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ABSTRACT The nuclear factor (erythroid 2)-like 2 (NRF2 or NFE2L2) transcription
factor regulates the expression of many genes that are critical in maintaining cellular
homeostasis. Its deregulation has been implicated in many diseases, including can-
cer and metabolic and neurodegenerative diseases. While several mechanisms by
which NRF2 can be activated have gradually been identified over time, a more com-
plete regulatory network of NRF2 is still lacking. Here we show through a genome-
wide clustered regularly interspaced short palindromic repeat (CRISPR) screen that a
total of 273 genes, when knocked out, will lead to sustained NRF2 activation. Path-
way analysis revealed a significant overrepresentation of genes (18 of the 273 genes)
involved in autophagy. Molecular validation of a subset of the enriched genes iden-
tified 8 high-confidence genes that negatively regulate NRF2 activity irrespective of
cell type: ATG12, ATG7, GOSR1, IFT172, NRXN2, RAB6A, VPS37A, and the well-known
negative regulator of NRF2, KEAP1. Of these, ATG12, ATG7, KEAP1, and VPS37A are
known to be involved in autophagic processes. Our results present a comprehensive
list of NRF2 negative regulators and reveal an intimate link between autophagy and
NRF2 regulation.
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The nuclear factor (erythroid 2)-like 2 (NRF2 or NFE2L2) transcription factor regulates
the basal and stressor-inducible expression of genes containing an antioxidant

response element (ARE) in the promoter region (1, 2). NRF2 activation promotes
transcription of target genes involved in xenobiotic metabolism and efflux, thus making
NRF2 a critical component of the cellular response to endogenous and exogenous
toxicants and oxidants. Beyond its role in detoxification, NRF2 has pleiotropic roles in
cancer chemoprevention (3–6), energy metabolism (7–11), proliferation and differenti-
ation (11–14), iron and heme cycling (15, 16), inflammation (17), and apoptosis (18).
NRF2 activation has shown promise in alleviating many complex ailments, including
diabetes (19–22) or neurodegenerative diseases (23–27).

While NRF2 plays a pivotal role in many normal biological processes, its deregulation
can contribute to pathologies such as cancer (18, 28–30). Constitutive NRF2 activation
has been correlated with poor prognoses in many cancers, including cancers of the
lung, gallbladder, esophagus, ovary, head and neck, and gastric systems (31–37).
Indeed, NRF2 and its negative regulators are frequently mutated in cancer, and those
mutations collectively result in sustained NRF2 activation (38, 39).

Given its multitude of beneficial and pathological roles, NRF2 activation is tightly
regulated. The primary negative regulator of NRF2, Kelch-like ECH-associated protein 1
(KEAP1) (40), forms a ubiquitin ligase complex with the cullin-3 (CUL3) and ring-box 1
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(RBX1) proteins (41). In this complex, two molecules of KEAP1 bind two amino acid
motifs, DLG and ETGE motifs, which reside in the Nrf2-ECH homology domain 2 (Neh2)
of NRF2 (42). When both motifs are bound, the KEAP1 complex can bring a single
molecule of NRF2 into the E3 ubiquitin ligase machinery for ubiquitylation. Electrophilic
and oxidative stress can modify redox-active cysteine residues on KEAP1 and antago-
nize KEAP1’s capacity to mediate NRF2 ubiquitylation. This allows newly synthesized
NRF2 to accumulate, translocate to the nucleus, and promote transcription of target
genes by binding to the ARE DNA sequence (43–45).

While the KEAP1 degradation route is regarded as the primary pathway for tuning
NRF2 protein levels, other repressors have been added to the NRF2 regulatory network.
The �-TrCP–SKIP1–CUL1–RBX1 E3 ubiquitin ligase complex can bind NRF2 at DSGIS or
DSAPGS degrons found in the Neh6 domain of NRF2 and promote NRF2 ubiquitylation
and degradation (46–48). Phosphorylation of the DSGIS motif by glycogen synthase
kinase 3 (GSK-3) can enhance NRF2 degradation by this complex. Both the KEAP1 and
�-TrCP degradation pathways require cullin substrate adaptor recycling mediated by
CAND1 (49). Additionally, during activation of the endoplasmic reticulum (ER) stress
response pathway, synoviolin 1 (SYVN1 or HRD1) was identified as an E3 ligase
responsible for ubiquitylating NRF2 during liver cirrhosis (50).

While the KEAP1, �-TrCP, and SYVN1 pathways directly modulate the NRF2 protein
level and activity, other signaling pathways indirectly affect NRF2. For example, arsenic
inhibits autophagic flux and allows for accumulation of autophagosomes that seques-
ter KEAP1 in a p62-dependent mechanism (51–53). p62 (sequestosome 1 or SQSTM1)
is a cargo receptor for selective autophagy, where it can bind KEAP1 and several other
proteins. The p62-KEAP1 complex can interact with autophagy-related protein 8
(ATG8), which is bound by phosphatidylethanolamine (PE) to the burgeoning autopha-
gosome (54). This compartmentalizes KEAP1 into autophagosomes and away from
cytosolic NRF2, which allows for newly synthesized NRF2 to accumulate, translocate to
the nucleus, and promote transcription of its target genes. p62-dependent sequestra-
tion of KEAP1 into autophagosomes is enhanced by phosphorylation of p62 at S349,
which increases its affinity for KEAP1 binding (55). This mechanism indicates a role for
autophagy in NRF2 regulation; genetic depletion of the autophagy-related genes
autophagy-related 5 (ATG5) (56), autophagy-related 7 (ATG7) (53, 57, 58), and beclin-1
(BECN1) (59) has been shown to activate NRF2.

Known negative regulators of NRF2 encompass diverse cellular functions. Aside
from the aforementioned ubiquitylation and autophagy pathways, the metabolic en-
zyme fumarate hydratase (encoded by FH), histone-modifying enzyme SET domain
containing 6 histone lysine methyltransferase (encoded by SETD6), and transcription
factor BTB domain and CNC homolog 1 (encoded by BACH1) are all known to negatively
regulate NRF2 activity under certain conditions (60–63).

To discover genes that negatively impact NRF2 activity in an unbiased manner, we
conducted a genome-wide clustered regularly interspaced short palindromic repeat
(CRISPR)/Cas9 screen that systematically knocked out 17,996 genes in conjunction with
a reporter system for NRF2 activation. This system identified 273 genes that when
knocked out activate NRF2 and alludes to autophagy as an NRF2-regulatory pathway.

RESULTS
CRISPR screen design and validation. To uncover negative regulators of NRF2, we

developed a human cell-based system that screens for cells harboring NRF2 activation.
This system was based on a reporter construct, ARE-BSD-PEST, consisting of a tran-
scriptional pause site followed by multiple ARE enhancer sequence for NRF2 binding
and a minimal promoter controlling the transcription of a blasticidin S deaminase gene
(BSD, a blasticidin resistance gene) with a PEST degron sequence (Fig. 1A). This
construct allows for high expression of BSD only following sustained NRF2 activation
and NRF2 binding to the ARE to enhance transcription.

We stably transfected the ARE-BSD-PEST construct into HK2 cells, an immortalized,
nonmalignant cell line derived from human kidney epithelia, to make HK2-BSD cells. To
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test the utility of this cell line in a pooled CRISPR screen, we transfected the HK2-BSD
cells with single guide RNA (sgRNA) targeting KEAP1. The sgKEAP1-treated cells showed
loss of KEAP1 protein, an increased level of NRF2 protein, and increased levels of the
NRF2 transcription targets NQO1 and FTL compared to cells transfected with a non-
targeting control sgRNA, sgControl (Fig. 1B). To understand whether the activated NRF2
was sufficient for blasticidin resistance, we treated HK2-BSD cells transfected with either
sgKEAP1 or sgControl with various concentrations of blasticidin for 72 h. The dose
response showed that the cells with sgKEAP1 were more resistant to blasticidin than
those with the sgControl (Fig. 1C), allowing for the selection of cells with sustained
NRF2 at a blasticidin concentration of 10 �g/ml.

CRISPR screen. To systematically knock out all human genes and identify genes
that negatively regulate NRF2, we utilized a pooled viral CRISPR sgRNA library in a
scheme shown in Fig. 2A. We transduced HK2-BSD cells with the sgRNA library at a
multiplicity of infection (MOI) of 0.1 at 1,000� library coverage. The sgRNA library virus
vector confers puromycin resistance; therefore, positively transduced cells were se-
lected with 2 �g/ml puromycin and expanded. Fifty percent of the expanded
puromycin-resistant cells were used for genomic DNA isolation, whereby the isolated
genomic DNA (gDNA) was used as a template for total library coverage control. The
remaining 50% of cells were selected and expanded in Dulbecco’s modified Eagle’s
medium (DMEM) containing 10% fetal bovine serum (FBS), 4.5 g/liter glucose, and
10 �g/ml blasticidin in normoxic air enriched to 5% CO2; total genomic DNA isolated
from these blasticidin-resistant cells was used as a template for samples with sustained
NRF2 activation. Following sequencing and mapping of the sgRNA PCR amplicons, we
identified 11,032 sgRNA species representing 7,957 genes that were present in the
blasticidin-selected samples (Fig. 2B; see Data Set S1 in the supplemental material).
Several known negative regulators of NRF2, including ATG5, ATG7, BECN1, FH, BACH1,
SETD6, KEAP1, CUL3, and CAND1, were found in the blasticidin-selected samples (Fig.
2C); this suggests that the screen functioned as expected to select for negative
regulators of NRF2. A total of 328 sgRNA species targeting 273 unique genes were
statistically significantly enriched in the blasticidin-selected samples (Fig. 2D; see Data
Set S2 in the supplemental material). This indicates that those genes, when knocked
out, lead to sustained NRF2 activation. Again, known negative regulators of NRF2
passed the statistical threshold, including CUL3, KEAP1, CAND1, BECN1, and ATG7.

Interestingly, two sgRNAs targeting NRF2 (NFE2L2) were statistically enriched in the
blasticidin-selected samples (Fig. 2B and D). Upon inspection, we identified that both
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FIG 1 Design and validation of the ARE-BSD-PEST reporter. (A) ARE-BSD-PEST consists of a transcriptional
pause site (TPS) followed by a synthetic sequence consisting of a triple antioxidant response sequence
(4� ARE), a minimal promoter, an open reading frame for a blasticidin resistance gene with a PEST
degron sequence (BSD-PEST), and a terminator; the BSD-PEST transcription is under the control of the
NRF2 transcription factor. (B) Western blot showing effective KEAP1 knockout. The Western blot shows
activation of NRF2 as well as NRF2 transcriptional targets NQO1 and FTL. �-Actin (ACTB) was used as a
loading control. (C) HK2-BSD cells harboring KEAP1 knockout (HK2-BSD-sgKEAP1) are more resistant to
blasticidin than control cells.
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these sgRNAs target the Neh2 domain of NRF2, which is required for KEAP1 binding
(Fig. 2E). This suggests that the DNA repair following the CRISPR-mediated double-
strand break may have resulted in activating mutations that disrupt NRF2-KEAP1
binding.

Pathway analyses. We sought to identify signaling pathways involving the 273
genes enriched from the screen. Following gene ontology (GO) annotation, we iden-
tified a clear enrichment of 13 GO terms that were related to 18 of the 273 genes (Fig.
3A; see Data Set S3 in the supplemental material). GO annotation for the 273 genes can
be found in Data Set S4 in the supplemental material. By back propagating the 13

FIG 2 CRISPR screen identifies negative regulators of NRF2. (A) HK2-BSD cells were transfected with the CRISPR libraries at a multiplicity of infection (MOI) of
0.1 to maximize the probability of 1 sgRNA species per cell. Cells were selected in 2 �g/ml puromycin to kill untransduced cells. Fifty percent of cells were
collected for gDNA isolation of the unselected (total) samples, and 50% were selected for NRF2 activation with blasticidin. gDNA was collected for the
blasticidin-selected samples. sgRNA sequences were amplified by PCR and sequenced using massively parallel sequencing. Genes were mapped to sgRNAs,
and genes statistically significantly enriched in the blasticidin-selected samples were identified as the enriched samples. (B) Distribution of log10-transformed
counts greater than 0 from the 11,032 sgRNA species representing 7,957 genes present in the blasticidin-selected samples. sgRNAs targeting previously
described negative regulators of NRF2 activity and sgRNAs targeting NRF2 itself are identified by color. (C) Log10-transformed counts of all sgRNAs species
targeting known negative regulators of NRF2 that have a count of greater than zero identified in the CRISPR screen. (D) Plot of –log10(adjusted P value) versus
pseudo-log2(fold change) of statistically significantly enriched sgRNAs found in the blasticidin-selected samples. sgRNAs targeting well-described negative
regulators of NRF2 activity are identified by color. INF, infinity. Values at INF representing known negative regulators of NRF2 were placed on separate lines
for ease of interpretation. (E) Peptide sequence of the Neh2 degron domain of NRF2/NFE2L2 that harbored sgRNAs enriched in the blasticidin-selected samples;
the enriched sgRNAs target genome regions near the negative regulatory domain of NRF2, allowing for possible activating mutations after Cas9 activity.
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FIG 3 Enriched genes are involved in autophagy pathways. (A) Gene ontology (GO) enrichment on 273
significantly enriched genes revealed enrichment of 13 GO terms. The red line indicates an adjusted P
value of 0.05. (B) Directed acyclic graph of relationships between the 13 GO terms identified in panel A
and the 18 of 273 genes annotated to these processes. Two additional GO terms, “autophagy of nucleus”
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enriched terms through the GO-directed acyclic graph, we identified autophagy as the
converging biological pathway shared by the majority of those genes (Fig. 3B). This
indicates that autophagy is a converging cellular process that regulates NRF2.

Of the 273 significantly enriched genes, 25 were each targeted by at least two
sgRNA species (Fig. 3C). The GO terms associated with these 25 genes are presented in
Table 1. Again, many genes are associated with autophagy-related GO terms. Other
general biological functions relevant to these 25 genes include stress response, pro-
teostasis and protein modification, trafficking, growth and development, and immune
system.

NRF2 target gene scouring. It is worth noting that TXNRD1, a bona fide NRF2 target
gene, is among these 25 genes. Hence, TXNRD1 may form a negative feedback loop,
whereby NRF2 upregulates expression of TXNRD1, which in turn represses NRF2 sig-
naling. To look holistically for known NRF2 target genes that could be participating in
a feedback loop with NRF2, we broadened our search by looking at all genes in the
blasticidin-selected samples instead of just the statistically significantly enriched sgRNA
species. We identified 54 sgRNA species targeting 33 unique genes that are known
NRF2 targets (Fig. 4); only sgRNA species targeting TXNRD1 were statistically signifi-
cantly enriched (Fig. 4).

Gene validation. We selected 19 genes for validation. Seventeen of these 19 genes
were those with at least two significantly enriched sgRNA species in the blasticidin-
selected samples (Fig. 3C), and the remaining two genes (COLEC10 and NRXN2) had one

FIG 3 Legend (Continued)
and “autophagy,” were propagated from their child terms. (C) Twenty-five genes were targeted by at
least two enriched sgRNAs. Black bars represent genes carried forward for validation. Genes labeled “A”
were involved in the GO autophagy annotations in panel B.

TABLE 1 Gene ontology (GO) terms associated with enriched genes that were targeted by at least two sgRNA species

Function(s) GO term Genesa

Autophagy Late nucleophagy ATG9A, ATG7
Piecemeal microautophagy of the nucleus RB1CC1, ATG7
Autophagy ATG10, RB1CC1, ATG7
Autophagy of mitochondrion RB1CC1, ATG12, ATG9A, ATG3, ATG7
Autophagosome assembly RB1CC1, TMEM41B, ATG12, ATG9A, ATG3, ATG7
Macroautophagy VPS37A, ATG10, RB1CC1, ATG12, ATG3, ATG7

Stress response Cellular response to oxidative stress TXNRD1, NFE2L2
Cell redox homeostasis TXNRD1, NFE2L2

Proteostasis and
protein modification

Cellular protein modification process ATG3, ATG7
Proteasome-mediated ubiquitin-dependent protein catabolic process NFE2L2, CUL3
Positive regulation of protein modification process ATG10, ATG7
Protein modification by small-protein conjugation ATG10, ATG7
Proteasomal ubiquitin-independent protein catabolic process KEAP1, NFE2L2
Posttranslational protein modification KEAP1, CAND1, CUL3
Protein ubiquitination KEAP1, NFE2L2, ATG3, ATG7, CAND1, CUL3

Trafficking Protein targeting to membrane VPS37A, ATG3
Transmembrane transport SLC39A9, LRRC8A
Intra-Golgi vesicle-mediated transport RAB6A, GOSR1
Retrograde transport, endosome to Golgi apparatus RAB6A, GOSR1
ER-to-Golgi vesicle-mediated transport GOSR1, CUL3
Protein lipidation ATG10, ATG7
C-terminal protein lipidation ATG12, ATG7
Protein transport ATG10, ATG9A, ATG7, GOSR1

Growth and development Aging NFE2L2, ATG7

Immune system Viral process KEAP1, NFE2L2, RAB6A
Neutrophil degranulation ATG7, RAB6A, CAND1, TUBB

aAll genes were found in the blasticidin-selected samples and are statistically significantly enriched. TXNRD1, a bona fide NRF2 target gene, is in bold.
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significantly enriched sgRNA. These 19 genes included known negative regulators of
NRF2 as controls: KEAP1 and ATG7. Seven of these genes are involved in autophagy as
defined by the GO analysis (Fig. 3B and C). Validation was performed in 4 different cell
lines; these cell lines do not harbor any known gene mutations that could activate NRF2
and are derived from a variety of tissue/disease origins. They were MDA-MB-231 from
breast cancer, HK2 from noncancerous kidney, BEAS-2B from noncancerous lung tissue,
and NCI-H1299 from lung cancer.

Of the 19 genes tested, all showed increased protein levels of NRF2 and of select
NRF2 transcription target genes (FTL, GCLM, or NQO1) in at least one of the four cell
lines tested compared to control, nontargeting sgRNA (Fig. 5A to D). Loss of 17/19
genes showed NRF2 induction across all 4 cell lines; ATG10 and ATG12 did not show
NRF2 induction in BEAS-2B cells (Fig. 5E). Knockout of 17 of the genes showed increases
in at least two target genes across 2 of the 4 cell lines tested (Fig. 5F). Eight of the genes
(ATG12, ATG7, GOSR1, IFT172, KEAP1, NRXN2, RAB6A, and VPS37A) showed target gene
induction for all four cell lines, which we defined as “high confidence” negative
regulators of NRF2. Intriguingly, many of the gene knockouts showed KEAP1 induction
relative to control sgRNA (Fig. 5G). This indicates that knockout of these genes likely
causes KEAP1 cysteine adduction, KEAP1 sequestration away from NRF2 (either by
compartmentalization of KEAP1 or by induction of a protein that competes with NRF2
for KEAP1), posttranslational modification of NRF2 that prevents KEAP1 binding, or
enhanced transcription or translation of NFE2L2 sufficient to outcompete KEAP1.

p62 dependency. Given that many identified negative regulators of NRF2 are
autophagy-related genes, we sought to determine whether these genes exert their
effects on the NRF2-KEAP1 system through the autophagic cargo receptor p62. We
found that the p62 level as well as the S349 phosphorylation status of p62 were
inconsistently changed across sgRNA treatments and cell lines (Fig. 5A to D). This
indicates that changes to levels of neither p62 nor phosphorylated p62 mediate NRF2
induction, signifying potential remaining knowledge gaps in the autophagic regulation
of the NRF2-KEAP1 system.

While p62 and phosphorylated p62 levels may be relatively unchanged following
gene knockout, it is possible that the processes are still p62 dependent: deletion of p62
in ATG7-deficient hepatocytes was shown to cancel NRF2 activation (53). We knocked
out p62 in HK2 cells in conjunction with the aforementioned gene knockouts and then
assessed the protein levels of NRF2 and its target genes (Fig. 6). Through these
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1

FIG 5 Genes identified by CRISPR screen are negative regulators of NRF2 and NRF2 transcriptional targets. (A to D) Western blots of NRF2, KEAP1, p62,
phospho-S349 p62, and NRF2 target genes (NQO1, GCLM, and FTL) following knockout of genes identified as negative regulators by the CRISPR screen.
Genes were knocked out in the HK2 (A), NCI-H1299 (B), MDA-MB-231 (C), and BEAS-2B (D) cell lines. (E to G) Summary of Western blot results (A to D),
showing NRF2 activation (E), target gene induction (F), and KEAP1 induction (G).
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experiments we found that some of the newly identified negative regulators exert their
effect through a p62-dependent mechanism (ATG7, ATG9A, ATG12, CELA2A, IFT172,
LRRC8A, TMEM41B, and TXNRD1) and some through a p62-independent mechanism
(ATG10, COLEC10, EDEM3, GOSR1, KEAP1, NRXN2, RAB6A, RB1CC1, SACM1L, SLC39A9, and
VPS37A). Several studies have shown that p62 forms aggregates with KEAP1 upon
autophagy impairment (52, 53, 58, 59, 64, 65). Thus, the p62-dependent genes, when
knocked out, may impair autophagy and promote p62-KEAP1 aggregate formation. Our
results also indicate that there are other mechanisms by which signals can be trans-
duced to the NRF2-KEAP1 system in a p62-independent manner, signifying many
venues for future exploration in the NRF2-KEAP1 pathway.

Biological and pathological significance. NRF2 activation is frequently found in
cancer and is associated with poor prognoses. We sought to investigate whether the
newly identified negative regulators of NRF2 are recurrently mutated in cancer using
somatic mutation data from the Cancer Genome Atlas (TCGA) project. We focused on
genes that were part of the autophagy pathway (Fig. 3B), were enriched for multiple
sgRNAs (Fig. 3C), or were functionally validated as negative regulators of NRF2 (Fig. 4).
Several genes were mutated in �5% of cases from certain tumor types (Fig. 7A). For
example, RB1CC1 was frequently mutated in rectal adenocarcinoma and uterine corpus
endometrial carcinoma, and NRXN2 was frequently mutated in colorectal adenocarci-
noma, skin cutaneous melanoma, and uterine corpus endometrial carcinoma.

We selected the 12 most frequently mutated genes and identified the frequency of
mutations across the length of the protein. Oncogenes are repeatedly mutated at the
same amino acid positions, while tumor suppressor genes are mutated throughout
their lengths (66). Mutations of the negative regulators identified in this screen were
spread throughout their lengths (Fig. 7B), which is indicative of a tumor suppressor role.
Thus, loss of function of these genes may exhibit a cancer phenotype associated with
sustained NRF2 activation.

A hallmark trait of NRF2-activated cancers is chemoresistance. Knockout of several
of the negative regulators conferred resistance to various doses of cisplatin, a common
chemotherapeutic (Fig. 7C). This was confirmed with a single administration of 50 �M
cisplatin and assessment of cell viability relative to that of untreated cells by crystal
violet staining (Fig. 7D). We conclude that mutation to many of the genes presented
here may cause a cascade of loss of gene function, sustained NRF2 activation, and
chemoresistance. Thus, identifying mutations to these genes in cancers may have
clinical relevance.

DISCUSSION

The bulk of NRF2 regulation has been confined to a small number of degradation
pathways mediated by relatively few key players: the KEAP1-CUL3-RBX1, �-TrCP–SKIP1–
CUL1–RBX1, and SYNV1 pathways. Considering the role of NRF2 in a variety of physi-
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ological and pathological processes, identifying additional contributors to the NRF2
regulatory network will provide insight into the underlying mechanisms of various
NRF2-related processes. We utilized a pooled CRISPR screen-based methodology to
systematically identify 17 previously uncharacterized negative regulators of NRF2, with
8 of them, when knocked out, consistently upregulating NRF2 and NRF2 target genes
across multiple cell lines. These 8 genes are “high-confidence” negative regulators of
NRF2.
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Using the CRISPR screen methodology, we found more than 11,000 sgRNAs present
in the blasticidin-selected samples. Importantly, many of these sgRNAs targeted known
negative regulators of NRF2, including ATG5, ATG7, BECN1, FH, BACH1, SETD6, KEAP1,
CUL3, and CAND1. Of these, only BECN1, ATG7, KEAP1, CUL3, and CAND1 were deemed
statistically significantly enriched despite all of them appearing in the blasticidin-
selected samples. The absence of statistical enrichment for BACH1 may be explained by
the unique mechanism by which BACH1 inhibits NRF2 activity. BACH1 does not directly
inhibit NRF2; rather, it binds to the ARE to block NRF2 from binding. When BACH1 is
knocked out, NRF2 levels do not increase beyond basal levels as they would with KEAP1
knockout; basal levels of NRF2 may have been insufficient to induce BSD transcription
to a level high enough to confer adequate resistance that allowed a successful
selection. Moreover, BACH1 affects only certain ARE-containing genes (67). Compared
to many NRF2 target genes, such as AKR1C3, GCLC, TXNRD1, FTL, FTH1, and NQO1,
BACH1 preferentially controls expression of HMOX-1 due to the presence of 12 putative
AREs in its promoter region (61, 67). Indeed, repression by BACH1 has been proposed
to be dependent on multiple AREs (67). Considering that our luciferase construct had
4 AREs, it is possible that stronger enrichment would have been identified with more
AREs and weaker or nonexistent enrichment identified with fewer AREs.

The notable absence of the other genes could be due to slowed growth during the
expansion phase of the experiment. For example, loss of ATG5 is associated with
decreased proliferation in some cell types (68–72). Similarly, loss of SETD6 retards
growth (73, 74). Loss of Krebs cycle function, such as that seen with FH inactivation,
slows growth initially in most cell types while the population adapts to the new
metabolic pathways activated for sufficient energy and anabolic processes. Indeed, FH
is considered an “essential gene” in some cell systems (75). The study design and
statistical methodology used here cannot account for different growth rates over the
puromycin and blasticidin selection time periods. Additionally, our blasticidin selection
stage was carried out under “normal” cell culture conditions. Several negative regula-
tors may have more prominent roles in other cellular contexts that prevented their
detection in this system. For example, GSK-3/�-TrCP negatively regulates NRF2 under
conditions of low growth factor levels, and SYNV1 negatively regulates NRF2 under
conditions of endoplasmic reticulum stress (50, 76, 77). Considering that neither �-TrCP
nor SYNV1 was present in our screen, future investigations could attempt similar assays
in other cellular contexts and further widen the NRF2 regulatory network. This could be
particularly valuable under tissue conditions that are relevant to pathologies with
known NRF2 dysregulation.

Despite the caveats of the statistical and study design methodologies, we narrowed
the total set of 7,957 unique genes identified in our screen to 273 potential negative
regulators of NRF2 by picking out those that were statistically enriched in the
blasticidin-selected samples. Gene ontology analyses indicate that these genes were
particularly enriched in autophagy processes. This is not entirely unexpected; NRF2 has
been shown to be activated by dysfunctional autophagy previously. As mentioned,
arsenic can inhibit autophagic flux, allowing for p62-dependent sequestration of KEAP1
and eventual NRF2 activation; additionally, silencing of autophagy genes ATG5, ATG7,
and BECN1 is known to activate NRF2. Intriguingly, the NRF2 activator bis(2-
hydoxybenzylidene)acetone induces autophagy more poorly in NRF2-deficient cells,
suggesting that NRF2 plays a critical role in autophagy (78). This screen suggests that
links between NRF2 and autophagy are more intimate and complicated than what has
been discovered previously.

We identified autophagy as a converging regulatory point for NRF2. Several
autophagy-related genes were found to negatively regulate NRF2 (Fig. 3B). Most of
these genes are involved in autophagy nucleation or autophagosome elongation steps
(Fig. 8).

Of the 8 high-confidence genes confirmed by functional validation, three of them
(VPS37A, ATG7, and ATG12) are involved in autophagy. ATG5 (56), ATG7 (53, 57, 58), and
BECN1 (59) were previously characterized as both autophagy related and negative
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regulators of NRF2. The other two autophagy genes identified in this screen, VPS37A
and ATG12, were previously uncharacterized as negative regulators of NRF2. Despite no
consistent changes in p62 or its phosphorylation level, p62 was still required for ATG12-
and ATG7-mediated repression of NRF2. In contrast, VPS37A-mediated repression of
NRF2 was p62 independent. Thus, autophagy genes may be negatively regulating NRF2
via at least two mechanisms, i.e., p62-dependent, and p62-independent mechanisms.

Intriguingly, several genes in this CRISPR screen only had one sgRNA species that
was deemed significantly enriched by our statistical method. We highlighted that the
sgRNAs targeting NRF2 may in fact be activating sgRNAs that mutate or knock out
the degron required for KEAP1-mediated ubiquitylation. We hypothesize that some of
the genes with only one sgRNA represented in the blasticidin-selected sample may be
mutating to a variant that activates NRF2 (i.e., causing neomorphic mutations).

Of the 17 genes selected for validation (excluding KEAP1 and ATG7), some have

AUTOPHAGY
Cytosol

Phagophore
Assembly and 

Nucleation

Autophagosome

PE ATG8

Cytosol

KEAP1P62 P

KEAP1P62 P

PE ATG8

PE ATG8

P62

P62

Other
selective
cargo
substrates

SELECTIVE AUTOPHAGY

Expansion

MEMBRANE RECRUITMENT

Golgi

ATG9A

ATG9A

ATG9A 
vesicles

Auto-
phagosome

mTORC1

AMPK

ULK1/2

RB1CC1 ATG101

ATG13

Nucleation

REGULATION

TMEM41B BECN1RAB1A

ATG8

ATG8

ATG8

ATG8 Membrane
RecruitmentPE

ATG3

ATG3

ATG7

ATG10

ATG12

*
ATG12 *

ATG12 ATG5

VESICLE EXPANSION

GTP RAB6A

GDP RAB6A

RABGAP1

FIG 8 Negative regulators of NRF2 are found in autophagy. Negative regulators of NRF2 are found in autophagy pathways (red ovals).
Signaling pathway diagrams were derived from references 116 to 127.

Kerins et al. Molecular and Cellular Biology

July 2019 Volume 39 Issue 13 e00037-19 mcb.asm.org 12

https://mcb.asm.org


shown relationships to the NRF2 pathway in the past. Most notably, TXNRD1 is a verified
target gene of NRF2 with a known ARE enhancer (79, 80). Chronically TXNRD1-deficient
hepatocytes show NRF2 induction (81), corroborating the efficacy of the screen pre-
sented here. Other works have demonstrated that both ATG10 and ATG7 have reactive
thiols that are sensitive to oxidative stress, akin to KEAP1 (82). If any cross-signaling
exists between NRF2 activation by oxidative insult and the ATG10/7 thiol-mediated
stress response, it remains to be uncovered.

Several of the validated newly identified negative regulators of NRF2 (ATG12, IFT172,
CELA2A, and TXNRD1) are themselves regulated by NRF2. Thus, some may serve as
feedback loops to turn off NRF2 when its task is completed. For example, ATG12 was
shown to be reduced in NRF2 knockdown cells (83). Similarly, in NRF2 knockout heart
cells, IFT172 was shown to be downregulated (84). tert-Butyl-hydroquinone (TBHQ), a
well-described NRF2 inducer, was shown to increase CELA2A mRNA (85), and, as
mentioned above, TXNRD1 is a well-described NRF2 target. Despite these correlations
between NRF2 activity and the induction of these genes, ATG12, IFT172, and CELA2A are
not bona fide NRF2 target genes, so the mechanism by which NRF2 activates these
genes remains unknown. For these genes and others from Fig. 4, their absence may
increase oxidative or electrophilic stress and activate NRF2 via covalent modification of
cysteine residues on KEAP1. Accordingly, TXNRD1 knockdown increased levels of NRF2
and oxidized (inactive) KEAP1 due to disulfide bridge formation between KEAP1-C226
and KEAP1-C613 (86). This has shown physiological relevance whereby the signaling
gasotransmitter hydrogen sulfide stimulates production of the disulfide bond to inac-
tivate KEAP1 and activate NRF2 (87). However, our results showed that TXNRD1 exerts
its effect in a p62-dependent manner. It is possible that the disulfide bond formation
does not disrupt KEAP1’s ability to mediate NRF2 ubiquitylation but instead facilitates
p62-mediated KEAP1 sequestration. This mechanism potentially allows some nega-
tive regulators of NRF2 to form negative feedback loops by exploiting the au-
tophagic regulation of the NRF2-KEAP1 system. Regardless of the mechanism,
careful examination into the “off switches” of NRF2 is needed; current paradigms
posit that (i) KEAP1 brings NRF2 back into the cytosol to turn off its signaling (88)
and (ii) BACH1, a bona fide NRF2 target gene, competes with NRF2 for ARE binding
at select ARE sequences, mitigating its signaling (89). It remains unknown whether
ATG12, IF172, CELA2A, TXNRD1, or any of the target genes shown in Fig. 4 contribute
to these OFF signaling paths or form part of a new, uncharacterized inhibitory
feedback loop.

Due to its sustained activation in cancer, NRF2 contributes to many hallmarks of
cancer (30). NRF2-activated tumors are notably resistant to therapeutics; we showed
that several of the newly identified NRF2 negative regulators are mutated in cancer and
upon depletion confer resistance to cisplatin. Loss of function of many of the negative
regulators described here has been previously associated with poor prognoses in
cancer. KEAP1 mutation or loss of KEAP1 is associated with poor patient prognosis in
many cancers, including breast cancer (90, 91), glioma (92), and lung cancer (36, 93).
Loss of RB1CC1 has been associated with poorer prognoses in breast cancer (94, 95),
salivary gland cancer (96), prostate cancer (97), and bladder cancer (98). Low expression
of NRXN2 is associated with shorter patient survival in ependymoma (99). Low expres-
sion of LRRC8A is associated with shorter patient survival in renal cancer (100). Low
ATG9A is associated with lymph node involvement and lower patient survival in breast
cancer (101, 102). Low NAE1 expression is unfavorable in thyroid cancer (100). Low
COLEC10 expression leads to poorer prognoses in liver cancer (100, 103). Low SLC39A9
correlates with worse overall survival in gastric cancer and renal cancer (100, 104).

Identification of a potent and specific NRF2 inhibitor has been a longstanding goal
in cancer biology, with many of the purported inhibitors showing significant off-target
effects and there being a poor mechanistic understanding of their pharmacology (105).
For example, the frequently used inhibitor brusatol is known to mitigate NRF2 activity
through inhibition of protein translation (106). This mechanism is nonspecific and
impedes the development of the compound for clinical use. Thus, there is an urgent
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need for improved NRF2 inhibitors. A better understanding of the mechanisms under-
lying NRF2-relevant functions of the 273 genes identified in our screen may augment
current efforts to identify NRF2 inhibitors.

MATERIALS AND METHODS
Reagents. The following compounds were used in this study: blasticidin (Gibco, A11139-03), hygro-

mycin (Thermo Fisher, 10687010), puromycin (Gibco, A11138-03), and sulforaphane (LKT Labs, S8044).
Insulin was purchased from Sigma (I6634). Cisplatin was purchased from Santa Cruz Biotechnology
(sc-2008969) and made fresh for every use via dissolution in culture medium.

Cell culture and reagents. All cell lines (BEAS-2B, MDA-MB-231, HK2, and NCI-H1299) were pur-
chased from the ATCC. HK2, BEAS-2B, and NCI-H1299 cells and derivatives were cultured in Dulbecco’s
modified Eagle’s medium (DMEM) with high glucose (4.5 g/liter) and no pyruvate and supplemented with
heat-inactivated 10% fetal bovine serum (FBS). MDA-MB-231 was cultured in minimal essential medium
(MEM) supplemented with 10% FBS and 6 ng/ml insulin. All cells were cultured at 37°C in atmospheric
air enriched with 5% CO2.

Construction of ARE-BSD-PEST. The open reading frame of a blasticidin resistance gene (BSD
[encoding blasticidin S deaminase], obtained as a gene fragment from IDT) fused at the C terminus with
a PEST sequence derived from the mouse ornithine decarboxylase gene (KLP RSH GFP PAV AAQ DDG TLP
MSC AQE SGM DRH PAA CAS ARI NV) was cloned into pGL4.37 (Promega, E364A) in place of the
endogenous luciferase gene. The resultant clone was named ARE-BSD-PEST (Fig. 1A). This system consists
of a transcriptional pause site, a 4� ARE enhancer sequence, and a minimal promoter controlling the
transcription of BSD-PEST (Fig. 1A). The transcriptional pause site, consisting of the sequence 5=-AAT CGA
TAG TAC TAA CAT ACG CTC TCC ATC AAA ACA AAA CGA AAC AAA ACA AAC TAG CAA AAT AGG CTG TCC
CCA GTG CAA GTG CAG GTG CCA GAA CAT TTC TCT-3=, was included to reduce background noise and
prevent transcriptional interference (107–109). The quadruple ARE sequence consisted of 5=-TAG CTT
GGA AAT GAC ATT GCT AAT GGT GAC AAA GCA ACT TTT AGC TTG GAA ATG ACA TTG CTA ATG GTG
ACA AAG CAA CTT T-3=, where the canonical ARE sequence TGAYNNNGC is in bold.

Generation of HK2-BSD. ARE-BSD-PEST was transfected into HK2 cells using Attractene transfection
reagent (Qiagen). At 1 week after transfection, cells with stable incorporation of ARE-BSD-PEST were
selected for with 300 �g/ml hygromycin. Single colonies were isolated and screened by reverse
transcription-PCR (RT-PCR) for induction of BSD following treatment with 4 �M sulforaphane, a known
NRF2 inducer; the colony showing the greatest induction of BSD following sulforaphane treatment was
termed HK2-BSD.

Cell viability. HK2-BSD was transfected using Attractene (Qiagen) with pSpCas9(BB)-2A-GFP (a gift
from Feng Zhang; Addgene number 48138) (110), encoding sgRNA targeting no known gene in the
human genome (control, 20-bp sequence GTA GCA CAT GGC GAC TCT TA), or a mixture of three sgRNAs
targeting KEAP1 (20-bp sequences CCA GTT CAT GGC CCA CAA GG, GCT GCG GGA GCA GGG CAT GG, and
GGC GCT CCA TGA CCT TGG GG) to make HK2-BSD-sgControl or HK2-BSD-sgKEAP1, respectively. KEAP1
knockout was validated by Western blotting. HK2-BSD-sgControl and HK2-BSD-sgKEAP1 were treated
with various concentrations of blasticidin; 72 h later, viability was measured using the 3-(4,5-
dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay (Pro-
mega) according to the manufacturer’s protocol. A blasticidin concentration of 10 �g/ml was selected as
the optimized concentration for maximal cell death in non-NRF2-activated cells with minimal cytotoxicity
to NRF2-activated cells.

sgRNA virus preparation. The human activity-optimized CRISPR knockout plasmid library was
purchased from Addgene (pooled library number 1000000067). This library was previously developed by
the Sabatini and Lander laboratories (75). It consists of two pooled sublibraries, A and B, that collectively
encode sgRNAs targeting all human genes for knockout. The libraries were electroporated into Endura
electrocompetent cells and assessed for the number of CFU. After validating that the transformation
efficiency was greater than 20-fold the library size, plasmids were isolated and prepared for virus
packaging. For sgRNAs targeting individual genes, the requisite primers (see Data Set S4 in the
supplemental material) were annealed, phosphorylated, and cloned into the pL-CRISPR.EFS.GFP vector (a
gift from Benjamin Ebert; Addgene number 57818) (111). Lentivirus for all plasmids was produced, and
titers were determined, using the ViraPower lentivirus expression system (Thermo Fisher) according to
the manufacturer’s protocols.

sgRNA screen and sequencing. sgRNA libraries were transduced into 2.1 � 109 HK2-BSD cells
(1.05 � 109 cells per library) at a multiplicity of infection (MOI) of 0.1, which achieves an approximate
1,000� coverage of the total library. At 72 h postransduction, cells were selected with 2 �g/ml of
puromycin to kill off untransduced cells. The surviving cells were expanded back to 2.1 � 109 cells in
medium containing 2 �g/ml puromycin. Fifty percent of the surviving cells were used for genomic DNA
isolation, and the isolated DNA was used as the template for total library coverage controls. The
remaining 50% of cells were selected in medium containing 10 �g/ml blasticidin. Surviving cells were
expanded back to �2.1 � 109 cells in medium containing 10 �g/ml blasticidin. Total genomic DNA was
isolated from the blasticidin-selected cells and was used as the template for samples with sustained NRF2
activation. We used High Fidelity Q5 polymerase (NEB) to amplify the sgRNA cassette from the isolated
genomic DNA templates. PCR amplicons were gel purified and subjected to next-generation sequencing
using HiSeq 2500 with 10% PhiX spike-in.

Identification of enriched genes. Sequencing fastq files were quality trimmed and processed into
bins containing different sgRNA sequences using an in-house C��-implemented hash map. Statistical
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evaluation of the significance of enrichment for sgRNA species was performed by comparing the Poisson
means for each sgRNA in the control to that in the sustained NRF2 activation samples according to the
Etest (112). The test statistic was defined as Z � �c�1 � �2� ⁄�c2�1��2, where c � t2/t1, t1 is the total
number of counts in the unselected samples (also known as library coverage), and t2 is the total number
of counts in the enriched sample (also known as enriched sample coverage). �1 and �2 represent the
Poisson mean for each sgRNA in the total library and in the enriched sample, respectively. Known NRF2
targets were compiled from recent reviews (28, 30).

GO analysis. Gene ontology (GO) enrichment analyses were conducted on the enriched genes in the
R statistical environment (113). Gene-to-GO annotations defining relationships between genes and GO
terms were accessed from NCBI. Significance testing was performed using the hypergeometric test to
assess enrichment for the number of genes found in the blasticidin-selected samples for a specific GO
term compared to the number of genes found in the unselected (total) samples for a specific GO term,
with Holm correction for multiple testing. GO terms that were significantly enriched can be found in Data
Set S3 in the supplemental material. Only GO terms with at least 2 genes enriched were taken forward
for further analysis. We then took the set of enriched genes and GO terms and propagated the GO terms
forward to their parental terms until we reached a converging biologically relevant term, “autophagy.”
Directed acyclic graphs were generated using DiagrammeR in the R statistical environment (114). All GO
terms for biological processes associated with the statistically enriched samples were tallied (Table 1;
Data Set S4).

NRF2 induction validation by gene knockout. Cells were plated at 30% confluence and transduced
with relevant sgRNAs (see Data Set S5 in the supplemental material for primers that were used to
generate the sgRNA species). For the MDA-MB-231, BEAS-2B, and NCI-H1299 cell lines, cells were
harvested for Western blotting 5 to 7 days later. HK2 cells were harvested at approximately 3 weeks
postransduction.

p62 knockout. Two sgRNAs targeting p62 (5=-AGG GCT TCT CGC ACA GCC GC-3= and 5=-CGT GGG
CTC CAG TTT CCT GG-3=) were cloned into lentiCRISPR v2 (Addgene number 52961, a gift from Feng
Zhang) (115). Lentivirus was produced as described above, and the viruses harboring the two sgRNAs
were mixed together. Cells were infected with virus for 72 h, and positively transduced cells were
selected with 2 �g/ml puromycin.

Western blotting and antibodies. Cells were harvested in Laemmli sample buffer. Lysates were
boiled, sonicated, resolved by SDS-PAGE, and then subjected to immunoblot analysis. Primary antibodies
against the following proteins were used: ACTB (Sigma A1978, 1:10,000), FTL (Santa Cruz Biotechnology
sc-74513, 1:1,000), GAPDH (glyceraldehyde-3-phosphate dehydrogenase) (Santa Cruz Biotechnology sc-
32233, 1:3,000), GCLM (Santa Cruz Biotechnology sc-55586, 1:1,000), KEAP1 (Santa Cruz Biotechnology
sc-15246, 1:1,000), NQO1 (Santa Cruz Biotechnology sc-32793, 1:1,000), NRF2 (Santa Cruz Biotechnology
sc-13032, 1:1,000), p62 (Santa Cruz Biotechnology sc-28359, 1:1,000), and phospho-p62 (anti-phospho-
p62-S349, Abcam ab211324). ACTB or GAPDH was used as a loading control for all Western blots.

Cisplatin dose-response viability assay. Cells were seeded at 6,500 cells per well on a 96-well plate
and treated with various concentrations of cisplatin. After 24 h of cisplatin treatment, cell viability was
measured using the CellTiter 96 AQueous One Solution assay (Promega, Madison, WI).

Crystal violet staining. Cells were seeded at 100,000 cells per well on a 24-well plate and treated
with 50 �M cisplatin. After 24 h of cisplatin treatment, cells were fixed in 100% ethanol for 10 min and
stained with crystal violet solution (0.5% [wt/vol] crystal violet in 20% [vol/vol] methanol). Following
washing and drying, stained cells were solubilized in 1% SDS. Absorbance was measured at 590 nm.

TCGA analysis. Somatic mutations were downloaded from the Cancer Genome Atlas (TCGA)
(http://cancergenome.nih.gov/) on 2 March 2017. Somatic mutation data from 33 tumor types identified
using 4 different somatic mutation-calling algorithms (MuSE, MuTect2, SomaticSniper, and VarScan2)
were utilized in the analyses as previously described (38). Protein sequences were retrieved from NCBI.

Data availability and ethical considerations. Fastq files for the amplicon sequencing are available
through the NCBI short-read archive (NCBI BioProject ID PRJNA540301). The mutation data sets analyzed
in this study were generated by the TCGA Research Network and are freely available from The Cancer
Genome Atlas (TCGA) consortium (http://cancergenome.nih.gov/). Only deidentified, publicly available
data were downloaded and used for this study. Patients’ consent and institutional review board approval
for the collection of the original data were obtained by TCGA. All methods were carried out in accordance
with relevant guidelines and regulations.
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