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Abstract

Unregulated private wells in the United States are susceptible to many groundwater contaminants. 

Ingestion of nitrate, the most common anthropogenic private well contaminant in the United 

States, can lead to the endogenous formation of N-nitroso-compounds, which are known human 

carcinogens. In this study, we expand upon previous efforts to model private well groundwater 

nitrate concentration in North Carolina by developing multiple machine learning models and 

testing against out-of-sample prediction. Our purpose was to develop exposure estimates in 

unmonitored areas for use in the Agricultural Health Study (AHS) cohort. Using approximately 

22,000 private well nitrate measurements in North Carolina, we trained and tested continuous 

models including a censored maximum likelihood-based linear model, random forest, gradient 

boosted machine, support vector machine, neural networks, and kriging. Continuous nitrate 

models had low predictive performance (R2 < 0.33), so multiple random forest classification 

models were also trained and tested. The final classification approach predicted < 1 mg/L, 1 – 5 

mg/L, and ≥5 mg/L using a random forest model with 58 variables and maximizing the Cohen’s 

kappa statistic. The final model had an overall accuracy of 0.75 and high specificity for the higher 

two categories and high sensitivity for the lowest category. The results will be used for the 

categorical prediction of private well nitrate for AHS cohort participants that reside in North 

Carolina.
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1. Introduction

Nitrate (NO3
-) is an essential plant nutrient, but it is also a widespread contaminant of 

groundwater and surface water across the United States. Important anthropogenic sources 

include nitrogen fertilizers, animal and human waste, and atmospheric deposition of nitrogen 

oxides from fossil fuel combustion(Katz et al., 2009; Messier et al., 2014; Nolan and Hitt, 

2006). In the United States, two-thirds of U.S. coastal systems are moderately to severely 

impaired due to nutrient loading (Davidson et al., 2012). Ecological impacts include but are 

not limited to eutrophication of surface waters, reduction in biodiversity, and harmful algal 

blooms leading to hypoxic (low oxygen) waters and fish kills (Davidson et al., 2012).

When ingested, nitrate undergoes chemical transformations in the gastrointestinal tract that 

may result in the formation of harmful N-nitroso-compounds (NOC), many of which are 

potent animal carcinogens and teratogens (International Agency for Research on Cancer, 

2010). In a review of the evidence for nitrate and nitrite ingestion and cancer, the 

International Agency for Research on Cancer (IARC) concluded that nitrate and nitrite are 

probable human carcinogens when ingested under conditions that increase the formation of 

NOC (International Agency for Research on Cancer, 2010). The U.S. Environmental 

Protection Agency (EPA) maximum contaminant level (MCL) for nitrate in public drinking 

water supplies is 10 mg/L NO3-nitrogen (N), which is similar to the World Health 

Organization (WHO) guideline of 50 mg/L as NO3 (equivalent to 11.3 mg/L NO3-N). These 

regulations were based on prevention of infant methemoglobinemia (blue baby syndrome), 

an acute and potentially fatal condition. Other health risks from drinking water nitrate 

ingestion including cancer and adverse reproductive outcomes (Ward et al., 2018) were not 

considered in the development of the regulatory limits.

It is estimated that 14 percent of the US population use private wells as their primary 

drinking water source, while approximately 35 percent of North Carolina residents utilize 

private wells as their household water source (Maupin et al., 2010). Of the US population 

with self-supplied private wells, 7 percent exceed the MCL for nitrate based on a national 

study (Dubrovsky et al., 2010). In agricultural areas across the US, about 22 percent of 

private wells exceed the nitrate MCL (Dubrovsky et al., 2010). Private wells are not 

regulated and measurement data are sparse; therefore, understanding the spatial extent of 

nitrate contamination through modeling approaches is pertinent to protecting the health of 

private well users.

The Agricultural Health Study (AHS) is a prospective cohort of approximately 90,000 

licensed pesticide applicators (mostly farmers) and their spouses residing in Iowa and North 

Carolina. The AHS was initiated to study agricultural exposures and risk of multiple health 

outcomes including cancer, nonmalignant respiratory disease, thyroid disease, and other 

chronic health effects. About 60 percent of the cohort used private wells as their drinking 

water source at enrollment in 1993–1997. To evaluate the risk of cancer and other health 

effects in relation to nitrate concentrations in private wells, retrospective estimates of 

exposure are needed.
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Messier et al. (2014) developed separate non-linear regression plus Bayesian Maximum 

Entropy (BME) models for both monitoring and private wells; however, predicting 

continuous nitrate concentration in private drinking water wells proved more difficult 

compared to monitoring wells, likely due to the high proportion of measurements that were 

below the detection limit. More recently, machine learning approaches have been used to 

predict environmental contaminants. In a study directly pertaining to the Agricultural Health 

Study, random forest models were used to predict nitrate levels in private drinking water 

wells among the Iowa participants (Wheeler et al., 2015). In groundwater, Ayotte et al. 

(2016) used boosted regression trees to predict the probability that arsenic exceeds the MCL 

and Tesoriero et al. (2017) used a random forest model to predict nitrate in private drinking 

water wells in Wisconsin. Gemitzi et al. (2009) used neural networks to predict groundwater 

nitrate in Greece with high fidelity.

In the current study, the aim was to extend the efforts of Messier et al. (2014) to develop a 

private well groundwater nitrate model in North Carolina for use in predicting drinking 

water nitrate exposures for the remaining AHS participants. This study is needed because 

additional machine learning modeling approaches and geographic covariate data may 

improve upon the previous study’s results thereby reducing the exposure misclassification. 

First, continuous models, including a suite of machine learning approaches (e.g. random 

forest), for private well groundwater nitrate were developed and assessed for their out-of-

sample test set prediction. Next, classification prediction models were fitted to predict 

categories of nitrate concentrations in order to help improve prediction performance. This 

study demonstrates an approach applicable to many environmental exposure assessments in 

which a series of modeling methods are tested against independent, hold-out datasets in 

order to achieve the best possible predictions.

2. Methods

2.1. Nitrate Data

Groundwater nitrate measurements reported as nitrate-nitrogen (NO3-N) from private wells 

(N=22,059) were collected and maintained by the North Carolina Department of Health and 

Human Services (NC-DHHS). Data were obtained by Messier et al. (2014) and used here for 

the years 1990 through 2011. Geographic coordinates were determined through address 

geocoding using a multistage process described previously (Messier et al., 2012).

The private well data that we used were collected by the NC-DHHS as part of state 

requirements for private well testing for new home purchases, other real estate transactions, 

and voluntary testing by homeowners. Since routine ambient monitoring or research studies 

were not the purpose of compiling this dataset, the chemical analytical method used to 

quantify nitrate concentration had a high detection limit of 1 mg/L. Consequently, out of the 

22,059 private well samples, 15,304 (69.4 percent) of the samples were below the detection 

limit. We estimated nitrate concentrations below the detection limit by imputing below 

detect observations from a log-normal distribution of uncensored nitrate data using Tobit 

regression models with no covariates (Lubin et al., 2004).
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The hydrogeologic units in North Carolina are variable. The inner coastal plains region is 

generally characterized by sandy, sedimentary, shallow aquifers with high hydraulic 

conductivity, low organic carbon, and interspersed with small impermeable confining units 

(Kennedy and Genereux, 2007; Winner Jr. and Coble, 1996). The outer coastal plains have 

poorly drained soils and high organic carbon content (Tesoriero et al., 2004). Moreover, well 

depths in the coastal plains can vary substantially, which results in neighboring wells 

withdrawing water from different groundwater units, such as one well withdrawing from a 

surficial aquifer and one from a confined aquifer. In the Piedmont and Blue Ridge 

(mountains) regions of North Carolina, impermeable and fractured igneous and 

metamorphic rocks predominate, which contributes to additional heterogeneity and low 

water yields compared to the coastal plains (Daniel III and Dahlen, 2002).

2.2. Geographic Covariates

2.2.1. Kriging of Well Depths—A limitation of our dataset was that well depth 

information was not available for water quality measurements; however, a separate database 

(i.e., the U.S. Geological Survey, National Water Information System [NWIS]) containing 

private well construction information for data distributed across the entire state, was used to 

estimate well depths for sampled wells used in this study (U.S. Geological Survey, 2018). 

While well construction information is available from NWIS, a listing of specific wells is 

not presented here owing to their proprietary nature (i.e., private residential wells). Readers 

should contact B.T. Nolan for more information. The mean depth was 95 feet (ft; ~ 30 m) 

with a standard deviation of 109 ft (~ 33 m). Wheeler et al. ( 2015) and others (Nolan and 

Hitt, 2006; Ransom et al., 2017) found well depth to be an important predictor of 

groundwater nitrate concentrations, therefore the well construction database was used with 

ordinary kriging to predict well depth as a candidate geographic covariate in models 

described later.

The well depth kriging analysis was conducted using BMElib (Christakos et al., 2002; Serre 

and Christakos, 1999) software in MATLAB (MathWorks Inc., Natick, USA). Well depth 

was log-transformed for the covariance and kriging analysis, which reduced the skewness 

from 2.48 to −0.13. A two-component exponential model was fit to model the spatial 

covariance of well depth:

C(r) = C01exp − 3r
a1

+ C02exp − 3r
a2

, (1)

where r is the isotropic distance between well locations, C01 = 0.26 (log-meter)2 is the first 

component covariance, C02 = 0.33 (log-meter)2 is the second component covariance, a1 = 15 

m is the first component spatial range, and a2 = 99 km is the second component spatial 

range. The components of the kriging model capture both the local heterogeneity from 

topographic, soil, geologic, and built-environment variations and regional trends from large 

hydrogeologic units. A 10-fold cross-validation of the ordinary kriging model resulted in a 

mean prediction R2 of 0.41 and root mean squared prediction error of 0.59 log-meters.
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2.2.2. Covariate Descriptions—Geographic covariates representing sources, transport, 

and attenuation mechanisms of nitrate were constructed prior to model development 

(Messier et al., 2014; Nolan and Hitt, 2006; Wheeler et al., 2015). The candidate set 

included variables from Messier et al. (2014), plus additional variables calculated from the 

U.S. Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS) 

State Soil Geographic (STATSGO) soil data, agricultural land cover, and improved nitrogen 

fertilizer estimates (see SI). All explanatory variables have an inherent spatial distance 

parameter such as circular buffer radius or exponential decay range. Each variable is 

calculated with multiple distance parameter values because optimal distance is unknown a 

priori. The distance parameter values tested include 1000, 2000, and 5000 m. The candidate 

set of covariates is summarized below, with details and data available in the SI.

National Landcover Database (NLCD) categories for 2006 were calculated as a percent of 

each landcover type within a circular buffer. NLCD 1992 agricultural landcover types 

(Pasture/Hay, Row Crops, Small Grains, Fallow, and Orchards/Vineyards/Other) were 

aggregated into a single category and calculated as a percent within a circular buffer. On-site 

wastewater treatment plant variables, septic density and average nitrate loading, were created 

following the methods of Pradhan et al. ( 2007). Point sources associated with nitrogen 

releases were calculated as the sum of exponentially decaying contributions (Messier et al., 

2012). These included wastewater treatment plants, cattle farms, poultry farms, swine farms, 

swine lagoons, and waste treatment residual spray-fields. Mean slope in degrees and 

topographic wetness index (TWI) (Beven and Kirkby, 1979) were calculated within circular 

buffers. Population density was calculated within circular buffers from 2000 US Census 

block data assuming an even distribution of population per census block. Summed nitrate 

sources from 1992 annual farm and non-farm county fertilizer data (Mueller and Gronberg, 

2013) were apportioned to 1992 NLCD agricultural lands and calculated as Kg of N within 

circular buffers. The low value for range in depth to seasonally high water table was 

obtained from the STATSGO database and calculated as mean depth (feet) within circular 

buffers (USDA NRCS, 1994).

2.3. Modeling Approach

Our goal was to develop a model with the best possible out-of-sample prediction ability for 

AHS cohort participants. First, we started with continuous models of nitrate because they 

provide the best precision. Once the results for continuous models were evaluated, we then 

made a posteriori choice to develop and evaluate categorical models. Prior to model 

development, the dataset was randomly divided into training (70 percent) and test (30 

percent) sets. All subsequent models were developed on the training set while the test set 

remained independent and was used to quantify out-of-sample prediction accuracy.

2.4. Continuous Models

2.4.1. Censored Maximum Likelihood Regression—A censored maximum 

likelihood (ML) regression model was developed to test continuous out-of-sample prediction 

accuracy of groundwater nitrate while accounting for the large number of below detection 

observations. ML regression can directly account for the below detection values by 

modifying the likelihood equation, with the censored observations given by the cumulative 
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distribution function (CDF) evaluated at the detection limit (Helsel, 2005). The ML equation 

is:

ℒ(z x; β, σ2) = ∏
zi zi ≥ ti

f zi xi; β, σ2 * ∏
zi zi ≤ ti

F ti xi; β, σ2 (1)

where f(zi|xi;β,σ2) denotes the conditional probability distribution function (PDF) of log-

transformed (natural log) nitrate, zi, on the regression parameters β,σ2, and F(ti| xi;β,σ2) 

denotes the CDF of the distribution taken at the log of the detection limit ti, also conditional 

on the regression parameters. The parameters were estimated by minimizing the negative of 

the log-likelihood using MATLAB’s fmincon constrained minimization routine (MathWorks 

Inc., Natick, USA).

Model selection for the censored ML regression was conducted through a modified stepwise 

procedure (Messier et al., 2014; Raaschou-Nielsen et al., 2013), which adds variables while 

constraining physical significance (i.e. sources of nitrate are positive; attenuation of nitrate is 

negative), maintaining variance inflation (VIF) of variable in the model below 3, and 

selecting only one variable from a set of variables that differ only by their distance 

hyperparameter (i.e. buffer size; decay range). In the procedure, a null model was fit first and 

the sample-size-corrected Akaike information criterion (AICc) was calculated. Then, each 

candidate variable model was fit using a 5-fold validation procedure. The training set was 

divided into 5 approximately equal size sets. K-fold cross-validation was performed where 

the candidate model was fit on four folds and tested on the fifth and repeated until each K-

fold was used as the testing exactly once. The mean AICc was calculated to determine the 

overall fit for the model with the given candidate variable. At each iteration, the candidate 

variable with the lowest mean AICc was added to the model. This procedure continues until 

none of the variables added decrease the AICc by 5.

2.4.2. Machine Learning Methods—Several machine learning methods were 

considered for predicting continuous nitrate concentration using the covariates described 

above. The imputed below detection limit data were used for the continuous machine 

learning approaches. First, ensembles of different methods were fitted using the R package 

SuperLearner. The first ensemble included bagging, random forest, gradient boosted 

machine (GBM), support vector machine (SVM), and a neural network. These are popular 

machine learning methods that are available in the R computing environment. In this 

ensemble, bagging, GBM, and the neural network received 0 weight. The random forest 

received most of the weight (0.91 out of a total of 1). In a subsequent ensemble of a random 

forest and SVM, the random forest again received most of the weight (0.87). The smaller 

ensemble predicted slightly better (R2= 0.181) compared with the large ensemble (0.180) in 

the testing set.

Given these results, we next focused on tuning the random forest model using the R package 

caret. We tuned through 5-fold cross-validation a random forest with 500 trees for the 

number of variables to consider at each node and the minimum number of observations per 
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leaf. The best tuned random forest model had a better prediction score (R2 = 0.189) than the 

ensembles. As a comparison, we also tuned GBM and SVM models independently, which 

resulted in worse prediction scores for both GBM (0.168) and SVM (0.145). Due to the best 

overall predictive performance of the tuned random forest, we used it for the final 

predictions of continuous nitrate.

2.4.3. Kriging of Residuals—Geostatistical approaches such as kriging and Bayesian 

Maximum Entropy (BME) (Christakos et al., 2002; Christakos and Li, 1998; Messier et al., 

2012) have been used extensively to model the residual spatial variation from a primary 

model such as a land use regression (de Hoogh et al., 2018; Messier et al., 2014; Reyes and 

Serre, 2014) and random forest (Guo et al., 2015; Li et al., 2011). Here, we utilized a 

common geostatistical model in which the concentration of nitrate at a given location is a 

function of a spatially explicit mean trend, a spatially correlated error term, and an 

independent and identically distributed error (i.e. noise) term. The classical geostatistical 

approach models the mean trend as a linear combination of geographic covariates; however, 

we took the approach that the mean may be modeled as the best continuous model from the 

previous sections such as the censored maximum likelihood regression, support vector 

machine, or random forest. In practice, this results in a multistep process. First, we 

subtracted the best continuous model from observed nitrate in the training set. Then we 

perform ordinary kriging (using the geoR package in R) on the residuals. We utilized an 

exponential model with a nugget effect, which accounts for the spatially explicit error term 

and the independent error term, respectively. Next, we used the fitted kriging model and the 

residual training set to predict at the test set location. Finally, we added back the best 

continuous model mean trend at the test location to obtain the final predictions.

2.5. Classification Models

Given the high proportion of below detection data and the low R2 in predicting continuous 

private well nitrate in the testing set, we explored classification models that transformed the 

nitrate classifications into categories. Classification models may improve out-of-sample 

prediction accuracy in cases where a high proportion of the continuous distribution is 

observed in a small range or single value by reducing the overall variability (Li et al., 2011; 

Stein et al., 1988). We classified the observed nitrate into three categories: <1, 1 – 5, and ≥5 

mg/L and tuned random forest models with 500 trees for the number of variables to consider 

at each node using the R package caret. Due to the large proportion of observations falling 

into the first category and the propensity for classification models to overpredict for the first 

(lowest) category, we considered different agreement metrics and sampling strategies to 

achieve more balanced predictive performance across categories. We fitted models to 

maximize either overall accuracy or the Cohen’s kappa coefficient of agreement and tuned 

for the number of variables to consider at each node split. We used up-sampling and down-

sampling in the caret package, and a hybrid up-sampling and down-sampling approach 

(SMOTE) in the R package DMwR to create more balanced datasets for model fitting 

(Chawla et al., 2002). Up-sampling randomly samples so that replacement from the smallest 

class is the same size as the largest class and down-sampling randomly samples a data set so 

that all categories have the same frequency as the smallest class. The SMOTE algorithm is a 
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combination of over-sampling of the smallest class and under-sampling of the majority 

categories.

2.6. Model Fit Statistics

We compared the predictive models for continuous nitrate using R2 in the testing set. For 

categorical models, we compared the overall accuracy, Cohen’s kappa, sensitivity, and 

specificity for each category in the test set. Cohen’s kappa is a measure of classification 

accuracy that accounts for expected agreement based on random chance (Banerjee et al., 

1999). We also calculated the variable importance scores for the random forest models to 

give a measure of relative importance of the variables in predicting continuous and 

categorical nitrate.

3. Results and Discussion

3.1. Summary Statistics

Observed private well groundwater nitrate concentration (including imputed values for 

below the detection limits) median (mean) for the training and test sets were 0.43 (1.51) 

mg/L and 0.44 (1.56) mg/L NO3-N, respectively. Additionally, for data observed above the 

detection limit, the medians (mean) were 2.56 (4.26) mg/L and 2.60 (4.30) mg/L NO3-N. In 

total, 2.4 percent of the data were observed above the EPA MCL of 10 mg/L of NO3-N.

3.2. Continuous Model Results

3.2.1 Censored ML Regression—The censored ML regression model was tested 

using both normal and log-normal as the assumed likelihood distributions and the results 

were comparable. With an assumed log-normal distribution, the test set prediction R2 was 

0.08 indicating poor predictive performance. Despite the poor performance, the model 

selection procedure included geographic covariates that align with expectations such as 

swine waste lagoons with positive coefficients (i.e. nitrate source) and histosol soils with a 

negative coefficient (i.e. reducing nitrate via denitrification). The full model coefficients and 

standard errors are available in the supporting information (Table S1).

3.2.2. Random Forest—The best tuned random forest model had a test-set prediction 

R2 of 0.189. The most important variables in the model are plotted in Figure 1. The most 

important variables were all physically realistic and plausible representing sources, and 

transport and attenuation processes. The top 5 variables include percent hydrologic soil 

group B (i.e. moderately low runoff potential; between 50–90 percent sand and loamy sand) 

within a 5 km buffer, swine waste lagoons with an exponential decay range of 5 km, percent 

hydrologic soil group A (i.e. low runoff potential; typically, greater than 90 percent sand and 

gravel) within a 5 km buffer, percent agricultural land use within a 1km buffer, and percent 

deciduous forest (inversely related) within a 5km buffer.

3.2.3. Kriging of Residuals—The best continuous model in terms of test-set prediction 

R2 was the random forest model. We integrated this model into an ordinary kriging model, 

which further increased the test-set R2 of the random forest model to 0.33.
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3.2.4 Continuous Model Performance—Groundwater nitrate concentrations in 

private wells of North Carolina were found to be difficult to predict in independent test 

samples. Multiple natural and human-based factors contribute to the substantial 

heterogeneity observed in groundwater nitrate concentrations. In addition to the large 

anisotropic heterogeneity in North Carolina groundwater, private well depths also vary 

substantially. A major factor in well depth is the budgeted cost in well and casing 

construction. Confined aquifers generally contain older, less polluted groundwater, but 

drilling deeper and through confining layers to access confined aquifers is substantially more 

expensive. This highlights the importance of having measured well depths for predictions of 

groundwater contaminants such as nitrate. The lack of measured well depths associated with 

private well chemical measurements likely resulted in a substantial loss in predictive ability. 

Well depth is a useful proxy for redox conditions and groundwater age, two depth-related 

factors that strongly influence groundwater nitrate concentrations but are difficult to 

measure. Nitrate is less likely to occur in deeper groundwater because of reducing conditions 

and/or the predominance of older groundwater that predates the period of intensive N 

fertilizer use in the United States (1960s and later) (Tesoriero et al., 2005). Outputs from 

three-dimensional models of redox conditions and groundwater age improved prediction of 

groundwater nitrate in the Central Valley, California, when used as predictor variables in a 

gradient boosted model (GBM) (Ransom et al., 2017). Another major factor affecting the 

continuous nitrate prediction power was that private well nitrate measurements were derived 

from a chemical analytical technique with a minimum detection limit of 1 mg/L, 

substantially higher than the current best available methods (0.1 mg/L) and the methods used 

in Wheeler et al. (2015), which resulted in nearly 70 percent of the data observed below the 

detection limit.

Although the validation statistics are not directly comparable to Messier et al. (2014) (leave 

one out cross-validation compared to hold-out test set used here), we found that applying the 

new continuous model methods did not result in any substantial improvements. This finding 

highlights the difficulty in predicting continuous groundwater nitrate from a private well 

database, particularly without accompanying well depth measurements.

3.3. Categorical Model Results

The best tuned random forest for categories of nitrate considered 58 of the 120 variables at 

each node split. The fit statistics for the different modeling approaches are listed in Table 1. 

The max accuracy and max kappa approaches had similar performance, with slightly better 

accuracy and kappa found by maximizing kappa. Specificity was high for nitrate categories 

1–5 mg/L (category 2) and ≥5 mg/L (category 3), but low for category <1 mg/L (category 1). 

The opposite pattern was observed for sensitivity. As expected, the down-sampling and up-

sampling strategies produced sensitivity and specificity that were more balanced across 

categories of nitrate concentrations. Down-sampling produced more balance than up-

sampling, but at the cost of substantially decreased overall accuracy. With SMOTE, the 

overall accuracy was between that of up-sampling and down-sampling, but it produced a low 

sensitivity for category 1–5 mg/L without increasing balance in specificity. Among the 

sampling approaches, up-sampling was the best at increasing balance among categories 
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while minimizing the decrease in specificity of the highest exposure class and the decreases 

in sensitivity across categories.

The variable importance scores for the top 20 most important variables in the max-kappa 

model are plotted in Figure 2. Year, poultry, well depth, and agricultural land covariates were 

most important for predicting nitrate categories. Partial dependence plots with respect to the 

year are shown in the supporting information (Figure S1-S3). The 5–10 mg/L class shows a 

sharp increase after the year 2008, which may be due to increased private well sampling 

following implementation of a North Carolina state law requiring new private wells to be 

tested for chemical analytes. Partial dependence plots with respect to poultry agricultural 

variables are also shown in the supporting information (Figure S4-S6). The 5–10 mg/L class 

also shows a sharp increase as this covariate increases. The observed and predicted nitrate 

categories are mapped in Figure 3. The maps show that the predictions generally describe 

the overall observed pattern but underestimate the medium and high categories of nitrate in 

some areas. The predictions successfully identify regional trends such as the area in the 

southeast, where Duplin County and Sampson County (filled areas in Figure 3) had the 

largest concentration of observed high values. This is likely driven by the models 

emphasizing key explanatory variables such as agricultural fertilizer, confined animal 

feeding operations (CAFO), and forested land cover.

The under prediction of medium and high categories of nitrate is analogous to the under 

prediction of continuous nitrate concentrations for the private well model developed in 

Messier et al. (2014). They found the private well model was dominated by the below 

detection data, thus rarely predicted concentrations significantly above the detection limit. 

The regional low concentrations interspersed with fine-scale heterogeneity of high 

concentrations was also observed in previous studies of drinking water (Nolan and Hitt, 

2006) and recently recharged aquifers (Gurdak and Qi, 2012). The southeastern coastal 

region of North Carolina generally contains soil and subsurface conditions favorable towards 

denitrification, which is a likely factor for many low observed nitrate concentrations despite 

a large density of nitrate sources. Moreover, as mentioned previously, the well depth varies 

substantially, which contributes to the heterogeneity in observed nitrate concentrations. 

Additionally, the lack of measured well depths likely hampered the accuracy of the models.

The results from the categorical models highlight a valuable lesson in environmental 

exposure assessment modeling. By reducing the variability of the nitrate data to three 

categories, we were able to reduce the difficulties of the high proportion of non-detections 

and obtain better accuracy in out-of-sample predictions. This improvement comes at the cost 

of reduced numerical precision in the predictions, which in many cases, such as 

epidemiological analyses, may be a worthwhile trade-off.

3.4. Comparison with Iowa groundwater nitrate model

There were key differences between the Iowa nitrate prediction model (Wheeler et al., 2015) 

and the North Carolina private well model presented here. The Iowa model used available 

well depth data as a covariate and it was identified as an important predictor. Additionally, 

the Iowa model included covariates, which are not available in many states including North 

Carolina, describing aquifer texture and flow characteristics at depth, such as thickness of 
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fine-grained sediments above the well screen, the average and minimum thicknesses of fine-

grained sediments near wells, and average horizontal and vertical hydraulic conductivities. 

In North Carolina, the private well data were not directly linked with well depth 

measurements in the well construction database. Moreover, the North Carolina private well 

database’s primary purpose was not for regulatory or ambient monitoring, therefore the 

chemical analytical method had a higher detection limit than other available methods.

The more homogeneous hydrogeologic units underlying Iowa likely contribute to less fine-

scale nitrate variability and a greater ability to predict groundwater nitrate compared to 

North Carolina. North Carolina has 29 descriptive rock units with no formation except 

sedimentary rocks dominating in the coastal plains region (Schruben et al., 1994). 

Conversely, Iowa has 19 distinct rock units of which rocks of Middle to Upper 

Pennsylvanian and Upper Cretaceous ages dominate in overall coverage.

4. Conclusions

In this study, we developed and tested many different models for the prediction of private 

well nitrate in North Carolina with the goal of producing exposure estimates for the 

Agricultural Health Study cohort. The results were critical in assessing the out-of-sample 

prediction ability for private well nitrate concentrations since none of the AHS cohort have 

nitrate measurements. We will use the classification model based on maximizing kappa for 

the North Carolina AHS cohort participants since it has a high overall accuracy and overall 

agreement. The Iowa model developed by Wheeler et al. (Wheeler et al., 2015) may easily 

be converted to categorical responses for congruency with these results. Lastly, the 

categorical predictions of this study provide sufficient out-of-sample accuracy to provide an 

effective exposure assessment for the AHS cohort.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Variable importance for top 20 most important variables in random forest continuous model 

for nitrate (all predictor variables are defined in the SI).
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Figure 2. 
Variable importance for the random forest classification model that maximized the kappa 

agreement for three categories of nitrate (all predictor variables are defined in the SI)
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Figure 3. 
(Top) Max kappa classification model predictions from the tuned random forest model. 

(Bottom) Observed test set nitrate concentrations (mg/L NO3-N) in the three categories. The 

areas of Duplin County and Sampson County with high observed nitrate concentrations are 

highlighted with solid fill.
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Table 1.

Overall accuracy, kappa coefficient of agreement, and sensitivity and specificity for each of the three 

categories of nitrate (mg/L NO3-N) from the random forest in the testing set.

Sensitivity Specificity

Method Accuracy kappa < 1 mg/L 1 – 5 mg/L ≥5 mg/L < 1 mg/L 1 – 5 mg/L ≥5 mg/L

Max Accuracy 0.747 0.371 0.923 0.359 0.352 0.430 0.923 0.982

Max kappa 0.750 0.375 0.928 0.358 0.352 0.426 0.928 0.982

Down-sampling 0.576 0.268 0.584 0.543 0.611 0.772 0.721 0.849

Up-sampling 0.725 0.369 0.867 0.419 0.389 0.514 0.884 0.963

SMOTE 0.690 0.282 0.876 0.191 0.564 0.420 0.960 0.894
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