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Purpose: Image-guided radiotherapy provides images not only for patient positioning but also for
online adaptive radiotherapy. Accurate delineation of organs-at-risk (OARs) on Head and Neck
(H&N) CT and MR images is valuable to both initial treatment planning and adaptive planning, but
manual contouring is laborious and inconsistent. A novel method based on the generative adversarial
network (GAN) with shape constraint (SC-GAN) is developed for fully automated H&N OARs seg-
mentation on CT and low-field MRI.
Methods and material: A deep supervised fully convolutional DenseNet is employed as the seg-
mentation network for voxel-wise prediction. A convolutional neural network (CNN)-based discrimi-
nator network is then utilized to correct predicted errors and image-level inconsistency between the
prediction and ground truth. An additional shape representation loss between the prediction and
ground truth in the latent shape space is integrated into the segmentation and adversarial loss func-
tions to reduce false positivity and constrain the predicted shapes. The proposed segmentation
method was first benchmarked on a public H&N CT database including 32 patients, and then on 25
0.35T MR images obtained from an MR-guided radiotherapy system. The OARs include brainstem,
optical chiasm, larynx (MR only), mandible, pharynx (MR only), parotid glands (both left and right),
optical nerves (both left and right), and submandibular glands (both left and right, CT only). The per-
formance of the proposed SC-GAN was compared with GAN alone and GAN with the shape con-
straint (SC) but without the DenseNet (SC-GAN-ResNet) to quantify the contributions of shape
constraint and DenseNet in the deep neural network segmentation.
Results: The proposed SC-GAN slightly but consistently improve the segmentation accuracy on the
benchmark H&N CT images compared with our previous deep segmentation network, which outper-
formed other published methods on the same or similar CT H&N dataset. On the low-field MR data-
set, the following average Dice’s indices were obtained using improved SC-GAN: 0.916 (brainstem),
0.589 (optical chiasm), 0.816 (mandible), 0.703 (optical nerves), 0.799 (larynx), 0.706 (pharynx),
and 0.845 (parotid glands). The average surface distances ranged from 0.68 mm (brainstem) to
1.70 mm (larynx). The 95% surface distance ranged from 1.48 mm (left optical nerve) to 3.92 mm
(larynx). Compared with CT, using 95% surface distance evaluation, the automated segmentation
accuracy is higher on MR for the brainstem, optical chiasm, optical nerves and parotids, and lower
for the mandible. The SC-GAN performance is superior to SC-GAN-ResNet, which is more accurate
than GAN alone on both the CT and MR datasets. The segmentation time for one patient is 14 sec-
onds using a single GPU.
Conclusion: The performance of our previous shape constrained fully CNNs for H&N segmentation
is further improved by incorporating GAN and DenseNet. With the novel segmentation method, we
showed that the low-field MR images acquired on a MR-guided radiation radiotherapy system can
support accurate and fully automated segmentation of both bony and soft tissue OARs for adaptive
radiotherapy. © 2019 American Association of Physicists in Medicine [https://doi.org/10.1002/
mp.13553]
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1. INTRODUCTION

Head and Neck (H&N) cancer is the fifth most common can-
cer diagnosed worldwide and the eighth most common cause
of cancerous death.1 H&N cancer is typically treated with
chemoradiotherapy. For the radiotherapy component, inten-
sity-modulated radiation therapy (IMRT) is preferred due to
its superior critical organ sparing and target dose homogene-
ity.2 Accurate delineation of organs at risks (OARs) is a pre-
requisite for high-quality IMRT and is usually performed
manually by oncologists and dosimetrists. The process not
only is tedious but also suffers from substantial intra- and
interobserver variabilities.3 The time-consuming process is
further challenged by the need to adapt H&N treatment plans
due to the interfractional changes commonly occur to these
patients.4 The anatomical changes can be observed in daily
cone beam CT (CBCT) images for patient positioning, but
better quality fan beam simulation CTs are commonly
acquired to more accurately assess the anatomical changes,
delineate the OARs, and perform dose calculation in off-line
adaptive radiotherapy planning. Recent advances in MR-
guided radiotherapy (MRgRT) provide H&N images with
superior soft tissue contrast on the daily basis,5 further paving
the path to online adaptive radiotherapy, where automated
segmentation of the OARs is more urgently needed.

A straightforward strategy to segment OARs is by per-
forming deformable registration between the established
H&N atlases and the target image. The OARs annotations in
the atlas can then be propagated to the target image. Due to
its potential to perform segmentation without user interaction,
atlas-based segmentation methods have attracted considerable
attention. Han et al.6 incorporated object shape information
from atlases and employed a hierarchical atlas registration for
H&N CT images segmentation. Bondiau et al.7 evaluated the
performance of atlas-based segmentation on the brainstem in
a clinical radiotherapy context. However, atlas-based methods
can be susceptible to anatomical variations, where additional
post-processing steps are required for refinement. Alterna-
tively, active shape or appearance model8,9-based segmenta-
tion methods can guide the surface formation by restricting
the segmentation results to anatomically plausible shapes
described by the pretrained statistical model10 and are com-
monly employed as post-processing techniques for atlas-
based methods. For example, Fritscher et al.10 combined sta-
tistical appearance models, geodesic active contours, and
multiple atlases to segment OARs in H&N CT images. Nev-
ertheless, without supervision, most of the model-based
methods are sensitive to initialization and insufficiently
robust to intersubject shape variations of OARs.11

Recently, methods based on deep learning, particularly the
convolutional neural networks (CNNs), have demonstrated
the potential for medical image segmentation, target detec-
tion, registration, and other tasks.12–20 Specifically for H&N
OARs CT segmentation, Ibragimov et al.21modeled the task
as multisegmentation subtasks and trained 13 CNNs. The
trained networks were then sequentially applied to 2D patches
of the test image in a sliding window fashion to locate the

expected H&N OARs, which were then refined using the
Markov random field algorithm. The patch-based segmenta-
tion method suffers from computational redundancy is
inefficient and unable to learn global features.22 The post-
processing step requires additional parameter tuning, prevent-
ing the process from being fully automated. Despite its
theoretical appeal, deep learning segmentation in the 3D
domain is still a largely unsolved problem. 3D CNN requires
substantially more training samples than their 2D counter-
parts, thus easily suffer from overfitting, vanishing-gradient
problem, and high computational cost.23 To overcome these
challenges, we developed a novel automated H&N OARs
segmentation method that combines the fully convolutional
residual network (FC-ResNet) with a shape representation
model (SRM). The SRM network trained to capture the 3D
OARs shape features were used to constrain the FC-ResNet.
We showed that superior H&N segmentation performance to
state-of-the-art methods could be achieved with the dual neu-
ral nets with a relatively small training dataset.24

In addition to CT, automated H&N segmentation was also
performed on MR images, which have a increasing impor-
tance in MR-guided radiation therapy that supports online
adaptive planning and delivery. Urban et al.25 proposed a
random forest classifier that incorporates atlas and image fea-
tures from multiparametric MR images for H&N OARs seg-
mentation. The study was limited to three soft tissue organs.
Kieselmann et al.26 took an atlas approach to segment the
parotids, spinal cord, and mandible on T1-weighted MR.
Other than the limited organs in these studies, they were
based on high-field diagnostic multiparametric MR images
while MR-guided radiation therapy more often relies on
lower magnetic fields and is more limited in variety of
sequences. To our best knowledge, there has not been an
automated segmentation study on the low-field H&N MR
images from MR-guided radiotherapy systems.

In this study, we aim to further improve the segmentation
performance from previous work and then test the improved
deep segmentation network on low-field MR images from
MRgRT.

2. MATERIALS AND METHOD

In this study, the shape constrained (SC) generative adver-
sarial network (GAN), which we refer to as SC-GAN, is used
to further improve the segmentation accuracy of the previ-
ously introduced SRM method. The overall architecture of
our proposed SC-GAN is illustrated in Fig. 1. SC-GAN con-
sists of three tightly integrated modules. A 3D fully convolu-
tional DenseNet is designed as the network for segmenting
H&N OARs. The Dice’s index is used to provide deep super-
vision on the DenseNet to alleviate the severe class imbalance
due to the small OARs size and improve its optimization
performance. Then, a pretrained 3D convolutional autoen-
coder-based shape representation model is employed as a reg-
ularizer in the training stage to strengthen the shape
consistency of predictions of the segmentation network with
its ground truth in the latent shape space. Inspired by the
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GAN,27 a CNN-based discriminative network is employed to
supervise and enforce the segmentation network to produce
more accurate predictions. With the coupling structure, the
segmentation network benefits from the shape constraint
from SRM and adversarial learning with the discriminative
network. Moreover, the proposed SC structure prevents GAN
from overfitting and make it more stable to train.

2.A. 3D Fully Convolutional DenseNet

U-Net28 architecture and its extensions29,30 are widely uti-
lized in medical image analysis. The U-net architecture com-
prises an analysis path that learns deep features of the input
and a synthesis path performs segmentation based on these
learned features. Skip connections allow high-resolution fea-
tures from the analysis path to propagate to the corresponding
layers in the synthesis path of the network, which improves
the performance significantly.16 Deeper networks learn more
representative features and result in better performance. How-
ever, more layers can significantly impede the propagation of
gradients, which is known as vanishing gradient.31 Deep
residual network32 partly addresses this problem by introduc-
ing skip connections bypassing each residual blocks, but then
the residual architecture can easily result in a large number of
redundant features to impede the information flow as these
connections are incorporated into networks by summation.23

Dense blocks33 are used in the analysis path of our seg-
mentation network by hierarchically extracting the abstract
representations of the input to facilitate gradients propagate
to preceding layers and improve the network performance.
Within each dense block, layers are directly connected with
all their preceding layers by concatenation, which is shown in
Fig. 2(a). In dense block, the size of the output channel for
each convolution layer is commonly referred to as the growth
rate k. In other words, the number of feature maps grows k
per layer. In our model, there are five dense blocks, each con-
sisting of four dense units with a growth rate of 12, where the
dense unit is regarded as one layer. Within each dense block,
one convolutional layer with a stride of 2 is used to reduce

the resolution of the feature volumes. To further limit the size
of the parameter space, bottleneck layers (convolution layer
with the 1 9 191 kernel) are employed to half the number
of feature volumes.

In the synthesis path of the segmentation network, feature
volumes are concatenated with the feature volumes from the
analysis path and then passed to the next localization block.
As illustrated in Fig. 2 (b), each localization block consists of
a 3 9 3 9 3 convolutional layer, which is followed by a
1 9 1 9 1 convolutional layer with half number of feature
volumes. Within each localization block, deconvolutional lay-
ers (stride 2) are employed for resolution restoration. In the
model, each convolutional layer is followed by batch normal-
ization (BN)34 and a rectified linear unit.35

Multiscale features fusion and the deep supervision tech-
nique are utilized in our proposed segmentation network to
integrate more fine details for accurate segmentation of small
organs (e.g., optical chiasm and optical nerves) and speed up
network convergence. Specifically, deep supervision22 is
employed in the synthesis path by integrating feature volumes
of different scales at different levels of the network. The fea-
ture volumes are combined via element-wise summation after
upscaling to the same image resolution using deconvolutional
layers to form the final predictions of the network. Deep
supervision serves as a strong regularization to boost gradient
back-propagation by guiding the training of the lower layers
in the network. The overall architecture of the proposed seg-
mentation network is illustrated in Fig. 3.

It is worth noting that the output channels for H&N
images correspond to different OARs. The architecture of the
segmentation network is adapted to better integrate into the
discriminative network and SRM. To satisfy the input chan-
nel size of SRM, combat potential difficulties in capturing
the shape characteristics of each organ separately, especially
small organs, and avoid being dominated by the predictions
when they are fed into the discriminative network, an addi-
tional 1 9 1 9 1 convolutional layer with the filter number
of 1 is employed on the multichannel output of the segmenta-
tion network. Consequently, the segmentation network has

FIG. 1. The overall structure of the proposed SC-GAN network. [Color figure can be viewed at wileyonlinelibrary.com]
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two outputs with different channel sizes. One single-channel
output is designated for the discriminative network and SRM
and the other multichannel output with each channel corre-
spondences to each H&N OAR for segmentation network. At
the testing stage, the multichannel output is employed as the
segmentation result for the H&N multiorgan image segmen-
tation task.

2.B. Shape representation model

Learning and incorporating the shape characteristics of
the OARs are of great importance when solving the image-
wise prediction problems.36 As shown in our previously
study,24 a SRM increases the robustness and stability of the
segmentation network without depending on an extensive
patient dataset. Here, we constructed a similar model and

employed it as prior information in the training stage of SC-
GAN.

Shape representation model predicts label maps from the
segmentation network and then encourages them to follow
the shape characteristics of the ground truth. Considering that
the stacked convolutional autoencoder can learn a latent rep-
resentation from the original input in the encoder, the encoder
is employed as SRM to encode the segmentation and the
ground truth. The architecture of SRM is illustrated in Fig. 4.

To better capture the latent shape characteristics of the tar-
get organs, SRM is trained on the binary shape masks of the
H&N OARs. In the training stage, the encoder block aims to
project it onto the latent shape representation space and then
obtain the higher order shape representation of the H&N
OARs, while decoder works on accurate reconstruction.
Thus, the SRM training objective function can be built as

(a)

(b)

FIG. 2. The structure of dense block and localization block. (a) Dense block. (b) Localization block. [Color figure can be viewed at wileyonlinelibrary.com]
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follows:

LSRM ¼ min
hs

ðLDiceðDðEðsÞÞ; sÞÞ (1)

where hSRM denotes all trainable parameters of SRM, E(�)
and D(�) represent encoder and decoder, respectively. LDice is
formulated as a Dice coefficient loss function. At the testing
stage, the shape representation loss between the predicted
segmentation S and the ground truth T is incorporated into
the objective function of the segmentation network to con-
strain its training and minimize the shape deviation between
S and T.

Different from the loss terms utilized in the previously
study,24 the reconstruction loss between D(E(S)) and the
ground truth T is removed from the objective function of
the segmentation network for the following reasons. First,
the segmentation network optimization can focus on the
voxel-level consistency (segmentation loss), latent shape
space consistency (shape representation loss), and higher
order spatial consistency (adversarial loss). Second, it was
determined that the reconstruction loss between D(E(S))
and the ground truth T contributes little to improve the

performance of the segmentation network due to the accu-
mulated error from the encoder, the decoder, and the seg-
mentation network.

2.C. Discriminative network

On par with the segmentation network, a CNN-based net-
work is employed as our discriminative network as shown in
Fig. 5. The discriminative network plays an adversarial role
to prompt the global-level field of view of the segmentation
network and strengthen the higher order spatial consistency
of its predictions.37 Our discriminator comprises four convo-
lutional layers with BNs, four max pooling layers, and one
fully connection layer. During training, the discriminative
network receives the image pair of original H&N image and
prediction from the segmentation network or the ground truth
with the same number of channels, outputs a single scalar
indicating whether the label map is from the segmentation
network or the ground truth. With the supervision from the
discriminator, the segmentation network is further prompted
to produce correct predictions.

FIG. 3. The architecture of the segmentation network. N represents the number of organs to be segmented. For concise illustration, batch normalization and recti-
fied linear unit are omitted from this figure. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 4. The architecture of shape representation model. [Color figure can be viewed at wileyonlinelibrary.com]
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2.D. SC-GAN

As illustrated in Fig. 1, our proposed SC-GAN consists of
three tightly integrated networks, shape representation model,
segmentation network, and discriminative network. Shape
representation model is pretrained with the ground truth of
the training dataset, then employed as a regularizer to con-
strain the predictions of the segmentation network during
training. The training process of our proposed SC-GAN fol-
lows the optimization procedure of the original GAN.27 The
objective of the original GAN is to minimize the probability
of the predictions by the generative network G to be recog-
nized while maximizing the probability of the discriminative
network D making a wrong decision.38 The objective func-
tion is defined as:

min
G

max
D

½Ez�pdataðzÞ½logDðzÞ�þEv�pvðvÞ½logð1�DðGðvÞÞÞ��
(2)

where z� pdataðzÞ denotes the true data samples, D(z) repre-
sents the probability that z came from the true data rather
than generated data. v� pv denotes the prior input noise of
generative network, while G(v) represents the generated data.

For multiclass segmentation task, the objective function is
formulated as follows:

L ¼ min
hS;hD

½ LSðSðXÞ; TÞ
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{segmentation network

� kadv½LDðDðX; SðXÞÞ; 0Þ þ LDðDðX; TÞ; 1Þ��|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
discriminative network

(3)

Here, kadv is set to keep the balance of adversarial learn-
ing. hs and hD represent the trainable parameters of the seg-
mentation network S and discriminative network D,
respectively. X and T denote the original H&N images and
ground truths, respectively. As for our proposed SC-GAN,
considering the integration of the shape representation loss
between the segmentations S(X) and T, and optimization of
the single-channel output and multichannel output from the
network S, the objective function of the proposed SC-GAN
thus is constructed as:

L¼min
hS;hD

½LSðSðXÞ1;T1ÞþLSðSðXÞN ;TNÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{segmentation network

þksrm LSRMðEðSðXÞ1;EðT1ÞÞÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{shape representation loss

�kadv½LDðDðX;SðXÞ1Þ;0ÞþLDðDðX;T1Þ;1Þ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
discriminative network

�

(4)

where E(�) represents encoder block in SRM. E (S(X)) and E
(T) represent the latent shape representation of the predictions
and the ground truths. S(X)1 and S (X)N denote the single-
channel output and multi-channel output, respectively. Simi-
larly, T1 and TN denote the single-channel ground truths (i.e.,
binary masks of the OARs) and multichannel ground truths
(i.e., categorized ground truths), respectively. ksrm is the weight
of the shape representation loss term used in the training stage.
To alleviate the severe class imbalance, the segmentation loss
Ls is formulated as a multiclass Dice coefficient loss, which
encourages the segmentation network to make right voxel-wise
class label predictions. Shape representation loss LSRM is for-
mulated as a cross entropy loss function. The third term LD is
a binary cross-entropy and defines as follows:

LD ¼ �½zlogz0 þ ð1� zÞlogð1� zÞ� (5)

where z and z
0
denotes the label and the output of the discrim-

inative networks.
Similar to the primary GAN, the optimization procedure

for our SC-GAN can be simultaneously decomposed into the
segmentation network optimization and the discriminative
network optimization, respectively.27

During training, the segmentation network attempts to
make right voxel-wise class label predictions that deceive the
discriminative network D as the ground truth. Therefore, the
segmentation network can be optimized by:

min
hs

½LsðSðXÞ1; T1Þ þ LsðSðXÞN ; TNÞ

þ ksrmLSRMðEðSðXÞ1Þ;EðT1ÞÞ
þ kadvLDðDðX; SðXÞ1Þ; 1Þ�

(6)

FIG. 5. The architecture of the discriminative network. [Color figure can be viewed at wileyonlinelibrary.com]
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The discriminative can be optimized by:

min
hD

½LDðDðX; SðXÞ1Þ; 0Þ þ LDðDðX; T1Þ; 1Þ� (7)

3. EXPERIMENTS

3.A. Experimental datasets and preprocessing

The performance of the modified segmentation network
SC-GAN was first benchmarked on the public database used
in the previous study. It is then applied to low-field 0.35T
H&N MRI images acquired on an MRgRT system (Meridian,
ViewRay, Oakwood Village, Ohio).

3.A.1. H&N CT Dataset

We tested our proposed method on the Public Domain
Database for Computational Anatomy (PDDCA) version
1.4.1. The original CT data were derived from the Radiation
Therapy Oncology Group (RTOG) 0522 study, a multi-insti-
tutional clinical trial led by Kian Ang.39 This dataset contains
48 patients CT volumes with anisotropic pixel spacing rang-
ing from 0.76 to 1.76 mm and an interslice thickness ranging
from 1.25 to 3.0 mm. Thirty-two of the 48 patients in the
database with the complete manual labeling of nine struc-
tures, including the brainstem, optical chiasm, mandible, par-
otid glands (both left and right), optical nerves (both left and
right), and submandibular glands (both left and right), were
used in this study. The test on a public database not only
helped us to develop the segmentation networks but also
placed the proposed method in a frame of reference that can
be cross-compared with competing segmentation methods.

3.A.2. H&N MRI Dataset

The H&N MRI dataset containing 25 H&N MRI volumes
with the manual labeling of the brainstem, optical chiasm,
larynx, mandible, pharynx, parotid glands (both left and
right), and optical nerves (both left and right) was used to test
the efficacy of automated segmentation using the proposed
method. The patient data were collected from UCLA hospital
under an Institutional Review Board (IRB) approved proto-
col. The image sequence is TrueFISP. The voxel size and
image resolution are 1.5 9 1.5 9 1.5 mm3 and 334 9

300 9 288, respectively.

3.A.3. Preprocessing

As preprocessing, we first normalized the CT and MRI
dataset, respectively, so each volume has zero mean and unit
variance. To further homogenize the data, reduce memory
consumption, and increase computational speed, all CT
H&N images were resampled to isotropic resolution of
1.5 mm3 9 1.5 mm3 9 1.5 mm3 and then cropped to keep
only the part of the patient with OARs relevant to the study,
resulting in a uniform matrix size of 144 9 144 9 112,

which was used for both training and testing. MRI images
were cropped to meet the uniform matrix size of
144 9 144 9 112 without any changes on the resolution
because they have the same resolution already.

The splits of training/testing for H&N CT and MRI images
are 22/10 and 15/10, respectively. Three subjects were each
held out from the CT and MR training set for independent
validation and fine tune of the hyperparameters.

3.B. Comparison algorithms

To illustrate the contributions of each module, we trained
two other networks for comparison in this study. The details
of the comparison networks are summarized in Table I. It is
worth noting that the architecture of FC-ResNet is same as
the FC-DenseNet with all of the dense blocks are replaced by
the residual blocks. The two networks were implemented on
Tensorflow 1.8.0 library on Python 2.7 using the same con-
figurations and datasets as SC-GAN-DenseNet.

3.C. Implementation details

We implemented the proposed method using Tensorflow.
The training of the SRM and SC-GAN took approximately 2
and 20 h, respectively, using an NVIDIA GeForce GTX 1080
GPU with 8GB memory with the mini-batch size of 1 for
SC-GAN and 4 for SRM. In the testing phase, the total pro-
cessing time of one 3D H&N scan of size 144 9 144 9 112
was 14 s, which was a significant improvement compared
with the conventional segmentation methods. Adam optimiz-
ers were utilized to optimize the three networks, respectively.
The learning rates for the segmentation network and the dis-
criminative network were initialized as lrs = 1e � 3 and
lrD = 1e � 4. Regarding SRM, the initial learning rate was
set tolrsrm = 5e � 4. To ensure that the discriminative net-
work sufficiently influences the segmentation network, the
initial learning rate employed in the discriminative network
lrD was smaller than lrS to slow down the convergence of the
discriminative network. lrs and lrD were divided by a factor
of 5 every 10 epochs when the validation loss stopped
improving to prevent overfitting. Moreover, an early stopping
strategy was also utilized if there was no improvement in the
validation loss after 50 epochs. The same decay strategy and
early stopping strategy were also performed on lrsrm and the

TABLE I. Summary of the trained networks.

Network
Segmentation

network
Discriminative

network

Objective function
for segmentation

network

SC-DenseNet FC-DenseNet / Ls + ksrmLSRM

GAN FC-ResNet CNN Ls + kadvLD

SC-GAN-
ResNet

FC-ResNet CNN LS + ksrmLSRM + kadvLD

SC-GAN-
DenseNet
(proposed)

FC-DenseNet CNN Ls + ksrmLSRM + kadvLD
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training of SRM. Additionally, the weights of shape represen-
tation loss term ksrm and adversarial loss term kadv in the
objective function were both set as 0.1 based on the perfor-
mance on the validation set.

3.D. Learning curves

There are 72,912 trainable parameters in SRM. However,
SRM is pretrained and does not need to be retrained during

FIG. 6. Learning curves of the discriminator, the generator (i.e., segmentation network), and the shape representation model. [Color figure can be viewed at wile
yonlinelibrary.com]

FIG. 7. Examples of the H&N CT segmentation results by generative adversarial network (GAN), shape constraint (SC)-DenseNet, SC-GAN-ResNet, and SC-
GAN-DenseNet. The first column shows the ground truth, the second, third, fourth, and fifth columns present the segmentation results by GAN, SC-DenseNet,
SC-GAN-ResNet, and SC-GAN-DenseNet, respectively. Brainstem (purple), optical chiasm (dark green), mandible (green), left and right optical nerves (orange
and light orange), left and right parotid glands (blue and yellow), left and right submandibular glands (pink and light green). The single, double, and blunt arrows
denote false-positive islands, undersegmentations, and mis-segmentations, respectively. [Color figure can be viewed at wileyonlinelibrary.com]
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the training of SC-GAN. GAN consists of a generator and a
discriminator. The numbers of trainable parameters in the
generator (i.e., FC-DenseNet) and the discriminator are
1,999,118 and 1,177,153, respectively. To address the scarcity
of the data available in this study, data augmentation, drop-
out layers, and early stopping strategies were adopted to pre-
vent overfitting. During training, each volume was rotated by
one of the three angles (90°, 180°, 270°) and randomly
scaled between 0.8 and 1.2 on the fly for data augmentation.
With data augmentation, we increase the number of the orig-
inal training date by fivefold. A dropout layer with the drop-
out rate of 0.3 was utilized in each convolutional layer in the
segmentation network and the discriminator to further
reduce overfitting. Additionally, learning rate decay and early
stopping strategies were utilized when the validation loss
stopped decreasing. The learning curves of SRM, segmenta-
tion network, and discriminator are shown in Fig. 6. The test
loss of the generator and SRM consistently decreases as the
training loss goes down, demonstrating that no serious over-
fitting is observed with such small datasets.

3.E. Evaluation metrics

For each test image, we used five evaluation metrics to
quantitatively evaluate the performance of the proposed
framework against manual segmentation. The segmentation
evaluation metrics are defined as below:

1. Dice Similarity Coefficient (DSC)40:DSC ¼ 2kA\Bk
kAkþkBk

2. Positive Predictive Value (PPV): PPV ¼ kA\Bk
kBk

3. Sensitivity (SEN): SEN ¼ kA\Bk
kAk

4. Average Surface Distance (ASD):

ASD ¼ 1
2

P
z2B

dðz;AÞ

jBj þ
P
u2A

dðu;BÞ

jAj

( )
:

5. 95%Maximum Surface Distance (95%SD): 95%SD is
based on the calculation of 95th percentile of the dis-
tances between the boundary points of A and B, which
is expected to eliminate the impact of a small subset of
incorrect segmentations on the evaluation of the over-
all segmentation quality.

In these metrics, A and B refer to the manual and auto-
matic segmentation, respectively. d(z, A) denotes the mini-
mum distance of voxel z on the automatically segmented
organ surface B to the voxels on the ground truth surface A,
d(u, B) denotes the minimum distance of voxel u on the
ground truth surface A to the voxels on the automatically seg-
mented organ surface B.

3.F. H&N CT segmentation results

3.F.1. Qualitative and quantitative evaluation

The qualitative and quantitative evaluation results on
PDDCA dataset are listed in Fig. 7 and Tables II and III,
respectively. It can be observed that SC-GAN-DenseNet T
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has achieved accurate segmentation on all nine CT H&N
OARs. Moreover, quantitative evaluation results in
Tables II and III illustrate that SC-GAN-DenseNet
consistently outperforms GAN, SC-DenseNet, and SC-
GAN-ResNet on all H&N OARs showing the benefits of
incorporating SRM, dense connectivity as well as adver-
sarial learning. As demonstrated in the second column in
Fig. 7 GAN without being constrained by SRM can lead
to false-positive islands and undersegmented OARs, which
are rectified by incorporating shape representation loss
between the prediction of the segmentation network and
ground truth as shown in the third column in Fig. 7. Fur-
thermore, leveraging the latent shape representation
learned by SRM, the predictions of the segmentation net-
work is robust to interpatient shape variations.

There are remaining mis-segmented volumes using
SC-GAN-ResNet due to the intrinsic limitations of
ResNet. By overcoming the limitation using dense
connectivity, the segmentation performance is further
improved using SC-GAN-DenseNet as shown in the
fourth column of Fig. 7.

3.F.2. Comparison with state-of-the-art methods

In Tables IV and V, we compare SC-GAN-DenseNet with
five state-of-the-art H&N segmentation methods based on a
hierarchical atlas,6 an active appearance model,41 a patch-
based CNN,21 a hierarchical vertex regression method,11 and
our previous study using SRM and FC-ResNet.24 It is worth
noting that the segmentation performance reported in
Ref.11,24,41 was evaluated on the same PDDCA dataset with
our proposed SC-GAN-DenseNet, which enables a direct
comparison. Moreover, the active appearance model-based
segmentation method41 proposed by Mannion et al. was the
winner of the MICCAI 2015 Head and Neck Auto Segmenta-
tion Grand Challenge. The experimental results in Tables IV
and V demonstrate that the proposed segmentation method
outperforms the conventional atlas-based, model-based, and
CNN-based method on the Dice’s index and segmentation
speed. Moreover, the paired Student’s t-test indicate that the
improvement between SC-GAN and SRM-FC-ResNet24

(P = <0.05) on 7 OARs are statistically significant, as indi-
cated by asterisks in Table IV. The comparison results with

TABLE III. Quantitative evaluation results on PDDCA dataset (ASD and 95%SD).

Organ

ASD (mm) 95%SD (mm)

GAN SC-DenseNet
SC-GAN-
ResNet

SC-GAN-
DenseNet GAN SC-DenseNet SC-GAN-ResNet

SC-GAN-
DenseNet

BS 1.50 � 0.24 1.51 � 0.37 1.46 � 0.43 1.41 � 0.31 3.85 � 0.61 3.98 � 1.08 3.81 � 0.90 3.62 � 0.75

OC 1.89 � 1.72 1.49 � 0.92 1.41 � 0.79 1.27 � 0.34 4.50 � 1.99 4.18 � 1.99 3.78 � 0.86 3.77 � 1.18

MA 0.80 � 0.79 0.68 � 0.55 0.54 � 0.12 0.55 � 0.14 2.17 � 1.08 1.88 � 0.59 2.19 � 0.72 2.09 � 0.63

LO 0.91 � 0.44 1.35 � 0.97 1.10 � 1.32 0.73 � 0.22 2.30 � 1.07 2.75 � 1.78 2.22 � 1.35 2.03 � 0.47

RO 1.90 � 1.41 1.00 � 0.15 1.12 � 0.53 0.78 � 0.16 2.80 � 1.21 2.93 � 1.47 2.36 � 0.16 2.09 � 0.41

LP 2.12 � 1.81 2.21 � 1.42 1.50 � 0.92 1.39 � 0.38 4.66 � 2.83 4.58 � 3.34 4.45 � 2.63 4.62 � 2.70

RP 2.41 � 2.81 2.00 � 0.27 2.09 � 1.57 1.40 � 0.37 4.47 � 2.84 4.29 � 3.18 4.23 � 2.17 3.80 � 1.10

LS 2.02 � 1.51 1.62 � 0.34 1.38 � 0.99 1.44 � 1.02 4.58 � 0.38 4.20 � 0.97 4.60 � 0.44 4.50 � 2.24

RS 3.52 � 2.66 2.23 � 1.13 1.91 � 1.27 1.56 � 0.55 4.63 � 2.74 4.74 � 2.84 4.05 � 1.42 3.95 � 2.72

BS, Brainstem; OC, Optic Chiasm; MA, Mandible; LO, Left Optic nerve; RO, Right Optic nerve; LP, Left Parotid; RP, Right Parotid; LS, Left Submandibular gland; RS,
Left Submandibular gland. Bold fonts denote the best performers.

TABLE IV. Comparison of segmentation accuracy between the state-of-the-art methods and our method (DSC %).

Organ/Method Han6 Mannion41 Ibragimov21 Wang11 Tong24
SC-GAN-DenseNet

(proposed)

Brainstem 82 87 � 4 Unavailable 90.3 � 3.8 86.97 � 2.95 86.72 � 2.92

Optical chiasm Unavailable 35 � 16 37.4 � 13.4 Unavailable 58.35 � 10.28* 59.16 � 9.76

Mandible 89 93 � 1 89.5 � 3.6 94.4 � 1.3 93.67 � 1.21 93.91 � 1.32

Left optical nerve Unavailable 63 � 5 63.9 � 6.9 Unavailable 65.31 � 5.75* 66.38 � 4.83

Right optical nerve Unavailable 63 � 5 64.5 � 7.5 Unavailable 68.89 � 4.74* 69.91 � 4.38

Left parotid 82 84 � 7 76.6 � 6.1 82.3 � 5.2 83.49 � 2.29* 85.49 � 1.78

Right parotid 82 84 � 7 77.9 � 5.4 82.9 � 6.1 83.18 � 1.45* 85.77 � 2.44

Left submandibular 69 78 � 8 69.7 � 13.3 Unavailable 75.48 � 6.49* 80.65 � 5.08

Right submandibular 69 78 � 8 73.0 � 9.2 Unavailable 81.31 � 6.45* 81.86 � 4.96

*The statistical significance (P < 0.05). Bold fonts denote the best performers.
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the SRM constrained FC-ResNet indicate that adversarial train-
ing and dense connectivity further benefit the segmentation
networks performance the in H&N multiorgan segmentation

task. The improvement in DSC using our method in compar-
ison to the model-based method,41 and the hierarchical vertex
regression method11 is not significant, but our segmentation is
two orders of magnitude faster.

3.G. H&N MRI segmentation results

Figure 8 and Tables VI and VII present the H&N MRI
qualitative and quantitative evaluation results, respectively.
Segmentation accuracies consistent with that on the PDDCA
CT dataset are observed with moderate differences between
organs related to different CT-MR contrast. For instance,
superior brainstem segmentation accuracy is achieved on MR
due to its better contrast in MR while mandible segmentation
accuracy is lower on MR due to the low bone signal.
Although the Dice’s index of the chiasm, optical nerves and
parotids SC-GAN-ResNet segmentations on the MR were not

TABLE V. Comparison of runtime between the state-of-the-art methods and
our method.

Method Runtime

Number of
H&N organs
segmented

Experimental
equipment

Han6 Over an hour per patient 9 CPU

Mannion41 30 min per image 9 CPU

Ibragimov21 4 min per image 13 GPU

Wang11 36 min per patient 1 CPU

Tong24 9.5 s per patient 9 GPU

SC-GAN
(proposed)

14 s per patient 9 GPU

FIG. 8. Examples of the H&N MRI segmentation results by generative adversarial network (GAN), shape constraint (SC)-DenseNet, SC-GAN-ResNet, and SC-
GAN-DenseNet. The first column shows the ground truth, the second, third, fourth, and fifth columns present the segmentation results by GAN, SC-DenseNet,
SC-GAN-ResNet, and SC-GAN-DenseNet, respectively. Brainstem (purple), optical chiasm (blue), larynx (orange), mandible (grass green), left and right optical
nerves (yellow and light blue), left and right parotid glands (pink and green), pharynx (blue). The single, double, and blunt arrows denote false-positive islands,
undersegmentations, and mis-segmentations, respectively. [Color figure can be viewed at wileyonlinelibrary.com]

Medical Physics, 46 (6), June 2019

2679 Tong et al.: Automated CT/Low Field MR Segmentation 2679

www.wileyonlinelibrary.com


better than on the CT, the 95%SD is still superior using the
MR. The comparison among GAN, SC-DenseNet, SC-GAN-
ResNet, and SC-GAN-DenseNet on the MR images is consis-
tent with the CT segmentation with SC-GAN-DenseNet
being the best in both Dice’s index and surface agreement,
followed by SC-GAN-ResNet, SC-DenseNet, and GAN.

4. DISCUSSION

In this work, we improved our previous shape representa-
tion model constrained segmentation network24 and devel-
oped a novel SC generative adversarial network (SC-GAN-
DenseNet) for H&N OARs segmentation. SC-GAN-Dense-
Net combines the advantages of the powerful (i.e., SRM) for
3D shape regularization, fully convolutional DenseNet for
accurate segmentation, and adversarial training for fast and
accurate multiorgan segmentation correcting segmentation
errors. Direct comparison among GAN, SC-GAN-ResNet,
and SC-GAN-DenseNet was conducted on both H&N CT
and MRI dataset and demonstrates that SC-GAN-DenseNet
can consistently achieve more accurate segmentation on a
total of 11 H&N OARs with varying sizes, morphological
complexities, and image contrast.

Compared with other state-of-the-art H&N segmentation
methods on public H&N CT PDDCA dataset, SC-GAN-Den-
seNet outperforms SC-GAN and atlas-based,6 CNN-based21

methods by a significant margin on both segmentation perfor-
mance and speed. The proposed SC-GAN-DenseNet segmen-
tation network also outperforms our previous segmentation
network using SRM-FC-ResNet.24 Although the segmenta-
tion performance using our method is not statistically differ-
ent than the model-based41 and hierarchical vertex regression
methods,11 our method is two orders of magnitude faster. We
consider the time difference critical in adaptive radiotherapy
applications.

The remarkable performance of SC-GAN is due to the fol-
lowing technical aspects that are worth discussing.

4.A. Segmentation network

Comparison of the segmentation results of SC-GAN-
ResNet and SC-GAN-DenseNet in Figs. 7 and 8 and
Tables II, III, VI, and VII reveals the contribution of fully
convolutional DenseNet. The segmentation accuracy of SC-
GAN-DenseNet consistently outperforms SC-GAN-ResNet
on all OARs, demonstrating the superiority of dense connec-
tivity to medical image segmentation tasks. Dense connectiv-
ity not only can boost information flow and gradients
propagation through the network but reduce network parame-
ters by allowing the network to reuse features efficiently. The
network thus becomes easier to train and less prone to over-
fitting even with a small training dataset.

4.B. Adversarial training

An additional loss function from the discriminative net-
work that distinguishes between ground truth and predictionT
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segmentation is incorporated into the objective function for
the segmentation network update. The comparison between
the segmentation results of shape representation model con-
strained FC-ResNet24 and SC-GAN-DenseNet in Table VI
indicates that adversarial training can further improve the per-
formance of the segmentation network. With adversarial
training, the network can capture the inconsistencies that
voxel-wise loss function cannot.

4.C. Shape representation model

The remaining mis-segmented volumes using SC-
GAN-ResNet are mainly due to the limitations of the
segmentation network. SRM is pretrained on the binary
masks of the ground truth in the dataset. Thus, with the
strong shape constraint from SRM, the segmentation net-
work can approximately distinguish the area being pro-
cessed is target organs or background. However, it is
difficult to make correct class label prediction in the
ambiguous areas. Furthermore, latent anatomy characteris-
tics learned by SRM can have a direct influence on the
segmentation network performance. When the testing
patient has substantially different anatomies, an incorrect
SRM may reduce the segmentation accuracy. A robust
categorized shape representation model, which potentially
needs modifications on the network architecture and more
patient data to train, is a key point for the future study.

As the central focus of this study, we evaluated the effi-
cacy of the improved segmentation network on the low-field
MR H&N data. Although in principle, MR provides superior
soft tissue contrast that should aid the automated segmenta-
tion, the low-field single-parametric MR images suffer from
low signal-to-noise ratio and substantial susceptibility arti-
facts due to metals and air cavities in this region. It is encour-
aging to demonstrate that good segmentation accuracy can be
achieved for a wide range of H&N OARs including the bony
structure. While the Dice’s index of the automated mandible
contour is lower on MR than on CT, the fully automated seg-
mentation is usable without additional manual edition as indi-
cated by the low average and 95% surface distances. It is

worthnoting that for low-field MR segmentation, SC-GAN-
DenseNet is the only method achieves 95%SD under 4 mm
for all organs. This low surface distance is important to
reduce the uncertainties in dose received by these organs. At
the same time, the benefit of superior soft tissue contrast is
demonstrated in the brainstem, optical nerves, chiasm, and
parotids in terms of better surface agreement. This result is
particularly important in the era of MR-guided radiotherapy
where 3D images with better soft-tissue contrast than CBCT
are available at the time of treatment.

5. CONCLUSION

We present a modified shape representation model
constrained DenseNet by adversarial training (i.e., SC-GAN-
DenseNet) for H&N multiple organs segmentation. By
combining the strengths of SRM, DenseNet, and adversarial
training, the novel SC-GAN-DenseNet is shown superior to
other state-of-the-art methods in accuracy and computational
efficiency using small training datasets. For the low-field MR
guidance images, SC-GAN-DenseNet was able to robustly
perform fully automated segmentation on a variety of organs-
at-risk, despite the low signal-to-noise afforded by this
modality.
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