–associated ILD No Yes SSc-ILD 2
37* F Myositis-associated ILD No Yes PM-ILD
71† F IPF Yes No Cryobiopsy
42‡ M Systemic sclerosis–associated ILD No Yes NA
65‡ M IPF No Yes NA
52‡ M Systemic sclerosis–associated ILD Yes Yes NA
52‡ F Systemic sclerosis–associated ILD No Yes NA
55‡ F Myositis-associated ILD No Yes NA
56‡ F Hypersensitivity pneumonitis No Yes NA
60‡ M Myositis-associated ILD Yes Yes NA
67‡ M IPF Yes No NA

Definition of abbreviations: HP = hypersensitivity pneumonitis; ILD = interstitial lung disease; IPF = idiopathic pulmonary fibrosis; NA = not applicable; PM =
polymyositis; SSc = systemic sclerosis.
Representative histopathology with pathologist interpretation is found in Figure E1A.
*Transplant recipients with pulmonary fibrosis included in single-cell RNA-Seq analysis.
†Patient with IPF undergoing cryobiopsy included in single-cell RNA-Seq analysis.
‡Transplant recipients with pulmonary fibrosis included in bulk RNA-Seq analysis.

Table 2. Characteristics of Lung Transplant Donors

Age (yr) Sex Race Smoking Status Cause of Death Sample ID

41 M White Never Stroke NA
57 M White Active Intracranial hemorrhage after blunt trauma NA
64 M African American Never Intracranial hemorrhage NA
49 F White Never Intracranial hemorrhage NA
50 M African American Never Intracranial hemorrhage NA
19 M African American Never Stroke after gunshot wound NA
54 M White Never Intracranial hemorrhage after blunt trauma NA
43 M Hispanic Never Anoxic brain injury after opiate overdose NA
21 M White Never Intracranial hemorrhage after blunt trauma NA
43 F White Former Anoxic brain injury NA
50 M Hispanic Active Intracranial hemorrhage after blunt trauma NA
51 M African American Active Stroke NA
26 F African American Active Anoxic brain injury after opiate overdose NA
40 M Hispanic Active Intracranial hemorrhage after blunt trauma NA
63* F African American Never Stroke Donor 1
55* M Asian Former Intracranial hemorrhage Donor 2
29* F African American Never Anoxic brain injury Donor 3
57* F African American Never Anoxic brain injury Donor 4
49* F White Active Intracranial hemorrhage Donor 5
22* F African American Never Anoxic brain injury after seizure Donor 6
47* F White Active Intracranial hemorrhage Donor 7
21* M African American Never Head trauma from gunshot wound Donor 8

Definition of abbreviation: NA = not applicable.
Representative histopathology is found in Figure E1B.
*Used for single-cell RNA-Seq analysis.
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Figure 1. Integrated single-cell RNA-Seq analysis of patients with pulmonary fibrosis identifies diverse lung cell populations. Single-cell RNA-Seq
was performed on single-cell suspensions generated from eight lung biopsies from transplant donors and eight lung explants from transplant
recipients with pulmonary fibrosis. All 16 samples were analyzed using canonical correlation analysis within the Seurat R package. Cells were
clustered using a graph-based shared nearest neighbor clustering approach and visualized using a t-distributed Stochastic Neighbor Embedding
(tSNE) plot. (A) Cellular populations identified. (B) Cells on the tSNE plot of all 16 samples were colored as originating either from a donor or
from a patient with pulmonary fibrosis. (C) Each population included cells from donors and patients with pulmonary fibrosis. (D) Canonical cell
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Figure 2. Differential expression analysis of single-cell RNA-Seq data from normal and fibrotic lungs identifies genes characteristic of pulmonary fibrosis.
(A–C) Differential expression analysis was performed comparing cells from normal and fibrotic lungs within macrophages, alveolar type II cells, and
fibroblasts (Wilcoxon rank sum test as implemented within Seurat toolkit). Heatmaps are shown representing the upregulated and downregulated genes in
macrophages, alveolar type II cells, and fibroblasts, highlighting genes involved in fibrosis. The full table of genes is found in Table E3. (D–F) Functional
enrichment analysis with GO Biological Processes was performed using GOrilla with the significantly upregulated genes in cells from fibrotic compared
with normal lungs. Representative significantly enriched GO processes are shown for macrophages, alveolar type II cells, and fibroblasts. (G–I) Gene Set
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identified 3,817 genes in whole-lung tissue,
4,891 in alveolar type II cells, and 1,238 in
alveolar macrophages (Figures 3A–3C; see
Table E4). Hierarchical clustering of
samples and estimation of differentially
expressed genes between fibrotic and
normal lungs was performed (Figures
3D–3F). Consistent with the single-cell
RNA-Seq data, whole-lung tissue, alveolar
macrophages and alveolar type II cells from
patients with pulmonary fibrosis were
significantly enriched for Gene Ontology
processes relevant to pulmonary fibrosis
and for genes in the curated Comparative
Toxicogenomics Database Pulmonary
Fibrosis Gene Set by Gene Set Enrichment
Analysis (Figures 3G–3O). We then asked if
single-cell RNA-Seq and bulk RNA-Seq
identify similar changes in alveolar
macrophages and alveolar type II cells.
After filtering genes that demonstrated little
change between donor and fibrosis
(absolute log fold change, 0.05), we found
significant positive correlation between
donor and fibrosis log fold change in the
single-cell and bulk datasets in alveolar
type II cells and alveolar macrophages
(Pearson product-moment correlation,
r = 0.43, P, 2.23 10216 and r = 0.59,
P, 2.23 10216, respectively) (see Figures
E4A and E4B).

Localization of Known Pulmonary
Fibrosis-associated Signaling
Pathways to Specific Cell Populations
The pathobiology of pulmonary fibrosis in
animal models involves the aberrant
activation of developmental pathways in
the lung, including Notch, Wnt/b-catenin,
and signaling pathways associated with
epithelial to mesenchymal transition (29).
Our single-cell RNA-Seq data allowed us to
localize the expression of genes associated
with these pathways to specific cellular
populations within the diseased lung
(Figures 4A and 4B). We saw upregulation
of Notch ligands and Notch target gene
expression in alveolar type II cells and club
cells, with downregulation of Notch target
gene expression in endothelial cells. We
detected low-level expression of several
Wnt ligands in epithelial cell populations

and fibroblasts in the normal and fibrotic
lungs. Our findings were similar in the
murine lung, although they differed from
the observations in a recently published
smaller murine single-cell RNA-Seq dataset
(see Figure E4C) (30). The expression
of the Wnt target gene AXIN2 was
detected in a minority of epithelial cells in
normal lungs and showed only modest
increases during fibrosis. Several genes
related to epithelial to mesenchymal
transition were upregulated in fibroblasts
during fibrosis. R-spondins are
structurally distinct from Wnts but work
synergistically to sustain Wnt/b-catenin
signaling (31). As expected, we found
expression of R-spondins in fibroblasts and
endothelial cells, but we were surprised to
observe it in macrophages. None of the
populations expressing R-spondins
expressed Wnt ligands or the Wnt target,
AXIN2.

These findings are consistent with the
emerging concept that Wnt signaling,
particularly in progenitor populations,
is optimized through defined
epithelial/mesenchymal pairings that
comprise a niche (30–32). Accordingly, we
examined our dataset for cells responsible
for maintaining this progenitor niche.
LGR5 and LGR6 have been recently
reported to mark a mesenchymal
population in the lung necessary for
maintenance of a progenitor niche (31,
33). Although LGR5 was not detected in
the normal or fibrotic human lung or in
the naive adult mouse lung, possibly
because of underrepresentation of
mesenchymal cells, LGR4 and LGR6 were
detected in a small subset of epithelial
cells and fibroblast/mesenchymal cells
(Figure 4A; see Figure E4C). In mice, a
subset of lung fibroblasts expressing
Pdgfra, Porcn, Wls, Wnt5a, and other
Wnts was reported to form a niche
responsible for maintenance of a rare
population of Axin2-positive alveolar type
II cells that differentiate into type I cells
during injury (30). These genes were
detectable in fibroblasts from human
and murine lungs (Figure 4A; see Figure
E4C).

Single-Cell RNA-Seq Reveals Novel
Subpopulations of Alveolar
Macrophages and Alveolar Epithelial
Cells during Pulmonary Fibrosis
Single-cell RNA-Seq data are uniquely
suited to look for heterogeneity within cell
populations that might emerge during
disease. Because integrative canonical
correlation analysis tends to mask
heterogeneity within individual populations,
we performed clustering of cells from each
of the individual subjects and assigned cell
type identities to each cluster based on the
expression of established markers in the
curated publicly available LungMAP and
ImmGen databases (see Figure E5 and Table
E5) (18, 19). Survey of the individual
subjects revealed several distinct cell
populations that were not observed in the
canonical correlation analysis. In total,
we identified 22 distinct cell types by
individual annotation of each subject,
compared with the 14 cell populations
identified by the integrated analysis. Many
of the populations not observed using the
integrated analysis were represented only in
a minority of patients or in a single patient
and were combined with other cell
populations in the integrated analysis. In a
patient with IPF (IPF 2), we were able to
resolve FOXP3- and CD4-expressing
regulatory T cells and ITGAE- and CD8-
expressing lung-resident T-cell subsets
(see Figure E6A). In the patient with
hypersensitivity pneumonitis, we identified
two small populations of dendritic cells that
did not form distinct clusters in other
subjects (see Figure E6B). The first cluster
(30 cells) expressed CLEC4C, TCL1A, IRF8,
and TLR7, markers associated with
plasmacytoid dendritic cells. The second
cluster (31 cells) expressed CLEC9A, a
typical marker of a subset of conventional
dendritic cells (DC1). These populations
were classified as macrophages and
dendritic cells, respectively, in the
integrated analysis. The distinction between
classical and nonclassical monocytes, which
was apparent in the subjects IPF 1, HP,
Donor 6, and SSc-ILD 1, was not identified
in the integrated analysis (see Figure E6C).
Having accurately identified all specific

Figure 2. (Continued). Enrichment Analysis was performed using the Comparative Toxicogenomics Database Pulmonary Fibrosis Gene Set with genes
ranked by log difference in average expression between fibrotic and normal lungs. Enrichment plots together with normalized enrichment scores and false
discovery rate q values are shown for macrophages, alveolar type II cells, and fibroblasts. (J–L) Violin plots of expression for select genes significantly
upregulated in patients with fibrotic compared with normal lungs.
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Figure 3. Bulk RNA-Seq of whole-lung tissue and flow cytometry–sorted alveolar type II cells and alveolar macrophages from normal and fibrotic lungs
validates the single-cell RNA-Seq analysis. (A–C) Bulk RNA-Seq was performed on whole-lung tissue and flow cytometry–sorted alveolar type II cells and
alveolar macrophages from 14 normal and 8 fibrotic lungs. Estimation of differential gene expression using DESeq2 was performed comparing fibrotic with
normal lungs. Volcano plots are shown for whole lung, alveolar type II cells, and alveolar macrophages, respectively. (D–F) Hierarchical clustering
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cellular populations, we then performed
combined analysis of the alveolar
macrophages and epithelial cells.

Alveolar Macrophages
We have reported that in a mouse model of
bleomycin-induced pulmonary fibrosis
alveolar macrophages are comprised of
two ontologically distinct populations:
tissue-resident alveolar macrophages and

monocyte-derived alveolar macrophages
(34). In that system, we showed that
selective genetic deletion of monocyte-
derived alveolar macrophages while leaving
tissue-resident alveolar macrophages intact
resulted in improved fibrosis, a finding that
has been subsequently confirmed by an
independent group (35). These studies
predict the presence of homeostatic tissue-
resident alveolar macrophages in the

normal lung, and a combination of tissue-
resident alveolar macrophages and
profibrotic, monocyte-derived alveolar
macrophages in the fibrotic lung. We
performed individual annotation of our
eight normal and eight fibrotic lungs and
then combined all clusters of cells identified
as macrophages and repeated clustering. In
this analysis, we identified four macrophage
clusters (Figure 5A; see Table E6). Cluster 0

Figure 3. (Continued). heatmaps of significant differentially expressed genes were generated using GENE-E. (G–I) Functional enrichment analysis with
GO Biological Processes was performed using GOrilla with the top 500 genes upregulated and downregulated in fibrotic compared with donor lungs.
Representative GO processes are shown. (J–L) Gene Set Enrichment Analysis was performed using the Comparative Toxicogenomics Database
Pulmonary Fibrosis Gene Set with genes ranked by 2log(P value). Enrichment plots together with normalized enrichment scores and false discovery rate
q values are shown for whole lung, alveolar type II cells, and alveolar macrophages. (M–O) Expression of selected significant differentially expressed genes
previously described to be important in pulmonary fibrosis.
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Figure 4. Single-cell RNA-Seq analysis reveals distinct contributions of individual cell populations to pathways implicated in the pathogenesis of
pulmonary fibrosis. (A) Expression of selected Wnt pathway, Notch pathway, and epithelial-to-mesenchymal transition–related genes is shown in
fibroblasts, endothelial cells, alveolar type I cells, alveolar type II cells, ciliated cells, club cells, basal cells, and macrophages, separated by donor (blue) or
pulmonary fibrosis (red) origin. Dot size corresponds to the percentage of cells in the cluster expressing a gene, and dot color corresponds to the average
expression level for the gene in the cluster. (B) Violin plots of WNT2, WNT7B, AXIN2, and RSPO3 expression are shown, suggesting the presence of
distinct Wnt-expressor and Wnt-responder cell populations in the human lung. AT 1/2 = alveolar type I/II; EMT = epithelial to mesenchymal transition.
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Figure 5. Distinct populations of alveolar macrophages emerge during pulmonary fibrosis. (A) Cells identified as macrophages by individual annotation of
single-cell RNA-Seq data from eight normal and eight fibrotic lungs were combined and then clustered, revealing four clusters. (B and C) Relative
contributions of alveolar macrophages from normal and fibrotic lungs to each cluster as shown by t-distributed Stochastic Neighbor Embedding plot and
by bar plots. (D) Feature plots demonstrating differential expression of selected alveolar macrophage maturation genes (PPARG, APOE, MARCO, MRC1,
MAFB, and SIGLEC1), and genes associated with fibrosis (IL1RN, MMP9, CHI3L1, SPP1, MARCKS, and PLA2G7). (E) Immunohistochemistry on lung
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contained almost all of the alveolar
macrophages from the donor lungs, and
some alveolar macrophages from patients
with pulmonary fibrosis, irrespective of the
diagnosis (Figures 5B and 5C). In contrast,
clusters 1 and 2 originated largely from the
lungs of patients with fibrosis (Figure 5C).
Consistent with the hypothesis that cells in
cluster 0 represent homeostatic tissue-
resident alveolar macrophages, they
expressed higher levels of PPARG, MRC1,
andMARCO, and lower levels of APOE and
MAFB, which we and others have reported
rise and fall, respectively, as monocytes
differentiate into alveolar macrophages
(Figure 5D) (34, 36). Functional
enrichment analysis with GO Biological
Processes demonstrated that cluster 1 was
enriched for processes associated with
fibrosis including “exocytosis,” “secretion,”
“regulation of cell migration,” and
“extracellular matrix organization.” In
contrast, enriched processes in cluster 0
were suggestive of homeostatic functions of
macrophages including “immune system
processes,” “response to lipid,” and
“response to organic/inorganic substance.”
A full list of GO processes for all four
clusters is provided in Table E7. Although
our study includes only a small number of
patients, we did not see differences in
clustering in patients with IPF compared
with other causes of pulmonary fibrosis,
possibly because of the limitations of
current computational approaches (see
Figures E7A and E7B).

To validate the heterogeneity of
alveolar macrophages in pulmonary fibrosis
that we observed in the single-cell RNA-Seq
data, we performed immunohistochemistry.
We selected CHI3L1, MARCKS, IL1RN,
PLA2G7, MMP9, and SPP1 because they 1)
were differentially expressed in alveolar
macrophages between fibrotic compared
with normal lungs in both bulk and single-
cell RNA-Seq, 2) are associated with
pulmonary fibrosis in the Comparative
Toxicogenomics Database Pulmonary
Fibrosis Gene Set, and 3) have antibodies
validated in the Human Protein Atlas (37).
Consistent with the single-cell RNA-Seq
data, we found that alveolar macrophages
from normal lungs did not stain for these

markers, and only a subpopulation of cells
in any given patient with pulmonary
fibrosis expressed profibrotic proteins
(Figure 5E).

Epithelial Cells
To capture potentially novel epithelial cell
populations in patients with fibrosis, we
performed combined analysis of all cells
identified as belonging to any epithelial
population from our individual annotation
of the eight normal and eight fibrotic
lungs. Epithelial cells contained clusters
representing the major known lung
epithelial cell types: ciliated epithelial cells
(FOXJ1), club cells (SCGB1A1), alveolar
type I cells (AGER), and alveolar type II
cells (SFTPC and LAMP3). Ciliated cells
and alveolar type I cells from fibrotic lungs
clustered with cells from normal lungs. In
contrast, cells expressing canonical alveolar
type II cell markers (SFTPC, LAMP3)
formed three clusters (Figures 6A–6D, only
SFTPC is shown for alveolar type II cells;
see Table E8). Similar to alveolar
macrophages, cluster 0 contained cells from
normal and fibrotic lungs, whereas cluster 3
almost exclusively contained cells from
fibrotic lungs, and was characterized by
increased expression of genes previously
reported to be associated with pulmonary
fibrosis and regulation of immune response
(DMBT1, SERPINA1, and CHI3L1). The
expression of these genes was variable
among the patients with pulmonary fibrosis
(Figure 6E).

In Situ RNA Hybridization with
Amplification Confirms Coexistence
of Two Distinct Populations of
Alveolar Macrophages in the Same
Anatomic Niche in Patients with
Pulmonary Fibrosis
Our finding of increased heterogeneity
within alveolar macrophages in fibrotic
lungs is potentially clinically relevant.
Accordingly, we looked for heterogeneity
within alveolar macrophages in single-cell
RNA-Seq data from each of our eight
normal and fibrotic lungs (see Figure E5).
We observed heterogeneity within
macrophages in most of the fibrotic lungs,
with distinct clusters of cells enriched for

profibrotic genes (e.g., CHI3L1 or SPP1)
(see Figure E7D). In contrast, macrophages
from seven of the normal lungs were
homogenous and were characterized by
expression of homeostatic genes, including
PPARG and FABP4. In the remaining
normal lung (Donor 6), we observed a
distinct subpopulation of macrophages,
characterized by expression of CCL3/CCL4
(encoding MIP1a, a chemokine produced
by macrophages in response to bacterial
endotoxin and controlling recruitment of
neutrophils) (see Figure E7E). This lung
also had a distinct population of cells with
a gene expression profile suggesting that
they were recruited monocyte-derived
inflammatory macrophages. This lung was
scored as abnormal in our histopathology
assessment (see Figure E1B, Donor 6), and
a review of premortem laboratory studies
showed the corresponding donor’s
respiratory cultures were positive for
Klebsiella pneumoniae.

To determine whether single-cell RNA-
Seq accurately localized profibrotic gene
expression to specific cell populations, we
performed a highly sensitive modified
in situ RNA hybridization procedure
(RNAscope) on samples of the same tissues
that we used for single-cell RNA-Seq
analysis. We focused on SPP1 and CHI3L1
for two reasons. First, these genes have been
causally implicated in the development of
organ fibrosis in animal models (38, 39).
Second, single-cell RNA-Seq data suggested
that SPP1 expression was increased
specifically in alveolar macrophages during
fibrosis, whereas CHI3L1 was increased in
both alveolar macrophages and alveolar
type II cells. Using selective marker genes
(CD68 for alveolar macrophages and
SFTPC for alveolar type II cells), we were
able to confirm the predicted emergence
of CHI3L1- and SPP1-positive alveolar
macrophages and increased expression
of CHI3L1 in alveolar type 2 cells in
patients with pulmonary fibrosis
(Figures 7A–7H; see Figures E8A–E8D).
This analysis confirms the prediction
from single-cell RNA-Seq data that
two distinct populations of alveolar
macrophages coexist in the same
anatomic niche in the fibrotic lung.

Figure 5. (Continued). sections from the same patients confirms heterogeneity in fibrotic gene expression within alveolar macrophages. Arrows indicate
positive staining in alveolar macrophages; arrowheads indicate positive staining in alveolar epithelium for CHI3L1 and SPP1, endothelium for MARCKS,
and neutrophils for MMP9. Scale bars, 50 mm. (F) Violin plots representing heterogeneity in expression of CHI3L1, MMP9, and SPP1 in macrophages from
donor and fibrotic lungs. HP = hypersensitivity pneumonitis; ILD = interstitial lung disease; IPF = idiopathic pulmonary fibrosis; PM = polymyositis; SSc =
systemic sclerosis; tSNE = t-distributed Stochastic Neighbor Embedding.
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Wnt Secretion and Response Are
Restricted to Distinct Nonoverlapping
Epithelial Cells
We used in situ RNA hybridization in
combination with single-cell RNA-Seq data
to explore the expression of ligands and
target genes of the Wnt/b-catenin pathway

in the human lung during homeostasis
and fibrosis. Likely because of increased
sampling, we were able to identify higher
rates of AXIN2 expression in alveolar type
II cells in our single-cell RNA-Seq data in
both mice and humans than were recently
reported (see Figures E4C and E8E) (30).

We found low levels of expression of
most Wnt ligands in epithelial cells from
humans, but WNT5A and WNT7B were by
far the most abundantly expressed (see
Figure E8E). Among queried Wnt ligands,
we found nonoverlapping patterns of
expression between cell populations that
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Figure 6. Distinct populations of alveolar epithelial cells emerge during fibrosis. (A) Six clusters were identified after epithelial cells from each of eight
normal and eight fibrotic lungs were combined and clustered. (B and C) Relative contributions of epithelial cells from normal and fibrotic lungs to each
cluster as shown by t-distributed Stochastic Neighbor Embedding plot and by bar plots. (D) Feature plots demonstrating differential expression of
selected epithelial marker genes: SFTPC (alveolar type II cells), AGER (alveolar type I cells), SCGB1A1 (club cells), FOXJ1, and RFX2 (ciliated airway
epithelial cells). Also shown are genes implicated in pulmonary fibrosis (HIF1A, CHI3L1, NKX2-1, HHIP, FASN, and HES1). (E) Violin plots representing
heterogeneity in expression of SERPINA1 and CHI3L1 in epithelial cells from normal and fibrotic lungs. For definition of abbreviations, see Figure 5.
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express Wnt ligands and the canonical
Wnt target, AXIN2 (Figures 8A and 8B).
Furthermore, although many cells within
the lung expressed Wnt ligands, including
alveolar type II cells, individual cells to a
large extent expressed a single Wnt ligand

(Figure 8C). We confirmed these findings
using in situ RNA hybridization with
amplification in human tissues. Consistent
with the single-cell RNA-Seq data, we
observed that airway epithelia largely
expressed WNT7B, but we did not detect

expression of AXIN2. In the alveolar
epithelium, we confirmed increased
expression of WNT7B relative to WNT7A,
and found that cells expressing either
WNT7A or WNT7B were generally distinct
from those expressing AXIN2 (Figures
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Figure 7. In situ RNA hybridization with amplification confirms the emergence of distinct populations of alveolar macrophages in patients with pulmonary
fibrosis. (A–D) Lung sections from Donor 1 (A and C), IPF 1 (B), and IPF 4 (D) were hybridized with indicated target probes. High-magnification (340)
images for differential interference contrast phase are shown on the left, followed by single-channel images for SFTPC (yellow), CD68 (magenta), and
either CHI3L1 or SPP1 (cyan), with overlay images (with and without nuclei staining, Hoechst, blue) shown on the right. (A and B) CHI3L1-positive and
CHI3L1-negative alveolar macrophages coexist in the same niche in patients with pulmonary fibrosis. Arrows show alveolar type II cells (double positive
for SFTPC and CHI3L1), double arrows show alveolar macrophages (CD68-positive) negative or positive for CHI3L1 in the donor and fibrotic lung,
respectively. (C and D) SPP1-positive and SPP1-negative alveolar macrophages coexist in the same niche in patients with pulmonary fibrosis. Note that
donor alveolar macrophages lack expression of SPP1 (C), whereas alveolar macrophages from the fibrotic lung exhibit heterogeneity of SPP1 expression
(D); double-positive CD68 and SPP1 are indicated with asterisk. Scale bars, 50 mm. (E–H) Low-magnification (320) overlay images from the same
subjects. Boxes indicate areas shown on B and D, respectively. Scale bars, 50 mm. See Figures E8A–E8D for corresponding single-channel panels. DIC =
differential interference contrast; IPF = idiopathic pulmonary fibrosis.

ORIGINAL ARTICLE

Reyfman, Walter, Joshi, et al.: Single-Cell Analysis of Pulmonary Fibrosis 1529



8D–8G). This distinction was not
absolute, because we were able to identify a
small number of alveolar epithelial cells
expressing both WNT7B and AXIN2
(Figure 8G).

The observation that Wnt secretion
and response are largely restricted to distinct
nonoverlapping cells in the human lung was
confirmed by single-cell RNA-Seq and in
situ RNA hybridization with amplification
analysis of mouse lung. Specifically, murine
alveolar type II cells expressed Wnt3a,

Wnt7b, Wnt4, and Wnt9a, whereas alveolar
type I cells expressed Wnt3a, Wnt7a,
Wnt9a, andWnt10b (see Figure E4C). As in
the human lung, we mostly detected only
one Wnt-ligand at a time (see Figure E9A).
We also confirmed that Wnt-ligand and
Axin2 expression in mouse alveolar type II
cells seems to be mutually exclusive by
both single-cell RNA-Seq (see Figure
E9B) and in situ RNA hybridization
analysis (Figures 8H; see Figures E9C and
E9D).

Single-Cell RNA-Seq Identifies Rare
Cell Populations in Human Lung
To determine whether single-cell RNA-Seq
can identify rare cell populations in the lung,
we queried our data using marker genes
associated with stem cell populations or
senescent cell populations, both of which
have been implicated in the pathobiology of
pulmonary fibrosis. Investigators identified
a population of basal cells in the airway that
expand after tracheal injury (40). Using
single-cell RNA-Seq, we identified a cluster
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Figure 8. Wnt secretion and response are restricted to distinct nonoverlapping epithelial cells. (A–C) Expression of WNT7B, WNT5A, and AXIN2 in
epithelial cells from normal and fibrotic lungs by single-cell RNA-Seq. Total number of single-positive or double-positive cells is indicated. (D and E)
Fluorescence RNA in situ hybridization with amplification reveals Wnt-expresser and Wnt-responder cells in the proximal airways of human lung. Images
were obtained from human donor lung sections incubated without (D) or with designated target probes, WNT7B (magenta) and AXIN2 (green) (E–G).
Nuclei are stained with Hoechst (blue) and overlay images are shown on the far right. Note WNT7B is abundantly detected in small airway epithelial cells
(E), consistent with its prominent detection in club cells by single-cell RNA-Seq. AXIN2 is not similarly enriched in club cells and is only specifically detected
in alveolar regions (F) under higher magnification (G is a higher-magnification image of the boxed region in F). (H) High magnification of mouse lung alveoli
subjected to fluorescence RNA in situ hybridization with amplification with probes forWnt7a (yellow),Wnt7b (magenta), and Axin2 (green). Arrows indicate
cells that are only positive for Axin2; arrowheads indicate specified Wnts. Double arrows indicate cells that may express both Wnts and Axin2, although
quantification suggests cells that highly express Wnts and Axin2 are rare (Figure E9D). Asterisks indicate airway lumen. Scale bars, 50 mm. tSNE =
t-distributed Stochastic Neighbor Embedding.

ORIGINAL ARTICLE

1530 American Journal of Respiratory and Critical Care Medicine Volume 199 Number 12 | June 15 2019



of cells expressing many of the genes
distinctly associated with these cells
including KRT5, TP63, and SOX2 with
variable expression of ITGA6, NGF, and
MYC (Figure 9A). Two recent reports
identified a subpopulation of alveolar
type II cells expressing high levels of
Axin2/AXIN2 (2–20% of mouse and
29% of human alveolar type II cells), and
demonstrated these cells serve as a
facultative progenitor cell population that
regenerates the alveoli after injury (30, 41).

Although Axin2/AXIN2-positive alveolar
type II cells express all of the established
markers of this cell type (30, 41), a study by
Zacharias and colleagues (41) identified 875
and 2,773 genes that were differentially
expressed in the AXIN2/Axin2-positive
progenitor cell population relative to
AXIN2/Axin2-negative alveolar type II cells
in the human and mouse lung, respectively.
Accordingly, we asked whether single-cell
RNA-Seq can detect a population of cells
resembling Axin2-positive facultative

epithelial progenitors in the normal mouse
alveolar type II cells. However, unbiased
clustering of the 1,821 alveolar type II cells
we sampled did not identify clusters
enriched for expression of Axin2 or Tm4sf1
(see Figures E10A–E10C and Table E9). To
provide additional power to this guided
analysis, we used the 500 differentially
expressed genes that were reported to
be upregulated in Axin2-positive
progenitor cells as a gene module for the
AddModuleScore function implemented in
Seurat package to highlight cells enriched
for these genes. We did not find subclusters
of alveolar type II cells enriched for the
genes associated with Axin2-positive
progenitors in the previous studies (see
Figures E10D and E10E). We then searched
for this subpopulation within human
alveolar type II cells from each of the eight
normal lungs and performed clustering,
which did not reveal additional clusters
enriched for these genes (see Figure E10F).
These data suggest that single-cell RNA-Seq
can readily identify transcriptional
differences between dedicated progenitor
populations (e.g., basal cells), and that
alveolar type II cells in normal mouse
and human lungs represent a relatively
homogenous population.

Terminally differentiated cells in
culture undergo a relatively constant
number of population doublings before
undergoing replicative senescence. The
development of senescence is associated
with characteristic changes in gene
expression that include the induction of p16,
p21, and p53, which slow the cell cycle and
promote resistance to apoptosis. Senescence
also results in the production and secretion
of a distinct set of proteins collectively
referred to as senescence-associated
secretory proteins (42). These include
insulin-like growth factor-binding proteins,
interleukins, transforming growth factor
type-b, and plasminogen activator
inhibitor-1. A growing body of evidence
supports a link between aging, cellular
senescence in the lung and the
susceptibility to lung disease. For example,
investigators have reported increased
markers of senescence in the lungs of
patients with IPF, and have found that
myofibroblasts obtained from the lungs
of patients with IPF demonstrate a
senescence-associated resistance to
apoptosis (43–45). However, even in
pulmonary fibrosis, the percentage of cells
in the lung that are positive for senescence
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Figure 9. Identification of rare cell populations among lung epithelial cells using single-cell RNA-Seq.
(A) Expression of markers associated with airway basal stem cells. (B) Feature plot showing cells
enriched for senescence-associated genes using a senescence score for each cell. (C) Histograms
showing the distribution of senescence scores in all epithelial cells from eight fibrotic compared with
eight normal lungs (P = 0.0001; Student’s t test; n = 8 per group). (D) Histograms showing the
distribution of senescence scores by epithelial cell cluster (see Figure 6A for cluster details). tSNE =
t-distributed Stochastic Neighbor Embedding.
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markers is very low, precluding their
identification using bulk RNA or protein
analysis. We did not observe a distinct
cluster of epithelial cells expressing
canonical genes associated with senescence
(CDKN2A, GLB1, SERPINE1, and IL6; see
Figure E10G). Therefore, we used the
expression of 1,311 replicative senescence-
associated genes to generate a senescence
score for any individual cell and applied it
to epithelial cells in our dataset (Figure 9B,
see Figure 6 for a description of the clusters)
(46). This score was significantly higher in
fibrotic compared with normal lungs
(Figure 9C; P = 0.0001). Additionally, this
senescence score was highest in the
population of alveolar type II cells we
identified as originating almost exclusively
from fibrotic lungs (cluster 3, Figure 9D).
These results suggest that single-cell RNA-
Seq offers promise for the quantification of
cells expressing senescence-associated genes
in the lung.

Single-Cell RNA-Seq of Lung Biopsy
Tissue from a Living Patient
We next examined the feasibility of
applying these technologies to a cryobiopsy
specimen obtained ex vivo from an
explanted lung specimen from a patient
with systemic sclerosis–associated
interstitial lung disease using flow
cytometry. We were able to resolve
alveolar macrophages and alveolar
epithelial cells, both with good viability
(see Figure E11A). Accordingly, we
obtained a cryobiopsy specimen from a
patient at the time of video-assisted
thoracoscopic biopsy. The patient was
subsequently diagnosed with IPF based on
histopathologic examination of the biopsy
(Figures 10A and 10B). We identified
1,516 cells corresponding to 13 different
cell populations (Figure 10C). Among the
detected cells, we were able to resolve
several populations of endothelial cells
(characterized by expression of VWF)
including a distinct population of cells
characterized by expression of PROX1,
MMRN1, TBX1, and RELN, suggesting
that these cells represent lymphatic
progenitors, which were underrepresented
in samples obtained at the time of
transplant (Figure 10D, only PROX1
shown; see Table E5). We performed
clustering of the 192 alveolar macrophages
and 364 epithelial cells identified in the
cryobiopsy specimen together with those
from the eight normal and eight fibrotic

lungs. We found that most cryobiopsy
alveolar macrophages were in a cluster
containing cells from both normal and
fibrotic lungs, whereas only a minority
were in a cluster comprised almost
exclusively of cells from fibrotic lungs (see
Figures E11B–E11D). We found that the
cryobiopsy epithelial cells seemed to be
distributed more among clusters primarily
containing cells from fibrotic lungs than
clusters primarily containing cells from
donor lungs (see Figures E11E–E11G).
These results support the feasibility of
single-cell RNA-Seq analysis applied to
lung tissue from patients with early
disease.

Discussion

We compared single-cell RNA-Seq data
from freshly isolated lung tissue obtained
from lung transplant donors and patients
with pulmonary fibrosis with bulk RNA-
Seq data we generated from flow
cytometry–sorted alveolar macrophages
and alveolar type II cells. Our analysis
validates the utility of single-cell RNA-Seq
analysis for localizing the expression of
profibrotic genes to specific lung cell
populations in patients with pulmonary
fibrosis. In findings validated with
in situ RNA hybridization and
immunohistochemistry, single-cell RNA-
Seq analysis revealed transcriptionally
distinct populations of alveolar
macrophages expressing profibrotic genes
in patients with pulmonary fibrosis that
were predicted from mouse models (34,
35). Single-cell RNA-Seq combined with
in situ RNA hybridization provided novel
biologic insights into the multicellular and
spatially restricted nature of Wnt
signaling niches in the normal and fibrotic
lung. Cells expressing Wnt ligands were
largely distinct from those expressing the
Wnt target gene AXIN2/Axin2. We
identified some previously described rare
cell populations in normal and fibrotic
lungs through analysis of single-cell RNA-
Seq. We found that the application of
single-cell RNA-Seq to lung tissue
obtained bronchoscopically via
cryobiopsy was feasible. Taken together,
our findings suggest that the application
of single-cell RNA-Seq analysis to alveolar
macrophages or lung tissue obtained
during routine care, can be used to
develop a molecular approach to improve

the diagnosis and therapeutic monitoring
of patients with pulmonary fibrosis.

Analysis of biologic processes
implicated in pulmonary fibrosis through
the prism of single-cell RNA-Seq data
demonstrates the unique power of this
approach in understanding disease
pathogenesis. Specifically, in manually
querying this single-cell data set, we noticed
nonoverlapping patterns of expression of
Wnt ligands and AXIN2/Axin2-expressing
cells in both the human and mouse lung.
Because of the sparse nature and shallow
sequencing depth of single-cell RNA-Seq
data, we validated this finding using a
highly sensitive in situ RNA hybridization
technique. These findings extend our
understanding of the complexity of the
multicellular signaling niches that sustain
Wnt/b-catenin signaling in the normal and
fibrotic lung. We were similarly able to
use in situ RNA hybridization and
immunohistochemistry to validate the
presence of heterogeneity within alveolar
macrophages from the same patient during
fibrosis. Collectively, these data suggest
the combination of high-throughput
single-cell RNA-Seq with sensitive spatial
transcriptomic methods will allow us to
functionally and spatially reconstruct
multicellular signaling niches during
pulmonary fibrosis (47).

In a recent report, single-cell RNA-seq
was used to distinguish subpopulations of
goblet and tufts cells in the mouse airways,
and to identify a rare population of
ionocytes (48). Accordingly, we tested the
ability of single-cell RNA-Seq to detect
rare cell populations implicated in the
development of pulmonary fibrosis. We
were able to identify markers of some
mesenchymal cell populations suggested to
play a role in Wnt/b-catenin signaling
during lung regeneration (31, 49). However,
we did not observe any wide-scale
upregulation of Wnts in samples from
patients with pulmonary fibrosis, nor
expansion of Wnt/Axin2-double positive
alveolar type II cells as observed in the
hyperoxia model of murine lung injury
(30). We identified a likely population of
TP63- and KRT5-expressing airway
progenitor cells (basal cells) in the normal
and fibrotic lung, and we largely confirmed
the observation that Axin2-positive alveolar
type II cells are a minor subset of the
murine alveolar type II cell population
(30, 41). Nevertheless, we were unable to
identify distinct transcriptional signatures
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in AXIN2-expressing compared with
nonexpressing cells. Similarly, although an
expansion of senescent cells during
pulmonary fibrosis has been suggested to
play a role in disease pathogenesis, our
single-cell RNA-Seq data did not identify a
transcriptionally distinct cluster of cells
expressing senescence markers, nor were
we able to identify senescent cells from a
handful of canonical markers. However, we
were able to identify enriched expression of

senescence-associated genes in epithelial
cells from patients with pulmonary fibrosis
compared with donor lungs. These findings
must be interpreted with caution because
transcriptional changes defining these cell
types may lay below the resolution of
single-cell RNA-seq technology (50).

Transcriptomic analysis of whole-lung
tissue is heavily influenced by changes in the
cellular composition of the tissue that mask
changes in gene expression within cell

populations (11–13, 51, 52). Combining
bulk RNA-Seq applied to flow
cytometry–sorted cell populations and
single-cell RNA-Seq avoided this problem.
Each of these approaches has advantages
and limitations. Single-cell RNA-Seq
reliably assigned profibrotic gene
expression to distinct cell populations in
the lung and revealed heterogeneity in gene
expression within cell populations. For
example, unbiased analysis of single-cell
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Figure 10. Single-cell RNA-Seq of a cryobiopsy from a living patient with idiopathic pulmonary fibrosis. (A and B) Representative histology (hematoxylin
and eosin) showing fibroblastic foci (arrows), 340 and 3100 magnification, respectively. (C) tSNE plot clustering of 1,516 cells into 13 distinct cellular
types. (D) Subsets of endothelial cells were identified by expression of VWF, SOX17, and PTGS1; lymphatics were identified by expression of PROX1.
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RNA-Seq data identified a distinct
population of alveolar macrophages during
fibrosis that was predicted from genetic
lineage tracing studies during fibrosis in
mice (34). Single-cell RNA-Seq analysis was
limited, however, by the relatively shallow
depth of sequencing and by contamination
from ambient RNA liberated during tissue
digestion, both of which reduce the
reliability of differential gene expression
analysis (28). Bulk RNA-Seq of flow
cytometry–sorted cells detects more genes
at significantly reduced cost. However, this
approach cannot identify heterogeneity in
gene expression within a given cell
population, and inherently assumes a
relatively constant level of surface marker
expression during health and disease. Few
markers are explicitly validated for
identification of cellular populations during
disease states, and this problem is
exacerbated when antibodies are used for
which the gene encoding the antigen is not
known (53).

The falling costs of transcriptomic
profiling make it a promising clinical tool to
identify biomarkers that predict disease
severity or response to therapy. Ideally, the
cellular material used for transcriptomic
profiling should be safe and easy to collect so
that it can be readily sampled before and
after the initiation of therapy. Although
peripheral blood fulfils these criteria,
transcriptomic analyses of peripheral blood
mononuclear cells have not generated
markers of disease outcome with sufficient
predictive accuracy to be adopted into
clinical practice (54). To determine the
feasibility of transcriptomic profiling in
tissue samples obtained during routine
patient care, we performed single-cell RNA-
Seq analysis on tissue obtained from a
bronchoscopic cryobiopsy (55).
Alternatively, single-cell analysis of alveolar
macrophages is attractive from a clinical
perspective, because large numbers of cells
can be safely and repeatedly sampled using
bronchoscopic alveolar lavage, even in
patients who are ill. Our analysis of alveolar
macrophages suggests that single-cell
RNA-Seq identifies a distinct population
of alveolar macrophages with higher
expression of profibrotic genes, and
accurately reveals differences in fibrotic
gene expression in macrophages from
different patients. Single-cell analyses that
combine sequencing with imaging of
lung biopsies or alveolar macrophages
from a larger number of patients might

therefore identify patient-specific markers
that could inform a personalized approach
to therapy.

A particular strength of our study was
the availability of small 1- to 2-cm-sized
biopsies from the donor lung. Although
these samples still had limitations (such as
overrepresentation of the distal lung
parenchyma and corresponding paucity of
large airways), they were likely as close to
normal as could be pragmatically obtained.
Because pulmonary fibrosis is a temporally
and spatially heterogenous disease, some
investigators suggest the use of “normal”
regions from the fibrotic lung as controls. We
abandoned this approach because we were
unable to identify lung regions free of disease
in the explanted lungs. Furthermore, this
approach is problematic, because
investigators have recently observed changes
in gene expression in tissue distant from areas
of severe fibrosis (56). Similar observations
have been made in lung tissue distant from
radiographically localized lung cancers (57).

There are also limitations to our study that
highlight the need for further work to optimize
and expand single-cell RNA-Seq datasets for
pulmonary fibrosis and other diseases. First,
although our single-cell RNA-Seq dataset is the
largest in the literature to date, it includes a
relatively small number of donors and patients
with pulmonary fibrosis. Even in this small
cohort, however, we were able to identify many
of the same genes that we detected in flow
cytometry–sorted cell populations from an
independent cohort of patients, and many of
the genes identified in the literature. Second,
the lung is a complex tissue, consisting of at
least 40 cell types tightly embedded into
extracellular matrix, and both the cellular
composition and matrix characteristics change
during disease (9). Isolation of intact cell
populations faithfully representing the
composition of the lung tissue via current
enzymatic digestion protocols is therefore not
feasible. Alternative approaches, such as single-
nucleus RNA-Seq, will likely be necessary to
address this limitation (58, 59). Third,
computational approaches for analyzing
single-cell RNA-Seq datasets, unbiased
identification of the cell types, and integrative
analysis are in their infancy. As such, they are
heavily biased by the experimentalists’
familiarity with the biology of the systems
being studied, and are not yet adapted to
distinguish and correct for batch effect or
ambient RNA because of sample processing
from true biologic effect associated with
inter-subject variability or disease conditions.

The analyses and annotations of cell types
presented here are not exhaustive, and will
likely be improved in the future, particularly
with the help of computational tools developed
by research consortia, such as Human Cell
Atlas (60). Our findings suggest that the
generation of larger datasets from normal and
diseased samples, coupled with spatial
information from RNA in situ hybridization
and immunohistochemistry will drive
improvements in these tools, and expand the
current atlas of the cellular types and states.

In conclusion, single-cell RNA
sequencing of normal and fibrotic lung
tissue reveals shared and distinct patterns of
fibrotic gene expression in individual cell
populations and emphasizes the importance
of intracellular communication in disease
pathobiology. Single-cell RNA-Seq analysis
offers promise for the discovery of
multicellular pathways important for
disease pathogenesis, and for the generation
or exclusion of hypotheses regarding the
function of distinct cell populations that
emerge during disease. Single-cell RNA-Seq
can be performed on lung samples from
patients with early disease. These
technologies may therefore be used clinically
to identify patients most likely to
benefit from targeted therapy, and to
monitor their response over the course of
disease. n
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