Table 3.
Hazard ratios and p-values from bivariate Cox regression analyses
T3-4 | N3 | Diam | Gender | Peak | GTV | MTV | TLG | ZMP | HPV | ||
T3-4 | - | <0.001 | 0.05 | 0.3 | 0.6 | 0.006 | 0.005 | 0.005 | 0.005 | 0.005 | T3-4 |
- | 8.8 | 9 | 2 | 1.4 | 10 | 10.2 | 10.2 | 7.3 | 5.9 | ||
N3 | 0.6 | - | 0.1 | 0.04 | 0.4 | 0.1 | 0.1 | 0.1 | 0.2 | 0.007 | N3 |
0.7 | - | 2.7 | 4.1 | 0.6 | 2.9 | 2.7 | 2.7 | 2.6 | 5.4 | ||
Diam | 0.3 | 0.003 | - | 0.4 | 0.7 | 0.1 | 0.06 | 0.06 | 0.04 | 0.01 | Diam |
0.3 | 6.6 | - | 1.7 | 1.3 | 3.7 | 3.7 | 3.7 | 3.9 | 4.9 | ||
Gender | 0.7 | <0.001 | 0.03 | - | 0.6 | 0.007 | 0.004 | 0.006 | 0.004 | 0.008 | Gender |
1.3 | 12.2 | 3.7 | - | 1.5 | 5.1 | 5.9 | 5.3 | 5.7 | 5.8 | ||
Peak | 0.8 | <0.001 | 0.03 | 0.3 | - | 0.008 | 0.008 | 0.008 | 0.003 | 0.005 | Peak |
1.2 | 9.9 | 3.9 | 2 | - | 5 | 5.1 | 5.1 | 7.4 | 5.8 | ||
GTV | 0.2 | 0.009 | 0.5 | 0.2 | 0.7 | - | 0.4 | 0.3 | 0.1 | 0.02 | GTV |
0.3 | 5.5 | 1.6 | 2.1 | 1.3 | - | 2.6 | 2.6 | 3 | 4.5 | ||
MTV | 0.2 | 0.01 | 0.3 | 0.1 | 0.8 | 0.5 | - | 0.6 | 0.1 | 0.01 | MTV |
0.3 | 5.2 | 2 | 2.6 | 1.2 | 2.2 | - | 2.3 | 3 | 5 | ||
TLG | 0.2 | 0.01 | 0.3 | 0.2 | 0.9 | 0.4 | 0.6 | - | 0.2 | 0.01 | TLG |
0.3 | 5.2 | 2 | 2.2 | 1.1 | 2.4 | 2.3 | - | 2.9 | 5 | ||
ZMP | 0.4 | 0.02 | 0.2 | 0.2 | 0.3 | 0.2 | 0.2 | 0.2 | - | 0.01 | ZMP |
0.5 | 5.1 | 2.3 | 2.3 | 0.5 | 2.7 | 2.9 | 2.7 | - | 5 | ||
HPV | 0.7 | 0.001 | 0.1 | 0.9 | 0.7 | 0.05 | 0.02 | 0.02 | 0.01 | - | HPV |
1.2 | 7.1 | 2.7 | 1 | 1.3 | 3.4 | 4 | 4 | 4.6 | - | ||
T3-4 | N3 | Diam | Gender | Peak | GTV | MTV | TLG | ZMP | HPV |
GTV, gross tumor volume; HPV, human papilloma virus; MTV, metabolic tumor volume; SUV, standardized uptake value; TLG, total lesion glycolysis.
The abscissa signifies the p-value and hazard ratio of a parameter (column) when paired with a variable on the ordinate (row). That is; e.g. the bivariate model of N3 combined with T3–T4 is significant (p < 0.001) for N3 stage and non-significant (p = 0.6) for T stage. Factors that are significant in univariate and bivariate analysis are coded in blue. Yellow signifies pairs of values where both are significant in univariate analysis but only one value is significant in bivariate analysis.