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Abstract

Purpose of Review: Experimental and analytical advances have enabled systematic, high-

resolution studies of humoral immune responses, and are beginning to define mechanisms of 

immunity to HIV.

Recent findings: High-throughput, information-rich experimental and analytical methods, 

whether genomic, proteomic, or transcriptomic have firmly established their value across a 

diversity of fields. Consideration of these tools as trawlers in “fishing expeditions” has faded as 

“data-driven discovery” has come to be valued as an irreplaceable means to develop fundamental 

understanding of biological systems. Collectively, studies of HIV-1 infection and vaccination 

including functional, biophysical, and biochemical humoral profiling approaches have provided 

insights into the phenotypic characteristics of individual and pools of antibodies. Relating these 

measures to clinical status, protection/efficacy outcomes, and cellular profiling data using machine 

learning has offered the possibility of identifying unanticipated mechanisms of action and gaining 

insights into fundamental immunological processes that might otherwise be difficult to decipher.

Summary: Recent evidence establishes that systematic data collection and application of 

machine learning approaches can identify humoral immune correlates that are generalizable across 

distinct HIV-1 immunogens and vaccine regimens and translatable between model organisms and 

the clinic. These outcomes provide a strong rationale supporting the utility and further expansion 

of these approaches both in support of vaccine development as well as more broadly in defining 

mechanisms of immunity.
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Introduction

The challenges that traditional vaccine development approaches have encountered in the face 

of a global epidemic point toward the value of novel experimental and analytical approaches 

in support of HIV vaccine research. Specifically, “systems serology”, a method devised to 

offer an unbiased and comprehensive assessment of the humoral immune response, is one 

such alternative for evaluating and guiding the development of vaccines. This approach aims 

to not only experimentally capture, but to analytically leverage, the incredible diversity of 

antibody activities and characteristics observed between subjects and within individuals that 

may relate to protection (1–3). Paired with machine learning tools, novel high-resolution 

experimental data offers an opportunity to reduce dependence on anticipated mechanisms 

and correlates of protection, and instead to broaden investigation to support development of 

a more fundamental understanding of the coordinated aspects of humoral immune responses 

and their importance. This toolkit offers the prospect of improving differentiation between 

candidate vaccines, understanding coordinated aspects of humoral immunity, and perhaps 

most critically for identifying aspects of the antibody response that serve as hallmarks, if not 

mechanisms, of protective immunity.

An interest in antibodies

Systems serology aims to effectively characterize and learn from the vast biodiversity in 

antibody profiles that result from antigenic exposure(s). To illustrate the merits of such an 

approach, consider that more unique antibody types likely exist in a single germinal center 

in a single subject than might reasonably be tested in years of passive infusion experiments. 

Thus, millions of individual antibodies, which may each differ in Fv and Fc character 

(Figure 1), can lead to a remarkable combinatorial diversity that may reveal critical insights 

into immune mechanisms of infection control. The diversity of solutions explored and the 

numerous interactions between components makes their parsing challenging, but results in a 

rich landscape which can be mined for valuable insights into antibody mediated anti-viral 

activities. Development of improved experimental and analytical frameworks in the 

characterization of serum constituents offers the prospect of developing both a more 

nuanced and a more complete understanding of mechanisms of immunity.

The focus on antibody responses stems from the importance of this aspect of adaptive 

immunity in accomplishing vaccine-mediated protection from infection (4). However, that 

many vaccines induce robust antibody responses but lack efficacy indicates that while the 

presence of pathogen-specific antibodies may be necessary, it is not sufficient, and there are 

specific qualitative attributes of some but not all antibodies that are associated with 

immunity. The proven ability of neutralizing antibodies to protect from infection establishes 

this qualitative attribute to be of particular importance (5). However, an accumulation of 

evidence from clinical and animal model studies suggests that other antibody attributes and 

activities can also meaningfully relate and mechanistically contribute to resistance to 

infection (6–8). In brief, despite distinct viral vectors and immunogens, diverse candidate 

vaccines have consistently identified a role for pathogen-specific binding antibodies, 

sometimes associated with individual anti-viral effector functions, as correlates of immunity. 

Passive transfer experiments have likewise supported a role for antibody activities other than 
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neutralization in some (9–12) but not all contexts (13, 14). Seeking to better understand the 

mechanism(s) of action of “binding” antibodies, their specific Fv and Fc characteristics, and 

their ability to be elicited and result in complete protection has been a major motivation in 

the development of expansive antibody profiling tools (summarized in (1, 2)).

The value in holistic assessment of antibody activity does not reside in the setting of HIV 

alone; it has been observed that for most approved vaccines, humoral response magnitude or 

even neutralization potency alone do not equate to protective immunity (4). Instead, across a 

variety of pathogens, evidence supports a critical role for numerous and diverse functional 

attributes of the antibody response, collectively referred to as antibody effector functions (6, 

15–23). The immune system explores diverse antibody variants that recognize diverse 

epitopes on diverse antigens, and couples this Fv domain diversity with Fc domain isotype, 

subclass, and glycosylation profile variation, which results in differences in interactions with 

innate immune receptors, such as Fc receptors (Figure 1). These receptors, some high 

affinity, some low affinity, some activating, some inhibitory, are variably expressed on innate 

immune effector cells poised to respond to the signal they receive from the antibodies bound 

to a pathogen or infected cell (15, 16). In this way, antibodies act at the intersection of the 

adaptive and innate arms of the immune system, providing an adaptive means to engage 

innate immune effector cells to clear pathogens and infected cells. Given that the activity of 

polyclonal antibody pools derives from the cumulative traits of the antibodies present, some 

which may collaborate and some which may compete with each other (24, 25), it is difficult 

to imagine an analytical approach more suited to deconstructing this mixture into 

components that can be related to relevant clinical, genetic, or functional characteristics than 

machine learning (ML). Just as polyclonal serum antibody neutralization profiles can be 

deconvoluted into components similar to known broadly neutralizing monoclonals (26, 27), 

qualitative attributes of the antibody Fc such as isotype, subclass, and glycosylation profile, 

drive differential effector function potency in ways that algorithms can reliably reconstruct. 

Statistically-principled analytical procedures are beginning to provide insights into antibody 

response profiles and relationships between features of the humoral response, functions of 

the humoral response, and outcomes of interest (Table 1); the remarkable combinatorial 

diversity of millions of individual antibodies of differing Fv and Fc character is beginning to 

reveal mechanisms of infection control.

Insights from clinical studies

Vaccine efficacy trials provide key opportunities to develop much-needed insights into the 

relationships between humoral response characteristics and infection outcomes. Diverse 

vaccine concepts have been evaluated, ranging from immunization with adjuvanted protein 

per VAX003 and VAX004, adenovirus-vectored HIV gene delivery as in HVTN 505, and 

combination prime-boost regimens, such as RV144. To date, only RV144 demonstrated 

efficacy, showing a modest but statistically significant reduction in the risk of infection 

among vaccine recipients as compared to controls (28). However, even for vaccines that are 

not efficacious, or for immunogenicity studies in which efficacy is not a primary endpoint, 

there may be opportunities to deepen our understanding of the response differences between 

infected and uninfected vaccine recipients. Case control studies conducted in these contexts 
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have defined virological, genetic, and immunological associations with risk of infection (29–

34).

“Inclusive excellence” in correlates analysis

Based on the identification of additional correlates in secondary and subsequent analyses (2, 

35–38), the case of the RV144 trial makes clear that if additional or alternative 

immunological response outputs had been considered, additional and/or alternative 

correlates may have been identified. Because these correlates serve as key beachheads 

downstream in vaccine research, our understanding of protective immunity benefits from 

inclusive data collection that captures the diversity of features that may impact the anti-viral 

profile of the humoral immune response. In theory, because it is possible that multiple 

mechanisms exist whereby protection from infection can be achieved, correlates have the 

potential to be local or global, serving as either narrow or broad indicators of efficacy across 

diverse regimens, immunogens, geographic, and genetic settings. Given the significant 

human and capital resources dedicated to preclinical and clinical vaccine evaluation, 

systematic and inclusive analysis of responses in vaccine studies can help to maximize the 

return on this investment for any given study, as well as enable robust meta-analyses across 

studies.

Promisingly, such broad evaluation of correlates, with hundreds or thousands of measured 

features of the response, has begun to demonstrate generalizability across different candidate 

vaccines (Table 1). For example, evaluation of an SIV vaccine comprised of an adenovirus 

prime and protein boost identified IgG antibodies specific to the HIV envelope protein that 

interacted with FcgRIIa, associated with monocyte-mediated phagocytosis activity, and IgA 

antibodies specific to envelope, which were associated with neutrophil-mediated 

phagocytosis (39). These correlates, and the specific model learned from this adenovirus 

vaccine study generalized to a second NHP immunization and protection study, an RV144-

like regimen that was found to protect against SHIV challenge (40). Further, two of these 

four correlates, monocyte-mediated phagocytosis and envelop-specific antibody binding to 

FcgRIIa, have now been observed to correlate with reduced risk of infection in the 

HVTN505 human vaccine study (41). In summary, broad experimental evaluation of 

humoral response combined with data mining supported identification of correlates of 

protection that transcend vaccine, regimen, challenge virus, and species.

Tradeoffs between scientific “bang” and statistical “buck”

Traditional correlates analysis approaches seek to accommodate competing objectives: they 

attempt to balance decreasing statistical power with the increased likelihood of identifying 

correlates of protection as more response variables are included for analysis. As an 

increasing number of potential correlates are evaluated, it becomes more likely that a 

biologically meaningful correlate will be considered, but also more likely that a response 

will happen to correlate with outcome by chance. While high confidence in the identified 

correlates requires statistical rigor, it is important to ensure that this standard does not 

unintentionally reduce the insights afforded by any given study. Though a necessary 

constraint to traditional correlates study design, predetermination of features to be used in 

correlates analysis also raises the risk of confirmation bias, which can be considered here to 
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reflect the tendency to prioritize assessment of response characteristics that are “expected” 

to relate to protection. Fortunately, alternative approaches have been developed to 

complement traditional correlates analysis, approaches that can provide equal analytical 

rigor in the context of richer datasets.

Defining Signatures of Immunity using Machine Learning

Robust, statistically principled analytical tools have emerged over the past two decades to 

define “rules” for relationships between variables by learning from patterns within 

comprehensive datasets (Figure 2). These analytical approaches, collectively referred to as 

machine learning (ML), have developed at the intersection of artificial intelligence and 

statistics. ML approaches are becoming as integral to the biological sciences as other fields, 

where, for example, they annotate the content of images, improve recommendations to 

consumers, and assist in digital assistant natural language processing. ML approaches offer a 

means to systematically identify “signatures” or patterns observed within data sets that 

appear reproducibly. Relevant to systems serology, these tools can be used to identify 

relationships across populations of subjects (42), among variable antibody pools (43), or 

differentially protected individuals (44). For example, they can define relationships between 

antibody activities (45), biophysical properties and degree of protection (39), or define types 

of antibodies that are either often or infrequently co-induced (43) (Table 1). Because 

generalizable patterns imply biological relevance, such “pattern finding” analyses offer the 

possibility of defining new mechanistic connections.

Unsupervised ML

Unsupervised analysis methods are often described as a means to let data self-organize. 

These approaches include clustering and principal component analyses, which provide an 

overall view of similarities and differences across a dataset (Figure 2). These “agenda-free” 

analysis methods can thereby further elucidate classes of responses and classes of 

responders. Understanding relationships between measured features of the immune response 

is also valuable in and of itself, as correlation is expected to result from co-regulation. For 

example, correlations have been observed between functionally potent IgG1 and IgG3 

responses, as well as between the more immunologically inert IgG2 and IgG4 subclasses 

(46). Linking this growing understanding of correlated aspects of the antibody response to 

transcriptional programs may extend these insights to define regulatory pathways associated 

with the generation of responses with these characteristics (44, 47, 48).

Supervised ML

In contrast, supervised approaches have an explicit goal: to use response data to learn 

predictive models for a given characteristic of interest. These methods seek to define how 

well a given dataset can inform accurate classification or regression predictions, and which 

measurements are responsible for these predictions (Figure 2). They leverage known 

examples to make extrapolations to unknown cases, seeking to reveal meaningful biological 

relationships by learning historical associations and trends. Further, these approaches rely on 

the presumption that in the biological setting, past performance will be an indicator of future 

results. Use of the humoral response profile to differentiate between clinical classes such as 

Pittala et al. Page 5

Curr Opin HIV AIDS. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



HIV controllers and progressors, between relatively susceptible or resistant subjects in 

challenge experiments, or between cases and controls are common applications (Table 1). 

These ML approaches can be used to model infection risk, such as predicting the number of 

challenges likely to result in infection, as well as to learn relationships between features, 

such as models of antibody functions developed from biophysical antibody features.

Semi-supervised ML

Though not yet explored in this context, semi-supervised approaches, which were developed 

to address situations in which class labels are definitively known only for a subset of the 

samples, may have significant value in human correlates studies. For a number of pathogens, 

human challenge experiments are unethical, and observing protection from infection is 

therefore dependent on real-world infectious agent exposures that may or may not occur. 

Accordingly, when response features between infected (cases) and uninfected (controls) 

subjects are compared, it is expected that the group of uninfected subjects will in fact be 

comprised of a mixture of individuals who were exposed and protected, some who were not 

exposed but would have been protected, and some “dilutive” subjects who were not exposed 

but would have been infected if exposed (the positive but unlabeled). For a marginally 

effective vaccine regimen such as RV144, a minority of participants were protected and the 

majority of samples among the control group are expected to dilute analysis. Semi-

supervised approaches offer the ability to use response data to infer the identity of these 

dilutive “positive unlabeled” subjects such that they could then be excluded from correlates 

analysis. It thereby offers the potential for higher confidence in the validity of identified 

correlates, and the prospect of identifying additional correlates. It will be interesting to 

evaluate and understand how this approach might be practically deployed on vaccine case 

control studies and to define the impact it might have on correlates analysis.

Using data to drive discovery

While there are legitimate reasons to disfavor overly complex analytical approaches, there 

are robust analytical means to identify whether a dataset is “too wide” (too many features, 

too few subjects), or a method “too powerful” (good at memorization), which can provide 

confidence that observations arise from biologically meaningful relationships rather than 

from chance occurrences. Complementary analytical tools capable of evaluating the quality 

of ML models from a statistical perspective have evolved alongside these learning 

algorithms and provide a means to establish confidence or impart skepticism (Figure 3).

Rigor and reproducibility

First, repeated cross validation can be employed to determine the sensitivity of either a 

model’s performance or the features the model relies on to changes in the samples used for 

training. Using this approach, a subset of the data is used to train the model and the 

remainder is left out in order to test the generalizability of the model. In this way, cross-

validation assesses the ability of the data to make predictions about unseen examples. It is 

important to note that because preclinical vaccine studies are often comprised of relatively 

small numbers of subjects, the simple act of omitting one, as would be done in “leave one 

out”, or omitting N subjects, as would be done in N-fold cross-validation, can cause a 
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feature with a significant relationship to a group or an outcome in the complete dataset to be 

dropped. Because such immune features are not sufficiently strong predictive indicators, 

they are unlikely to contribute to cross-validated models. Thus, in this way, cross-validated 

models can be more robust and rigorous than traditional statistical tests carried out on 

complete datasets.

Permutation tests, in which data labels are randomly shuffled prior to model building, can 

serve as a negative control for the computational analysis by setting a baseline benchmark 

for performance. Permutation randomizes the input data such that existing relationships are 

lost; understanding the quality of models learned from randomly scrambled data serves as a 

means to critically evaluate the potential biological significance of the model built on the 

actual data. If similarly well-performing models can be learned from scrambled data, then 

the validity of models learned from the actual data, or the appropriateness of the modeling 

approach, should be questioned. While it is expected in principle that randomized data will 

yield models with random performance, in practice, the likelihood of observing random 

performance is impacted by study size and data composition as well as the modeling 

approach, making permutation testing an important aspect of robustness testing.

Of course, further experiments serve as the most rigorous test of model validity. 

Confirmation in a validation cohort by repeating the original experiment with a new set of 

subjects is a gold standard that is not always feasible. Additionally, while good predictive 

performance in an independent validation cohort is consistent with expectations for 

mechanistically relevant relationships, because it can be observed independent of a causal 

relationship, this type of validation does not directly address mechanism. Other, more 

targeted types of follow-up experiments might be better suited to demonstrate mechanistic 

validity. For example, the biological validity of contributing features has been confirmed in 

depletion experiments in a number of studies (24, 39, 49).

The last area in which the rigor and reproducibility of ML analyses could perhaps be 

improved is data and code availability. Beyond the additional quality control and exploratory 

analysis that widespread data and code sharing would enable, easy access to shared 

resources will facilitate methodological consistency and increase analysis efficiency by 

reducing the collective coding resources spent addressing similar problems.

Challenges and Rewards in Application of ML to humoral response 

characterization

It has been our experience that diverse ML approaches can achieve consistent performance 

and rely upon consistent features, that models can perform similarly well as experimental 

replicates and much better than with randomized or control features, and that they can 

recapitulate known aspects of antibody immunobiology as well as define new ones (49, 50). 

However, models learned from humoral responses alone are expected not to perfectly 

capture outcomes, particularly for correlates studies, as anatomical, host genetic, viral 

genetic, and stochastic factors are also at play. The impact of these factors might be most 

easily appreciated from the non-uniformity of challenge outcomes among control (ie: sham-

immunized) subjects. Nonetheless, both model quality, the degree of agreement between 
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models and observations, and model utility, or biological validity, are important endpoints 

(Figure 4).

Choosing a method

While a wide range of ML methods are readily available for implementation, choosing the 

most applicable method requires answering a few fundamental questions about the modeling 

task and data. Firstly, choice of the best modeling method can depend on whether protection 

is treated as a discrete or continuous variable. When protection is treated as a discrete 

variable, such as infection status, classification approaches can be used to distinguish 

between different levels of protection. If protection is treated as a continuous variable (e.g., 

time to infection, viral load, etc.), regression approaches can be used to directly model the 

measurements of protection. Since regression approaches are capable of identifying small-

scale differences in protection, they are best suited for cases where the measurement has 

fine-grained variations. On the other hand, if the protection variable is multimodal, it may be 

easier to discretize the protection variable around the modes and perform classification (2, 

44). In studies involving multiple vaccine groups, classification approaches can also be used 

to distinguish between vaccine groups and identify vaccine-specific signatures. Furthermore, 

in studies with a sufficient number of samples per immunization group, modeling protection 

within each group can help identify vaccine-specific correlates of protection (39).

Considering response features

Though high-resolution antibody data offers an excellent opportunity for fine-grained 

exploration into mechanisms of protection, it also poses challenges in building useful ML 

models. The number of antibody properties or “features” that are profiled is often much 

higher than the number of subjects in vaccine studies, which results in a data matrix/tensor 

that is too wide, or “rank deficient”. Naïve modeling with such rank deficient matrices is 

likely to produce models that memorize (overfit) the data and use redundant features. 

Therefore, it is necessary to reduce the dimensionality of the matrix by employing 

techniques for feature filtering and feature selection (51). Feature filtering discards features 

that are too noisy or that do not meet certain quality criteria, which can be defined by 

domain experts and can be specific to the experimental approach used for generating the 

data. Feature filtering is typically performed on the data before applying an ML method, and 

can therefore be task-agnostic. Feature selection, in contrast, minimizes the redundancy 

among features employed by the model by discarding features that do not contribute 

significantly to protection. The threshold for determining the significance of contribution of 

features can be set by assessing its impact on the prediction performance. Hence, feature 

selection is also used as a technique to identify the most significant features contributing to 

protection. When data from multiple sources/experiments are used for modeling protection, 

it is important for the models to account for variations in such data. Performing data 

normalization and standardization before integrating data from different sources can help 

reduce the impact of such variation on modeling. Since the ability of the models to identify 

reliable correlates of protection is directly linked to the quality of the input data, it is 

essential to include a combination of data normalization, feature filtering, and feature 

selection techniques when training ML models.
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Modeling and Evaluation

A common challenge in using ML methods for modeling protection is determining the 

complexity of the model. Though complex methods tend to achieve higher prediction 

accuracy than simpler models, this improvement can come at the cost of interpretability. As 

more complex functions are used to better model the relationship between protection and 

data, the mode and extent of contribution by the features to protection can become unclear. 

In cases where interpretability and accuracy are equally important, a simple but accurate 

model with a straightforward methodology is preferable to a complex model with slightly 

better accuracy. Complex models also tend to employ more parameters than simpler models, 

and hence are more prone to overfitting the training data. Contrary to expectation, increasing 

the complexity of a model can sometimes reduce prediction performance, especially when 

data is limited. Choosing the complexity of the model is therefore a balancing-act between 

performance and interpretability.

The accuracy and credibility of an ML method are critical for establishing the mechanistic 

value of the resulting biological insights. Hence, it is important to evaluate and compare the 

predictive performance of the models using robust evaluation metrics. For example, metrics 

like balanced accuracy or receiver operating characteristic (ROC) curves provide a realistic 

estimate of classification performance even when class sample sizes in the data are skewed. 

While cross-validation is typically used to evaluate the predictive performance in vaccine 

studies with limited samples, it is also useful to provide an estimate of the variation in 

prediction performance. Beyond reporting the model performance, it is also essential to 

identify which features played a critical role in the model’s performance. While feature 

selection techniques are often used to identify the most important features, they may not 

fully represent the multiple pathways through which protection is achieved. For example, a 

feature selection technique may minimize redundancy in the model by selecting one feature 

from among a set that are equally predictive of protection. Therefore, identifying such co-

correlates via post-prediction analysis rather than reporting a single feature is key. This 

practice can reduce interpretive over-reliance on specific features that reflect or serve as a 

proxy for a broader group.

New Frontiers

Experimental resolution and throughput continue to improve generating more nuanced 

information as well as a growing subject diversity and overall number of functional and 

phenotypic profiles of humoral responses. For example, single cell transcriptomics and B 

cell sequencing have matured from methods appropriate for individual cases to more 

generalizable approaches (52, reviewed in 53). Coupling next-generation sequencing to 

mass-spectrometry of pathogen-specific antibody CDRs has provided a means to relate the 

antibody transcriptome to the proteome (54), and novel microfluidics platform-based 

analysis of secreted antibodies from single cells promises further high-resolution insights 

into the phenotypic and functional aspects of subjects’ humoral responses (55). Phage and 

microarray-based peptide libraries based on the virome (56, 57) have enabled significant 

insights into histories and impacts of viral exposures. Even the structural resolution at which 
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humoral responses can be defined has undergone dramatic improvements, as cryo-electron 

microscopy can now be practically deployed on polyclonal sera (58).

Concerning analytics, new algorithms are constantly being developed, though with a trend 

toward increasing complexity. As an illustrative example, neural nets and deep learning 

approaches are beginning to offer unparalleled insights into single cell transcriptional data 

(59, 60). These and other new approaches have the potential to result in similar 

enhancements to model performance in antibody characterization, though the considerations 

of accuracy versus interpretability outlined here apply. While there are reasons to suppose 

that such models may be more robust than singular correlates, they are less likely to lend 

themselves to “just so stories” about protection.

There are already clues about what the future of integrated data and a more holistic approach 

may have to offer. Studies evaluating the impact of the microbiome have driven intense 

interest in broader and unanticipated connections in immunology. Another such area in 

which this holistic approach seems to have taken root is the resurgent interest in 

understanding trained immunity (61–63). Studies of this concept, also referred to as 

“heterologous” immunity, reflect a growing appreciation that vaccination toward specific 

pathogens can alter aspects of the immune system relevant to other vaccines/pathogens.

Conclusion

Tools that enable comprehensive dissection of humoral immune responses have the potential 

to experimentally capture the vast biodiversity that exists within these responses, and use 

this data to analytically elucidate mechanisms of immunity. Using such “systems serology” 

approaches, immunologists have begun to define protective humoral response signatures in 

vaccinated and naturally infected subjects in HIV and other diseases. Recent evidence shows 

that systematic data collection and application of machine learning approaches can identify 

correlates that are generalizable across very distinct immunogens and vaccine regimens. 

Further, these machine learning-defined correlates have been shown to be translatable 

between model organisms and the clinic, providing a strong case for their utility and further 

advancement in support of vaccine development. We anticipate that systematic antibody 

profiling, particularly in combination with other -omics data types, will expand our 

understanding of the diversity of possible antibody responses, connect these responses to 

cellular mechanisms and pathways, and identify the key aspects of different immunization 

strategies that result in protection.
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Key points

• Comprehensive and unbiased analysis of immune responses can support data-

driven discovery.

• Machine learning tools offer a complementary approach to traditional 

correlates analysis.

• Statistically principled approaches to big data are beginning to define humoral 

mechanisms of vaccine-mediated immunity.
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Figure 1. Features of the antibody response.
The Ig variable domain (Fv), responsible for pathogen recognition, varies in terms of its 

antigen and epitope specificity, and the avidity, affinity, and breadth of recognition, as well 

as whether that recognition results in neutralization of infectivity. The constant, or 

crystallizable domain (Fc), responsible for innate immune recognition, varies in terms of its 

isotype, subclass, and glycosylation profile, which impact the antibody’s affinity for Fc 

receptors and the class(es) of Fc receptors able to interact. Image from doi:10.2210/

rcsb_pdb/mom_2001_9.
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Figure 2. Examples of humoral immune response analysis supported by machine learning.
Unsupervised methods (top) including principal component analysis (left), hierarchical 

clustering (center), and correlation networks (right) depict the main aspects of variation in, 

magnitudes of, and underlying relationships between humoral response features and 

subjects. Supervised methods (bottom) model how data can be used to predict parameters of 

interest, such as group (left), antibody activity (center), or challenge outcome (right).
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Figure 3. Evaluating model accuracy and robustness.
Left. In repeated cross-validation, data is split into different training and test sets. Models 

learned from training data are applied to the held-out test data. The example shown learns 

rules about ADCP activity from the extremes and applies these rules to the samples with 

intermediate activity. Center. Performance accuracy can be defined by characterizing the 

degree of agreement between model and observation for classification and regression 

models. Right. Permutation testing, in which the performance of randomized data is 

compared to actual data, offers a means to gauge model robustness. In this case, actual data 

can be used to model antibody activity with similar fidelity as the experimental data can be 

experimentally replicated, and significantly better than when models are learned from 

permuted data, or from control data, such as that relating to a different pathogen.
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Figure 4. Evaluating model quality and validity.
Left. Prediction quality, as defined by correlation coefficient between cross-validated 

models learned from actual (green) and permuted (black) data for a set of ten antibody 

effector functions (A-J). While performance varies considerably (0.2 < r < 0.9) for models 

learned from real data, permuted data consistently yields essentially random performance (r 

~0.1). Relationship between prediction quality and assay signal-to-noise, which suggests 

that models may be limited by performance characteristics of cell-based assays such as 

signal to noise (here) and assay reproducibility (50). Right. The biological validity of the 

models can be supported by prior knowledge, such as the reliance of NK activation 

predictions antibody types known to have these activities (IgG1 and IgG3) (49), and 

experimentally confirmed, such as by observing decreased activity when IgG3s are depleted 

(24).
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Table 1:

Examples of studies in which ML has been employed to derive insights into humoral immunity.

Species Observations Reference

Correlates of Immunity

Human Relationships between humoral response features and established correlates of reduced risk. (24, 64)

NHP Identification of correlates of vaccine efficacy. (39, 40, 44, 65–71)

Group Differences

Human Differences between subjects receiving different vaccines. (24, 64)

Differences in humoral response among controllers and progressors. (50, 72)

Differences in humoral responses among subjects who do versus do not develop broadly neutralizing 
antibodies.

(42, 73, 74)

Differences in humoral response observed among subjects differing by genotype. (43)

NHP Differences in humoral response among subjects immunized with different vaccines. (39, 40, 70)

Differences in humoral response among subjects immunized with different adjuvants. (44, 48, 65)

immune responses in male and female macaques in response to vaccination (75)

Differences in humoral response among subjects immunized by different routes. (39)

Antibody Activities

Human Biophysical features associated with diverse effector functions among vaccine recipients. (24, 45, 49, 76)

Biophysical features associated with diverse effector functions among HIV infected subjects. (43, 44, 46, 50, 77)

NHP Biophysical antibody features associated with diverse effector functions among vaccinated subjects. (39, 75)
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