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Abstract
Objective T o characterise gut microbiome in patients 
with hepatocellular carcinoma (HCC) and evaluate the 
potential of microbiome as non-invasive biomarkers for 
HCC.
Design  We collected 486 faecal samples from East 
China, Central China and Northwest China prospectively 
and finally 419 samples completed Miseq sequencing. 
We characterised gut microbiome, identified microbial 
markers and constructed HCC classifier in 75 early HCC, 
40 cirrhosis and 75 healthy controls. We validated the 
results in 56 controls, 30 early HCC and 45 advanced 
HCC. We further verified diagnosis potential in 18 HCC 
from Xinjiang and 80 HCC from Zhengzhou.
Results  Faecal microbial diversity was increased 
from cirrhosis to early HCC with cirrhosis. Phylum 
Actinobacteria was increased in early HCC versus 
cirrhosis. Correspondingly, 13 genera including 
Gemmiger and Parabacteroides were enriched in early 
HCC versus cirrhosis. Butyrate-producing genera were 
decreased, while genera producing-lipopolysaccharide 
were increased in early HCC versus controls. The optimal 
30 microbial markers were identified through a fivefold 
cross-validation on a random forest model and achieved 
an area under the curve of 80.64% between 75 early 
HCC and 105 non-HCC samples. Notably, gut microbial 
markers validated strong diagnosis potential for early 
HCC and even advanced HCC. Importantly, microbial 
markers successfully achieved a cross-region validation of 
HCC from Northwest China and Central China.
Conclusions T his study is the first to characterise gut 
microbiome in patients with HCC and to report the 
successful diagnosis model establishment and cross-
region validation of microbial markers for HCC. Gut 
microbiota-targeted biomarkers represent potential non-
invasive tools for early diagnosis of HCC.

Introduction
Hepatocellular carcinoma (HCC) is the third 
leading cause of cancer-related death worldwide.1 2 
Currently, there are an estimated 29 200 new HCC 
cases in males and 11 510 cases in females in the USA 
in 2017.3 More seriously, estimated new HCC cases 
achieved 343 700 in males and 122 300 in females 
in China in 2015,4 which is mainly attributed to 

the prevalence of hepatitis B virus (HBV) persistent 
infection and HBV-induced cirrhosis. Due to the 
absence of specific symptoms in early stages and the 
lack of early diagnostic markers, most patients with 
HCC are often diagnosed in an advanced stage with 

Significance of this study

What is already known on this subject?
►► Hepatocellular carcinoma (HCC) is the 
third leading cause of cancer-related death 
worldwide due to the poor prognosis, high 
incidence and postsurgical recurrence.

►► The gut microbiota promotes HCC development 
by the microbiota-liver axis in HCC animal 
models, but microbial characteristics in 
patients with HCC have not been reported.

►► The concept of the gut microbiome serving 
as a tool towards for achieving targeted non-
invasive biomarkers for specific diseases or 
cancer, including type 2 diabetes, liver cirrhosis 
and colorectal cancer, has been established by 
compelling studies, but it is unclear whether 
gut microbial markers could discriminate HCC.

What are the new findings?
►► Faecal microbial diversity was decreased 
from healthy controls to cirrhosis, but it was 
increased from cirrhosis to early HCC with 
cirrhosis.

►► Butyrate-producing bacterial genera 
were decreased, while genera producing-
lipopolysaccharide were increased in early HCC 
versus healthy controls.

►► The optimal 30 microbial markers were 
identified through a fivefold cross-validation on 
a random forest model and achieved an area 
under the curve of 80.64% between 75 early 
HCC and 105 non-HCC samples.

►► Gut microbial markers validated strong 
diagnosis potential for early HCC and even 
advanced HCC. Importantly, microbial markers 
successfully achieved a cross-region validation 
of HCC from Northwest China and Central 
China.

http://www.bsg.org.uk/
http://gut.bmj.com/
http://crossmark.crossref.org/dialog/?doi=10.1136/gutjnl-2017-315084&domain=pdf&date_stamp=2019-05-04
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Significance of this study

How might it impact on clinical practice in the foreseeable 
future?

►► This is the first report to illustrate gut microbial 
characteristics in patients with early HCC through large-
cohort Miseq sequencing.

►► Gut microbial alterations may contribute to the development 
of HCC, which implies that the changed gut microbiota may 
represent a potential target to prevent HCC development by 
the gut-microbiota-liver axis.

►► This study is the first to report the successful diagnosis 
model establishment and cross-region validation of microbial 
markers for HCC, notably including data from three different 
regions of China. Gut microbiota-targeted biomarkers 
represent potential non-invasive tools for early diagnosis of 
HCC.

poor prognosis (the overall ratio of mortality to incidence is 
0.95).5 6 Therefore, novel diagnostic markers for early HCC and 
new therapeutic strategies are urgently needed to improve the 
prognosis of this population.

The human gut microbiota have been considered the most 
important microecosystem living in symbiosis with the body.7–11 
It is identified as a crucial determinant of intestinal inflammation 
and as a key player in chronic inflammatory liver diseases.12 Gut 
microbial alterations contribute to the onset and progression of 
alcoholic liver disease, non-alcoholic fatty liver disease,13 liver 
cirrhosis and its complications.14 Recent studies in animal models 
indicate that the intestinal microbiota promote HCC develop-
ment through the gut microbiota-liver axis.15 16 However, until 
now, gut microbial characteristics in clinical patients with HCC 
have not yet been reported.

The concept of gut microbiome serving as a non-invasive 
diagnosis tool for specific diseases or cancer, including type 2 
diabetes (T2D)17 and colorectal cancer (CRC),18 has been estab-
lished by compelling studies. We previously established an accu-
rate patient discrimination index based on 15 gene biomarkers of 
the gut microbiome in 98 patients with cirrhosis and 83 healthy 
controls19 and demonstrated that gut microbial markers achieved 
a high classification power for pancreatic carcinoma (PC) by 
16S rRNA Miseq sequencing, suggesting microbial marker as a 
non-invasive diagnostic tool.20 However, the diagnosis poten-
tial of gut microbiome for HCC has not been evaluated. In this 
study, a total of 486 faecal samples from East China, Central 
China and Northwest China were prospectively collected. 
Finally 419 samples were enrolled and subjected to 16S rRNA 
Miseq sequencing. In the discovery phase, 75 healthy controls, 
40 patients with cirrhosis and 75 patients with early HCC with 
cirrhosis characterised gut microbiome and constructed diag-
nostic model for early HCC. Furthermore, the validation cohort 
and independent diagnosis cohorts were used to evaluate the 
potential of the gut microbiome as a non-invasive biomarker for 
HCC.

Material and methods
Participant information
The study was designed according to the principle of the 
PRoBE design (prospective specimen collection and retrospec-
tive blinded evaluation).21 It was performed in accordance with 
the Helsinki Declaration and Rules of Good Clinical Practice. 
The study was approved by the Institutional Review Board 

of the First Affiliated Hospital, School of Medicine, Zhejiang 
University (2014–334); the First Affiliated Hospital of Zheng-
zhou University (2017-XY-002) and the First Affiliated Hospital 
of Xinjiang Medical University. All participants signed written 
informed consents on enrolment.

A total of 486 faecal samples from East China, Central 
China and Northwest China were prospectively collected, and 
finally 419 samples were included and subjected to 16S rRNA 
Miseq sequencing. Participants’ demographics, clinicopatholog-
ical data, CT scan, histopathology images and diet habit were 
collected from hospital electronic medical records and ques-
tionnaires (online supplementary table S1). Detailed diagnostic 
criteria and inclusion and exclusion criteria of the participants 
are described in the online supplementary methods.

Faecal sample collection and DNA extraction
Each individual provided a fresh tail stool sample at 06:30–
08:30 hours. Each stool sample completed faecal routine testing. 
The sample was divided into five aliquots of 200 mg and imme-
diately stored at −80°C. DNA extraction was conducted as we 
previously described.22 23 The details are described in the online 
supplementary methods.

Stool moisture measurement
Stool consistency was assessed using stool routine testing results. 
Stool moisture content was determined in duplicate on the 
frozen homogenised faecal material (−80°C) as the percentage 
of stool mass loss after lyophilisation (Labconco FreeZone, 
LABCONCO, USA).24

PCR amplification, MiSeq sequencing and Sequence data 
process
Extracted DNA samples were amplified, DNA libraries were 
constructed and the sequencing was performed on an Illumi-
naMiSeq platform by Shanghai Itechgene Technology, China. 
Amplified reads were processed. The details are described in 
the  online supplementary methods. Raw Illumina read data 
for all samples were deposited in the European Bioinformatics 
Institute European Nucleotide Archive database under accession 
number PRJEB8708.

Operational Taxonomy Units (OTUs) clustering and taxonomy 
annotation
We randomly chose the reads from all samples with equal 
number, and OTUs were binned by the UPARSE pipeline.25 The 
details are described in the online supplementary methods. All 
OTUs for all samples in the discovery set, validation sets and 
independent diagnosis sets were collected. We annotated the 
sequences using RDP classifier V.2.626 according to the devel-
oper’s documents (http://​rdp.​cme.​msu.​edu/​classifier/​class_​help.​
jsp#​conf), and all OTUs annotations are listed in the online 
supplementary table S2.

Bacterial diversity and taxonomic analysis
Bacterial diversity was determined by sampling-based OTUs 
analysis and presented by Shannon index, Simpson index and 
Invsimpson index, which was calculated using R program package 
‘vegan’.27 The details are listed in the online supplementary 
table S3. Principal coordinates analysis (PCoA) was conducted 
by R package (http://www.​R-​project.​org/) to display micro-
biome space between samples. The weighted and unweighted 
unifrac distances were calculated with the phyloseq package.28 

https://dx.doi.org/10.1136/gutjnl-2017-315084
https://dx.doi.org/10.1136/gutjnl-2017-315084
https://dx.doi.org/10.1136/gutjnl-2017-315084
https://dx.doi.org/10.1136/gutjnl-2017-315084
https://dx.doi.org/10.1136/gutjnl-2017-315084
http://rdp.cme.msu.edu/classifier/class_help.jsp#conf
http://rdp.cme.msu.edu/classifier/class_help.jsp#conf
https://dx.doi.org/10.1136/gutjnl-2017-315084
https://dx.doi.org/10.1136/gutjnl-2017-315084
https://dx.doi.org/10.1136/gutjnl-2017-315084
http://www.R-project.org/
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A heatmap of the identified key variables was completed by the 
Heatmap Builder.

Bacterial taxonomic analyses and comparison including bacte-
rial phylum and genus were conducted between two groups using 
Wilcoxon rank sum test. Faecal microbial characterisation were 
analysed by linear discriminant analysis (LDA) effect size (LEfSe) 
method (http://​huttenhower.​sph.​harvard.​edu/​lefse/) e/).29 Based 
on the normalised relative abundance matrix, features with 
significantly different abundances between assigned taxa were 
determined by LEfSe with Kruskal-Wallis rank sum test (p<0.05) 
and LDA was used to assess the effect size of each feature (LDA 
score (log10)=2 as cut-off value).30

OTU biomarker identification and probability of disease (POD) 
construction
We mapped reads from the discovery phase, validation phase 
and independent diagnosis phase against these represented 
sequences to generate the discovery OTU frequency profile, 
validation OTU frequency profile and independent diag-
nosis frequency profile, respectively. Wilcoxon test was used 
to determine the significance (p<0.05), based on which 57 
OTU biomarkers were selected for further analysis. Fivefold 
cross-validation was performed on a random forest model (R 
3.4.1, randomForest 4.6–12 package) with default parameters 
except for ‘importance=TRUE’ using the 57-OTU abundance 
profile of training cohort, including 75 healthy controls and 
40 patients with liver cirrhosis (assigned as non-HCC cohort) 
and 75 patients with HCC, as previously described.31 32 Using 
five trials of the fivefold cross-validation, we then obtained 
the cross-validation error curve. The point with the minimum 
cross-validation error was viewed as the cut-off point, and the 
cut-off value was determined via the minimum error plus the 
SD at the corresponding point. We listed all sets (≤30) of OTU 
markers with the error less than the cut-off value and chose 
the set with the smallest number of OTUs as the optimal set. 
POD index was defined as the ratio between the number of 
randomly generated decision trees that predicted sample as 
‘HCC’ and that of healthy controls. The identified optimal set 
of OTUs was finally used for the calculation of POD index for 
both the training and testing cohort. And the receiver oper-
ating characteristic (ROC) curve was obtained (R 3.3.0, pROC 
package) for the evaluation of the constructed models, and 
the area under the ROC curve (AUC) was used to designate 
the ROC effect. The detailed script of microbial marker iden-
tification and POD construction can be found in the online 
supplementary methods.

Statistical analysis
One-way analysis of variance was used to evaluate the differences 
among the three groups. Continuous variables were compared 
using the Wilcoxon rank sum test between both groups. Fish-
er’s exact test compared categorical variables. Statistical analyses 
were performed using SPSS V.20.0 for Windows (SPSS, Chicago, 
Illinois, USA).

Results
A total of 486 faecal samples from East China, Central China 
and Northwest China were prospectively collected. After a strict 
pathological diagnosis and exclusion process, 150 patients with 
HCC, 40 patients with cirrhosis and 131 healthy controls were 
included and randomly divided into the discovery phase and 
the validation phase (figure 1). In the discovery phase, we char-
acterised gut microbiome among 75 early HCC with cirrhosis, 

40 cirrhosis and 75 healthy controls and identified microbial 
markers and constructed HCC classifier by random forest model 
between the early HCC cohort and non-HCC cohort (cirrhosis 
and healthy controls). In validation phase, 56 controls, 30 early 
HCC and 45 advanced HCC were used to validate diagnosis 
efficacy of HCC classifier. Moreover, 18 patients  with HCC 
from Xinjiang and 80 HCC from Zhengzhou were served as 
independent diagnostic phase to verify the potential of the HCC 
classifier.

Characteristics of the participants
In the discovery cohort, clinical characteristics of the participants 
including age, gender and body mass index were matched among 
the three groups. Serum alpha-fetoprotein level was significantly 
increased in patients with early HCC versus controls and cirrhosis 
(table  1). Serum levels of alanine aminotransferase, aspartate 
aminotransferase, glutamyl transpeptidase, total bilirubin and 
direct bilirubin were markedly increased, while the concentra-
tions of total protein, albumin and platelets were significantly 
decreased in patients with early HCC versus controls (table 1).

Stool form scale and moisture
Stool consistency and moisture are strongly associated with gut 
microbiota richness and composition, enterotypes and micro-
bial markers.24 33 34 Thus, we first assessed stool form scale 
based on stool routine testing and measured stool moisture by 
lyophilisation assay on the frozen homogenised faecal mate-
rial (online supplementary table S4). Benefit from the unified 
sample collection protocol, stool character in all samples from 
the discovery cohort and validation cohort were soft. In stool 
colour, most of stool samples presented yellow and showed 
no significant difference among early HCC, liver cirrhosis and 
healthy controls in the discovery phase and among controls, 
early HCC, advanced HCC, Xinjiang samples and Zheng-
zhou samples in the validation phase (online supplementary 
figure S1). Moreover, in terms of stool moisture, there were 
no significant difference among early HCC, liver cirrhosis and 
healthy controls in the discovery phase, and among controls, 
early HCC, advanced HCC, Xinjiang samples and Zhengzhou 
samples in the validation phase (online supplementary figure 
S2).

Increased gut microbial diversity in early HCC
Rarefaction analysis based on the discovery cohort showed that 
estimated OTUs richness basically approached saturation in 
each group, and it was significantly decreased in liver cirrhosis 
(n=40) versus healthy controls (n=75) and was increased in 
early HCC (n=75) versus cirrhosis (figure 2A). Compared with 
the controls, faecal microbial diversity, as estimated by Shannon 
index, Simpson index and Invsimpson index, was significantly 
decreased in liver cirrhosis (p=0.0011, 0.0007 and 0.0007, 
respectively). In contrast, microbial diversity was markedly 
increased in early HCC versus liver cirrhosis (p=0.0234, 0.0068 
and 0.0068, respectively) (figure 2B–D).

Moreover, a Venn diagram displaying the overlaps between 
groups showed that 524 of the total 932 OTUs were shared among 
the three groups, while 564 of 843 OTUs were shared between 
the cirrhosis and early HCC (figure 2E). Notably, 90 of 932 OTUs 
were unique for early HCC. To display microbiome space between 
samples, beta diversity was calculated using weighted UniFrac, and 
PCoA analysis indicated a symmetrical distribution of faecal micro-
bial community among all samples (figure 2F).

http://huttenhower.sph.harvard.edu/lefse/
https://dx.doi.org/10.1136/gutjnl-2017-315084
https://dx.doi.org/10.1136/gutjnl-2017-315084
https://dx.doi.org/10.1136/gutjnl-2017-315084
https://dx.doi.org/10.1136/gutjnl-2017-315084
https://dx.doi.org/10.1136/gutjnl-2017-315084
https://dx.doi.org/10.1136/gutjnl-2017-315084
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Figure 1  Study design and flow diagram. A total of 486 faecal samples from East China, Central China and Northwest China were prospectively 
collected. After a strict pathological diagnosis and exclusion process, 150 patients with HCC, 40 patients with cirrhosis and 131 healthy controls were 
included and randomly divided into the discovery phase and validation phase. In the discovery phase, we characterised gut microbiome among 75 
early HCC with cirrhosis, 40 cirrhosis and 75 healthy controls and identified microbial markers and constructed HCC classifier by random forest model 
between the early HCC cohort and non-HCC cohort (cirrhosis and healthy controls). In validation phase, 56 controls, 30 early HCC and 45 advanced 
HCC were used to validate diagnosis efficacy of HCC classifier. Moreover, 18 patients with HCC from Xinjiang and 80 HCC from Zhengzhou served as 
independent diagnostic phase. HCC, hepatocellular carcinoma. 

Phylogenetic profiles of faecal microbial communities in early 
HCC
Phylotypes with a median relative abundance larger than 0.01% 
of total abundance were included for comparison. To identify 
key OTUs phylotypes in early HCC, OTUs abundance were 
analysed by Wilcoxon rank-sum test with Benjamini-Hochberg 
method. A total of 110 OTUs were identified as key lineages for 
early HCC, and their abundance and distribution are shown in 
the online supplementary figure S3 (online supplementary table 
S5).

Bacterial phyla of Bacteroidetes, Firmicutes and Proteo-
bacteria, together accounting for up to 90% of sequences on 
average, were the three dominant populations in three groups 
(figure 3A). Faecal microbial composition in each sample from 
three groups at the phylum and genus levels are presented in 
the online supplementary figure S4A,B. Average composition of 
bacterial community at the phylum and genus levels are shown 
in the figure 3A and B, respectively.

Compared with liver cirrhosis, phylum Actinobacteria was 
significantly increased in early HCC (p=0.0049, figure  3C, 
online supplementary table S6). Correspondingly, 13 genera 
including Gemmiger, Parabacteroides and Paraprevotella were 
enriched in early HCC versus liver cirrhosis (all p<0.05, 
figure  3D, online supplementary table S7). Compared with 

controls, phylum Verrucomicrobia was decreased in early HCC 
(p=0.0348, figure 3E). At the genus level, 12 genera, including 
Alistipes, Phascolarctobacterium and Ruminococcus were signifi-
cantly decreased, while 6 genera, including Klebsiella and 
Haemophilus were increased in early HCC versus controls (all 
p<0.05, figure 3F,G, online supplementary table S8). Moreover, 
bacterial difference at the phylum and genus levels between 
liver cirrhosis and controls were compared and are shown in the 
online supplementary figure S5A–C.

To identify specific bacterial taxa associated with early HCC, 
we compared faecal microbiota using LEfSe. A cladogram 
representative of faecal microbial structure and their predomi-
nant bacteria displayed the greatest differences in taxa between 
liver cirrhosis and early HCC (all p<0.05, online supplemen-
tary figure S6). Meanwhile, the cladogram of faecal microbial 
structure between early HCC and healthy controls also showed 
the greatest differences in taxa (all p<0.05, online supplemen-
tary figure S7), which suggested gut microbial dysbiosis in early 
HCC.

Identification of microbial OTUs-based markers of early HCC
To illustrate the diagnostic value of faecal microbiome for early 
HCC, we constructed a random forest classifier model that 

https://dx.doi.org/10.1136/gutjnl-2017-315084
https://dx.doi.org/10.1136/gutjnl-2017-315084
https://dx.doi.org/10.1136/gutjnl-2017-315084
https://dx.doi.org/10.1136/gutjnl-2017-315084
https://dx.doi.org/10.1136/gutjnl-2017-315084
https://dx.doi.org/10.1136/gutjnl-2017-315084
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Table 1  Clinical characteristics of the enrolled participants in discovery phase

Clinical and pathological 
indexes

Discovery (n=190) P values (Control vs 
eHCC) P values (LC vs eHCC)Control (n=75) LC (n=40) early HCC (n=75)

Age (year) 48.65±6.61 46.95±5.6 49.67±8.56 0.419 0.073

Gender 

 � Female 21 (28%) 9 (22.5%) 15 (20%) 0.339 0.811

 � Male 54 (72%) 31 (77.5%) 60 (80%)

BMI 23.0±2.33 22.4±1.39 22.8±2.04 0.561 0.222

AFP (ng/m L) 

  ≤20 75 (100%) 30 (75%) 40 (53.3%) <0.001 0.028

  >20 0 (0%) 10 (25%) 35 (46.7%)

Tumour size (cm)

  ≦2 – – 22 – – 

 � 2<&≦5 – – 53 – – 

Tumour differentiation

 � I-II – – 52 (69.3%) – – 

 � III-IV – – 23 (30.7%) – – 

Child-Pugh

 � A – 40 (100%) 74 (98.7%) – 0.463

 � B – 0 (0%) 1 (1.3%) – 

ALT (5–40 U/L) 21.2±10.0 31.1±10.9 44.9±53.4 0.0002 0.111

AST (8–40 U/L) 22.3±5.19 31.1±10.2 43.4±38.3 <0.0001 0.048

GGT (11–50 U/L) 22.7±14.2 30.3±18.6 59.6±49.7 <0.0001 0.0005

Total protein (64.0–83.0 g/L) 74.4±3.3 79.7±36.9 67.2±5.8 <0.0001 0.005

Albumin (35.0–55.0 g/L) 48.5±2.7 48.1±2.6 38.7±5.1 <0.0001 <0.0001

Globulin (20.0–35.0 g/L) 25.9±2.7 31.5±36.9 28.5±4.9 <0.0001 0.486

Total bilirubin (μmol/L) 13.8±5.4 16.6±10.1 17.9±9.2 0.001 0.481

Direct bilirubin (μmol/L) 4.7±1.8 5.8±4.8 7.4±4.3 <0.0001 0.066

Prothrombin time (12–14 s) ND 12.9±0.9 12.6±1.4 – 0.187

Platelets (83–303 10E9/L) 217.7±53.4 245.9±49.3 139.2±69.7 <0.0001 <0.0001

Aetiological factors NO HBV HBV – – 

Dietary habit Mixed diet Mixed diet Mixed diet

One-way analysis of variance was used to evaluate the difference among the three groups. Continuous variables were compared using Wilcoxon rank sum test between both 
groups. Fisher’s exact test compared categorical variables.
AFP, alpha-fetoprotein; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; CTP score, Child- Turcotte-Pugh score; eHCC, early HCC; GGT, 
glutamyl transpeptidase; HBsAg, hepatitis B surface antigen; HBV, hepatitis B virus; HCC, hepatocellular carcinoma; LC, liver cirrhosis; ND, no detection.

could specifically identify early HCC samples from non-HCC 
samples. To detect unique OTUs markers of early HCC, we 
conducted a fivefold cross-validation on a random forest model 
between 75 early HCC and 105 non-HCC samples (40 cirrhosis 
and 75 controls) in the discovery phase. The result indicated 
that the 30 OTU markers were selected as the optimal marker 
set (figure 4A). The relative abundance of the 30 OTUs markers 
in each sample from the discovery phase were presented (online 
supplementary table S9). The corresponding bacterial genera of 
the 30 OTUs markers are listed in the online supplementary 
table S10. The POD index was calculated using the identified 
optimal 30 OTUs set for both the discovery cohort (online 
supplementary table S11) and the validation cohort (online 
supplementary table S12).

In the discovery phase, the POD index achieved an AUC value 
of 80.64% with 95% CI of 74.47% to 86.8% between early HCC 
and non-HCC cohorts (figure 4B). The POD value was signifi-
cantly increased in the early HCC samples versus the non-HCC 
samples (p=1.5×10–14, figure  4C). These data suggested that 
the POD based on microbial OTUs markers achieved a powerful 
diagnostic potential for early HCC cohort from the non-HCC 
cohort.

Validation and independent diagnosis of microbial markers 
for HCC
In the validation phase, the 56 controls, 30 early HCC and 45 
advanced HCC were used to validate the diagnostic efficacy of 
the POD for HCC. Each POD of each patient was calculated and 
the corresponding values are shown in the online supplementary 
table S12. The average POD value was significantly increased in 
the 30 patients with early HCC versus 56 controls (p=2.2×10–

7, figure 5A), and the POD achieved an AUC value of 76.80% 
(95% CI 67.90% to 85.70%) between early HCC and controls 
(figure 5B), which validated a significant diagnostic potential for 
early HCC. To illustrate the specificity of the POD on HCC, 
we further enrolled patients with advanced HCC to validate the 
diagnostic potential. The result indicated that the POD value was 
significantly higher in the 45 patients with advanced HCC than 
that in the 56 controls (p=2.3×10–6, figure 5A), and the POD 
achieved an AUC value of 80.40% (95% CI 70.70% to 90.20%) 
between the advanced HCC and controls (figure  5C), which 
suggested an obvious diagnosis efficacy for advanced HCC.

In addition, to further confirm the diagnosis potential and 
subject range of the POD, 18 patients with HCC from Xinjiang 
(Northwest China) and 80 patients  with HCC from Zheng-
zhou (Central China) were served as independent diagnostics to 
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Figure 2  Increased faecal microbial diversity in patients with eHCC (n=75) versus patients with cirrhosis (n=40). (A) Shannon-Wiener curves 
between number of samples and estimated richness. The estimated OTUs richness basically approached saturation in all samples. Compared with the 
controls, faecal microbial diversity, as estimated by the Shannon index (B), Simpson index (C) and Invsimpson index (D), was significantly decreased in 
patients with liver cirrhosis (p=0.0011, 0.0007 and 0.0007, respectively). In contrast, microbial diversity was markedly increased in patients with eHCC 
versus patients with liver cirrhosis (p=0.0234, 0.0068 and 0.0068, respectively). (E) A Venn diagram displaying the overlaps between groups showed 
that 524 of the total richness of 932 OTUs were shared among the three groups, while 564 of 843 OTUs were shared between cirrhosis and eHCC. 
(F) Beta diversity was calculated using weighted UniFrac by PCoA, indicating a symmetrical distribution of faecal microbial community among all the 
samples. eHCC, early HCC; HCC, hepatocellular carcinoma; LC, liver cirrhosis; OTUs, Operational Taxonomy Units; PCoA, principal coordinates analysis.

verify the POD reliability. The average POD value was signifi-
cantly increased in the 18 HCC from Xinjiang (p=0.00021) and 
80 HCC from Zhengzhou (p=1.6×10–11) versus 56 controls 
(figure  5A), and the POD achieved an AUC value of 79.20% 
(95% CI 67.40% to 90.90%) between the 18 HCC from 
Xinjiang and controls (figure 5D) and an AUC value of 81.70% 
(95% CI 74.60% to 88.80%) between the 80 HCC from Zheng-
zhou and controls (figure 5E). These results indicated a powerful 
diagnostic efficacy of the POD based on microbial markers for 
patients with HCC from Northwest China and Central China.

Stool moisture is a key covariate in microbiome space and 
marker construction,24 33 thus we further combined the stool 
moisture with the 30 OTUs markers as key variables to construct 
the final POD model and compared the diagnosis potential of the 
two POD models among the different cohorts. In the discovery 
phase, the AUC values of the POD based on the 30 OTUs markers 
with or without moisture between early HCC and non-HCC 
cohorts presented no significant difference (online supplemen-
tary figure S8A). Notably, the POD values based on the 30 OTUs 
markers with or without moisture showed no obvious difference 
in the different cohorts from the discovery phase, validation 
phase or independent diagnosis phase (online supplementary 
figure S8B and figure S9). These results may be attributed to the 
uniform and consistent character of the tailed stool.

Furthermore, we compared diagnostic efficacy of our micro-
bial markers for HCC between female and male participants, 
and the results indicated no significant difference in the POD 
values between females and males from the different cohorts 
(online supplementary figure S10), suggesting that this model is 
still valid when focus on males or females.

Discussion
Our study is the first to report the successful diagnostic model 
establishment and cross-region validation of microbial OTUs 
markers for HCC, notably including large cohort data from three 
different regions of China. The concept of the gut microbiome 
serving as a tool towards targeted non-invasive biomarkers for 
specific diseases or cancer has been established by compelling 
studies. Qin et al identified and validated 60 000 microbial 
markers associated with T2D, demonstrating the usefulness of 
microbial markers for classifying T2D.17 Yu et al presented the 
metagenomic profiling of CRC faecal microbiomes to discover 
and validate microbial biomarkers in ethnically different 
cohorts, indicating an affordable non-invasive early diagnostic 
biomarkers for CRC from faecal samples.18 Our previous 
study looked at gut microbial alterations in liver cirrhosis in 
98 patients and 83 healthy controls and established an accurate 
patient discrimination index based on 15 microbial biomarkers, 
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Figure 3  Phylogenetic profiles of gut microbes among patients with eHCC with cirrhosis (n=75), patients with liver cirrhosis (n=40) and healthy 
controls (n=75). Composition of faecal microbiota at the phylum level (A) and genus level (B) among the three groups. The increased microbial 
community at the phylum level (C) and genus level (D) in eHCC with cirrhosis versus liver cirrhosis. The decreased microbial community at the phylum 
level (E) and genus level (F) in patients with eHCC with cirrhosis versus healthy controls. (G) The increased microbial community at the genus level 
in patients with eHCC with cirrhosis versus healthy controls. The box presented the 95% CIs; the line inside denotes the median, and the symbol ‘+’ 
denotes the mean value. eHCC, early HCC; HCC, hepatocellular carcinoma; LC, liver cirrhosis. 

indicating microbiota-targeted biomarkers as a powerful tool 
for liver cirrhosis diagnosis.19 We previously proposed that 
gut microbial variation might predict acute rejection in early 
phase and become an assistant therapeutic target to improve 
rejection after liver transplantation.22 Based on 16S ribosomal 
RNA, microbial gene used five OTUs could classify CRC from 
healthy samples in a cohort from the USA.35 Our recent study 
also demonstrated that based on 40 genera associated with PC, 
gut microbial markers achieves a high classification power by 
16S rRNA Miseq sequencing, suggesting microbial markers as a 
non-invasive diagnosis tool for PC.20

In our study, a total of 486 faecal samples from different regions 
of China were collected, and finally 419 samples were analysed 
using 16S rRNA Miseq sequencing. The optimal 30 specific 
OTUs markers for early HCC were identified by random forest 
models, and the POD based on the 30 OTUs markers achieved 

powerful classification potential for distinguishing early HCC 
from non-HCC cohort. Importantly, the POD based on micro-
bial markers validated significant diagnostic potential for early 
HCC and even advanced HCC. More importantly, the POD 
successfully achieved a cross-region validation of patients with 
HCC from Northwest China and Central China. The shared 
microbial markers between cohorts from East China, Central 
China and Northwest China suggest that even though different 
regional populations may have different microbial community 
structures, signatures of HCC-associated microbial dysbiosis 
could have universal features, which present a similar trend 
to the gut microbial distribution and characteristics of CRC.18 
These results indicated that gut microbiota-targeted biomarkers 
may become potential non-invasive tools for early diagnosis of 
HCC.
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Figure 4  Identification of microbial OTUs-based markers of early HCC by random forest models. To detect unique OTUs markers of early HCC, we 
conducted a fivefold cross-validation on a random forest model between 75 early HCC and 105 non-HCC samples (40 cirrhosis and 75 controls) in the 
discovery set. (A) The 30 OTUs markers were selected as the optimal marker set by random forest models. (B) The POD index achieved an AUC value 
of 80.64% with 95% CI of 74.47% to 86.80% between early HCC and non-HCC cohorts in the discovery phase. (C) The POD value was significantly 
increased in the early HCC samples versus the non-HCC samples (p=1.5×10–14). AUC, area under the curve; CV Error, the cross-validation error; HCC, 
hepatocellular carcinoma; OTUs, Operational Taxonomy Units; POD, probability of disease.

Figure 5  Validation and independent diagnosis of microbial markers for HCC. (A) Each POD of each participant from the different cohorts was 
calculated and the average POD values were compared between the controls and the other HCC cohorts in the validation phase and the independent 
diagnosis phase. (B) The POD achieved an AUC value of 76.80% (95% CI 67.90% to 85.70%) between early HCC and controls in the validation phase. 
(C) The POD achieved an AUC value of 80.40% (95% CI 70.70% to 90.20%) between the advanced HCC and controls in the validation phase. (D) The 
POD achieved an AUC value of 79.20% (95% CI 67.40% to 90.90%) between the 18 HCC from Xinjiang and controls in the independent diagnosis 
phase. (E) The POD achieved an AUC value of 81.70% (95% CI 74.60% to 88.80%) between the 80 HCC from Zhengzhou and controls in the 
independent diagnosis phase. AUC, area under the curve; HCC, hepatocellular carcinoma; POD, probability of disease.

Recent studies have reported that gut microbiota could 
promote HCC development through the microbiota-liver axis 
in animal models,15 16 while probiotics could suppress HCC 
growth by modulating gut microbiota in mice.36 This study 
is the first report to illustrate gut microbial characteristics in 
patients with early HCC. We found that faecal microbial diver-
sity was decreased from healthy controls to cirrhosis, but it was 
increased from cirrhosis to early HCC with cirrhosis. These 
results indicated a significant global shift in gut microbiota from 
cirrhosis to HCC and the altered microbial community might 
play an important role during HCC initiation and development. 
During the development along the colorectal adenoma–carci-
noma sequence, the gut microbiome richness was increased in 

colorectal carcinoma versus adenoma.32 Thus, greater richness 
or diversity in the bacterial community is not a sign of a healthy 
gut microbiota in our cohort, but likely suggested the overgrowth 
of various harmful bacteria or archaea in patients with HCC.

Gut microbial alteration in chronic diseases including T2D,17 
inflammatory bowel diseases,37 38 colorectal adenoma–carci-
noma sequence32 and liver cirrhosis23 is unique for each disease. 
Different diseases display relatively characteristic microbial 
profile.19 Gut microbiota presented a moderate dysbiosis, 
presenting a decrease of butyrate-producing bacteria and an 
increase in various opportunistic pathogens in patients  with 
T2D.17 In patients  with early HCC in our study, the genera 
Ruminococcus, Oscillibacter, Faecalibacterium, Clostridium IV 
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and Coprococcus, belonging to butyrate-producing bacterial 
families39 were decreased, while Klebsiella and Haemophilus, 
producing lipopolysaccharide (LPS), were increased compared 
with controls. As the major energy source of the intestinal 
mucosa, butyrate is considered an important regulator of gene 
expression, inflammation, differentiation and apoptosis in host 
cells and plays a key role in bacterial energy metabolism and 
gut health.40 Thus, the decrease in butyrate-producing bacteria 
may promote intestinal mucosal destruction, thereby contrib-
uting to HCC development. The increase in LPS initiates various 
pathophysiological cascades.41 High levels of LPS activate 
NF-κB pathway, produce proinflammatory cytokines (TNF-α, 
IL-6 and IL-1) and lead to liver inflammatory and oxidative 
damage,42 thereby promoting HCC development.15 Notably, the 
decrease of Verrucomicrobia is likely attributed to the decrease 
of Akkermansia in the early HCC. Akkermansia muciniphila is 
a Gram-negative anaerobic commensal that uses host-derived 
mucins as carbon and nitrogen source43 and promotes barrier 
function partly by enhancing mucus production. Akkermansia 
muciniphila is decreased during obesity and diabetes,44 45 and its 
daily administration can counteract the development of high-fat 
diet-induced obesity and gut barrier dysfunction.44 Plovier et al 
further indicate that a purified membrane protein from Akker-
mansia muciniphila or the pasteurised bacterium improves 
metabolism in obese and diabetic mice.46 Recovery of ethanol-in-
duced Akkermansia muciniphila depletion ameliorates alcoholic 
liver disease.47 In short, the decrease of bacteria protecting intes-
tinal mucosa and barrier function (butyrate-producing bacteria, 
Akkermansia and so on), and the increase of LPS-producing 
bacteria in the early HCC, together contributed to HCC devel-
opment. These data imply that the changed gut microbiota may 
represent a potential target to monitor and prevent HCC devel-
opment by the gut-microbiota-liver axis.

We have demonstrated characteristic changes in the gut 
microbiota in early HCC across a large clinical cohort, illus-
trated crucial bacterial candidates that may contribute to HCC 
development, identified specific microbial markers and validated 
their diagnostic efficacy in the three cohorts from three different 
regions of China. Thus, we propose that gut microbiota-targeted 
biomarkers may become potential non-invasive tools for early 
diagnosis of HCC. Systematic investigation of the key bacte-
rial genus or species by metagenomic sequencing may further 
improve the diagnostic value for HCC. The combination of 
microbial markers and currently used diagnostic approaches may 
further benefit HCC populations. The validation of gut micro-
bial markers in much larger cohorts from different ethnic popu-
lations or different countries may further promote the efficacy 
and stability of HCC diagnosis. The ultimate goal would be to 
identify faecal microbial markers with strong diagnostic power 
to detect early HCC, which may further achieve early diagnosis 
and early therapy for HCC.
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