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At the 2018 PancreasFest meeting, experts participating in basic research met to discuss the 

plethora of available animal models for studying exocrine pancreatic disease. In particular, the 

discussion focused on the challenges currently facing the field and potential solutions. That 

meeting culminated in this review that describes the advantages and limitations of both common 

and infrequently utilized models of exocrine pancreatic disease, namely pancreatitis and exocrine 

pancreatic cancer. The objective is to provide a comprehensive description of the available models, 

but also to provide investigators with guidance in the application of these models to investigate 

both environmental and genetic contributions to exocrine pancreatic disease. The content covers 

both nongenic and genetically engineered models across multiple species (large and small). 

Recommendations for choosing the appropriate model as well as how to conduct and present 

results are presented.
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1. Introduction

Pancreatitis and pancreatic cancer are highly variable diseases with a range of etiologies and 

disease courses. The use of animal models in the scientific exploration of these diseases is 

critical. Animal models are vital tools for understanding pathophysiology and they are a key 

step in the drug development pipeline as well as disease biomarker discovery. In general, it 

has been difficult to translate findings from animal studies into meaningful changes in 

clinical care. During the 2018 PancreasFest conference, a working group met to discuss the 

challenges with animal models. The goal of this report is to emphasize issues that should be 

considered when performing animal studies of exocrine pancreatic disease.

Choosing the most appropriate model for a study is contingent upon the specific question 

being asked, what aspects of the disease are relevant as well as the time and resources one 

has available (Fig. 1). This report introduces nongenic and genetic engineered models of 

pancreatitis and exocrine pancreatic cancer and identifies the key features of each model. In 

particular, it emphasizes the multiple factors contributing to inter-model and intra-model 

variability and their direct effects on the manifestation of disease.

2. Nongenic models

2.1 Pancreatitis

Pancreatitis is an umbrella diagnosis that includes sub-classifications such as acute, recurrent 

and chronic. It can be further characterized by the presence or absence of necrosis. Multiple 

non-genetic factors have been identified that increase the risk of developing pancreatitis or 

of more severe disease; some can be recapitulated in animals. For example, exposure to a 

specialized (high fat) diet, alcohol feeding, endoscopic retrograde cholangio-

pancreatography (ERCP), or duct obstruction can induce pancreatitis in animals in a manner 

similar to clinical pancreatitis in humans (Table 1). Models have been developed based on 

the known biological processes contributing to pancreatitis. For instance, acute pancreatitis 
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(AP) involves premature activation of trypsinogen within the pancreas. Administration of 

supraphysiologic concentrations of the cholecystokinin analog cerulein is a popular method 

of inducing experimental pancreatitis. Such a “hyperstimulation” model in rodents is 

generally used to induce mild to moderate injury and reflects the hyperstimulation 

pancreatitis observed in humans following exposure to certain scorpion bites and 

insecticides with cholinesterase activities. There are also several chemicals that, when 

infused into the pancreatic duct, may mimic the effects of bile reflux and its possible role in 

inducing biliary pancreatitis (Table 1). The technical challenges associated with bile acid 

and post-ERCP induced AP have likely prevented their wide spread adoption. Another group 

of animal models that are less commonly used are those that mimic uncommon forms of 

pancreatitis such as autoimmune pancreatitis. These models use foreign serum, adoptive cell 

transfer, or infectious pathogens to induce disease. There are potential advantages to using 

nongenic models of pancreatitis, including their lower expense and, in many cases, the same 

method of induction can be achieved through multiple routes of administration of an agent 

and across both small and large animal species. Finally, the initiation of disease can often be 

highly synchronized across a cohort of animals.

Similar induction methods can sometimes be modified to phenocopy both acute and chronic 

types of pancreatitis. For example, the dosage, frequency, and route of administration of 

cerulein are regularly manipulated to experimentally induce both acute and chronic 

pancreatitis. Cerulein was first used to induce AP in rats using intravenous infusion, but it 

was later discovered that 6–8 hourly intraperitoneal injections also provoke mild AP whereas 

12 hourly injections provoke more severe AP.1–4 By repeating daily dosing with cerulein, 

one can replicate recurring episodes to develop a model of recurrent acute pancreatitis. 

However, many investigators use this paradigm, repeated dosing of cerulein, to generate 

chronic pancreatitis (CP) models. The dosing regimen is not standardized and the variability 

of the repeated cerulein paradigms was recently outlined by Klauss et al.5 For example, bi-

weekly sessions of 6–8 hourly injections for 6–10 weeks results in histological changes 

consistent with CP, but dramatic differences in fibrosis are seen in different mouse strains. 

Unlike clinical CP, when cerulein dosing is terminated, pancreata recover within 3–6 weeks.
6 Other groups have accelerated the repeated cerulein model and show that administering 6 

hourly injections on 3 days per week for 3–4 weeks also recapitulates CP.7 It is unclear at 

this time whether there are meaningful differences between the variable dosing paradigms 

for CP. It is also unknown whether a longer dosing schedule would generate irreversible 

pancreatic changes. Many laboratories currently choose the dosing paradigm based on what 

is most convenient for laboratory personnel; however, they have shown their chosen regimen 

works for their individual studies.

One step that must be taken to improve the comparability of results across studies and 

models is to standardize endpoints. The diagnosis and severity of pancreatitis relies heavily 

on pathologist-specific interpretations of histology: interstitial edema, acinar cell death 

(necrosis or vacuolization), parenchymal loss, hemorrhage, fat necrosis, inflammatory cell 

infiltrate, fat and fibrotic tissue replacement.8 However, there are quantitative measures 

available for exocrine function, edema, immune responses, and endocrine function that 

should be employed alongside histological measures.9–14 For example, serum enzyme levels 

(e.g. amylase or lipase) or intrapancreatic trypsinogen activation are standard exocrine-
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related endpoints that should be included in all studies, particularly those focused on AP or 

early phases of CP. Furthermore, edema can be evaluated through objective comparisons of 

organ weight. Inflammation can be measured using a standard myeloperoxidase assay as 

well as pancreas-specific or systemic measures of cytokine expression. For severe or 

advanced disease models, measures of endocrine function such as glucose levels or glucose 

tolerance tests could also be informative. Though preliminary studies of stains for fibrosis 

are important, quantitative measures of collagen expression (collagen subtypes, 

hydroxproline levels) should be performed when fibrosis is an endpoint. With all AP and CP 

models, the time course of pancreatitis can differ among species and within strains of the 

same species, as well as by age or by sex in some strains of rodents. Equally important is the 

time point at which a particular endpoint is measured. The peak and resolution of an 

endpoint is likely parameter specific and more thorough investigations are ongoing. For 

example, in the acute cerulein model initial zymogen activation within the acinar cell begins 

between 15 min and 1–2 h after the first cerulein injection, but inflammatory cells mediate 

this at later time points.15–18 Thus, it is particularly important to consider previous literature 

and conduct preliminary studies to decide on the most appropriate time points to assess your 

chosen parameters (e.g. 1 h, 6 h, or 24 h after the first or last cerulein injection).19,20

2.2 Pancreatic Cancer

Multiple chemicals have been used to model tumorigenesis (Table 2). If these carcinogens 

are introduced systemically tumors develop across multiple organ systems. For instance, 

administration through oral gavage will incite lesions throughout the gastrointestinal tract 

whereas intraductal instillation will restrict tumor development to the pancreas.21–24 More 

recently, investigators have largely moved away from chemically induced tumor models; 

instead, a variety of transplantation models have gained significant favor. There are several 

sources for the transplants that will be discussed below. The site of the transplant in the host 

animal can also vary, but the most popular locations are subcutaneous or directly into the 

pancreas. Investigators opt for subcutaneous placement because it is easy to observe tumor 

growth in the absence of advanced imaging technologies as well as to perform behavioral 

assays. For investigators interested in metastases, tumor cells can also be implanted into the 

target of interest such as liver or lung. Orthotopic transplantation of pancreatic tumor cells 

can be used to model primary tumor growth in a synchronized manner such that an entire 

cohort will have similar progression of disease.

The source of pancreatic tumor cells that are transplanted is critical. There are a multitude of 

human pancreatic tumor cell lines available.25–27 To perform xenografts (interspecies 

transplantation), nude or SCID mice must be used so the foreign cells will not be rejected. 

More recently, the development of the patient-derived xenograft (PDX) provided a great 

hope toward the development of personalized therapies since drugs could be directly tested 

on each individual patient’s tumor. The PDX model of pancreatic ductal adenocarcinoma 

(PDAC) has facilitated translational (from mouse to man) studies on pancreatic cancer. 

Manegold et al recently reported on “serial” subcutaneous implantations of PDX PDAC 

tissue into immunocompromised NOD/SCID/IL2rγ−/− (NSG) mice to study the role of 

CBP/β-catenin-induced pancreatic cancer cell stemness in human PDAC carcinogenesis.28 

The investigators found that the first subcutaneous implantation of human PDAC into mice 
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that were treated with a specific small molecule CBP/β-catenin antagonist, ICG-001, did not 

inhibit the growth of the xenograft. However, the ICG-001-treated tumor (which grew during 

the first implantation) failed to grow during the second implantation. The investigators 

concluded that CBP/β-catenin antagonism of pancreatic cancer cell stemness was able to 

prevent propagation of human PDAC. Indeed and as previously reviewed,29 such PDX 

models provide a couple of key advantages because the PDAC xenografts are comprised of 

cells which: 1) largely retain the appropriate genetic profile even after initial selection in the 

mouse; 2) display a high degree of heterogeneity characteristic of PDAC at least initially; 

and 3) are derived from humans.

Xenograft models do have several limitations; the key one being that transplant recipients 

must have a compromised immune system.30 A relatively more physiological approach is 

the syngeneic or allograft model in which the donor cells and recipient are of the same 

species. Like xenografts, either primary tumor cells or cell lines can be used for allografts. 

Utilizing a syngeneic approach allows a better assessment of how the intact immune system 

contributes to tumor growth. Previously, the Panc02 cell line was the primary cell line 

readily available for such syngeneic mouse models. However, the major limitation of the 

Panc02 cell line is the finding by Logsdon and colleagues that they do not harbor mutations 

in Kras or p53 which represent the most common, classical mutations in PDAC,29 hence 

severely diminishing the translational relevance of such models. More recently, Kras mutant 

cell lines, 6606PDA and 6606l, isolated from PDAC and liver metastasis, respectively, from 

KrasG12D (KC) mouse31, as well as Kras mutant and p53 mutant cell lines UN-KPC-960 

and UN-KPC-961 derived from KrasG12D;Trp53R172H;Pdx1-Cre (KPC) mice32, have 

been developed and have been used in syngeneic models. Given these recently developed 

mouse cell lines which harbor relevant PDAC mutations as well as methods for harvesting 

primary tumor cells33, the syngeneic mouse model should facilitate more in-depth 

assessment of how the immune system contributes to the genesis of PDAC. Overall, 

transplantation models are useful because they are relatively easy and quick to set up. 

However, most transplant models are based on the implantation of differentiated tumor cells, 

which could be viewed as a drawback of this approach. In patients, there is a natural 

progression from normal to neoplastic cells. Transplantation models lack the opportunity to 

study how bodily systems function together to drive the transformation of ‘normal’ cells.

2.3 Environmental Modulators

Although nongenic models have weaknesses, there are advantages to using them for the 

study of exocrine pancreatic diseases. Nongenic models provide an opportunity to study the 

impact of environmental modulators including alcohol and tobacco, major risk factors for 

both pancreatitis and pancreatic cancer.34 Combining exposure to these factor(s) with the 

nongenic models is a useful way to examine the role of the environment in the development 

and progression of pancreatic disease. The most common method to introduce alcohol 

exposure is through the Lieber-Decarli liquid diet that allows for easy modifications of the 

amount of ethanol.35 Ethanol (EtOH) administration alone does not cause a pancreatitis 

phenotype; however, combined with chemical (e.g. dibutyltin dichloride (DBTC), oleic acid) 

or diet models, it can accelerate disease and increase severity.36–41 Furthermore, EtOH in 

combination with its non-oxidative metabolites, fatty acid ethyl esters or a subclinical 
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stimulus dose of cerulein or lipopolysaccharide is also sufficient to produce pancreatitis.
42–45 EtOH use has also been associated with development of adenocarcinoma in the 

dimethylbenzanthracene (DMBA) model.46 EtOH increases multiplicity, but not incidence in 

the rat azaserine model, but not the hamster N-Nitrosobis(2-oxopropyl)amine (BOP) model.
47 Interestingly, dietary fat enhances carcinogenesis in both the azaserine and BOP models. 

Cigarette smoke has also been shown to exacerbate nongenic models of pancreatitis and 

pancreatic cancer.48–50 By combing EtOH, smoke, and diet with nongenic models of 

exocrine pancreatic disease, investigators have been able to confirm the degree that these 

environmental exposures affect the risk for development or increased severity of disease.

3. Genetic Models

To study pancreatitis and pancreatic cancer, investigators have developed a plethora of 

genetically engineered animal models. Three key aspects for developing a genetically 

engineered model include choosing a method to produce the animal, choosing the genetic 

alteration, and choosing the gene promoter that will drive expression of that genetic 

alteration. In addition to the CRISPR-Cas9 technology, several classical methodologies to 

generate genetically engineered models are well-described.51 There are several gene 

promoters that are popular for use in genetically engineered models of exocrine pancreatic 

disease because they are enriched in the pancreas and, when combined with a conditional 

technology (e.g. Cre-Loxp), are thought to restrict recombination specifically to the pancreas 

(Table 3). However, it is important to realize that the method and the gene targeted have 

implications for differing interpretations of results. Specifically, using technologies that are 

not inducible means that the animal will express the genetic change in all cell types that 

express the gene at any time throughout development, including extra pancreatic tissues. In 

instances where the mutation of interest is a known germ line mutation, global 

recombination approaches may be optimal because they mimic hereditary disease. However, 

this could be considered a negative when the goal is to achieve pancreas or even cell-type 

specific mutations. PDX1 and p48/pft1a, the two most widely used gene promoters in 

exocrine pancreatic disease, are expressed in multiple cell types within the pancreas and can 

result in multiple foci of disease.52,53 PDX1 is also expressed in duodenum and antrum of 

the stomach.54–56 Moreover, both PDX1 and p48 are expressed in various divisions of the 

nervous systems. Pft1a/p48 is a key regulator in the differentiation of spinal cord dorsal horn 

neurons, determining GABAergic versus glutamatergic cell fate.57 PDX1 is expressed in a 

subset of sensory and proprioceptive neurons and regulates neuronal calcium homeostasis.58 

Neuronal PDX1 is also involved in hypothalamic control of glucose metabolism.59,60 Thus, 

extra pancreatic expression and/or function of ‘pancreas specific’ genes could contribute to 

disease phenotype and should be considered when interpreting data.

3.1 Pancreatitis

There are several genetically engineered mouse models (GEMMs) that spontaneously 

exhibit pancreatitis-related phenotypes (Table 4). These models can be useful for questions 

regarding the course of idiopathic pancreatitis as well as testing pharmacological 

interventions. Although the majority of genetically engineered pancreatitis models are in the 

mouse, non-murine models are also available. The Wistar Bonn/Kobori (WBN/KOB) rat 
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exhibits degeneration of pancreatic parenchyma, widely distributed fibrosis, and infiltration 

of lymphocytes.61 Overexpressing Sonic hedgehog or Indian hedgehog at the Ptf1a domain 

in zebrafish results in morphological changes in developing pancreas.62 With age, these 

zebrafish show progressive pancreatic fibrosis intermingled with proliferating ductular 

structures and destruction of acinar structures. Our current understanding of hereditary 

pancreatitis has been significantly improved through the development of GEMMs. Animal 

models expressing mutations in trypsinogen or SPINK genes exhibit spontaneous 

pancreatitis or a predisposition to develop more severe disease following experimentally 

induced pancreatitis.63–66 Like the combinatorial approach introduced earlier (nongenic 

method of induction plus exposure to environmental factors), a similar strategy is often 

utilized to study the role of a specific gene or signaling pathway in the development or 

severity of pancreatitis. In this scenario, a nongenic method of inducing pancreatitis is 

applied to GEMMs that do not exhibit a spontaneous disease phenotype. Investigators have 

successfully used this approach to implicate numerous signaling pathways in the 

development and severity of pancreatitis, including the complement system,67–71 cytokine 

signaling,72–77 immunoglobulins,78,79 and, of course, protease (e.g. trypsin) pathways.
15,16,80,81 Based on the prior evidence implicating trypsin pathways, Sahin-Toth and 

colleagues recently created a gain of function trypsinogen mutant that effectively mimics 

hereditary pancreatitis.66

3.2 Pancreatic Cancer

The field of basic pancreatic cancer research has exploded with the development of GEMMs 

for pancreatic cancer. Mutations inducing a gain of function in the GTPase Kras occur in 

nearly all human pancreatic intraepithelial neoplasia (PanIN) and pancreatic ductal 

adenocarcinoma (PDAC).82,83 Several basic GEMMs, described in Table 5, take advantage 

of oncogenic Kras expression combined with ‘pancreas specific’ promoters.82–89 Although 

multiple mutations in Kras have been detected in PDAC patients, the most prevalent is 

G12D.90–92 Thus, KrasG12D has become the backbone of PDAC GEMMs. The 

pathophysiology, histology, molecular, and clinical aspects of GEMMs that parallel the 

disease course of human pancreatic cancers are detailed elsewhere.83,93–96 Briefly, GEMMs 

exhibit a slower disease course compared to transplant models. Lesions (e.g. PanIN or 

mucinous) develop followed by tumor formation, and in some cases, metastases.

Mutations in additional oncogenes such as TP53, CDKN2A, and SMAD4, occur in more 

than 50% of human PDAC cases.52,83,86–89,93 The contribution of these genes to the 

development and progression of disease can be assessed with the complex Kras-based 

GEMMS described in Table 6.97–101 Often one of the most obvious results of introducing 

additional pathological gene mutations is an acceleration of disease progression. The most 

popular complex Kras-based GEMM is the KPC model (KrasP53Cre). KPC was originally 

coined to describe a GEMM in which PDX1-cre drives KrasG12D and p53R172H mutations.
102,103 Over time, however, it has been more loosely applied to GEMMs that use either 

PDX1-cre or p48/Pft1a-cre as well as those deleting a p53 allele (p53fl/+).104–107 For mice to 

be viable, the Kras mutation must be heterozygous in these models. However, it is possible 

to make viable mice that express different zygosities for other gene alterations. The zygosity 

of any additional genetic alterations incorporated into a model can directly affect the time 
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course of disease progression. For instance, mice expressing a single mutant p53 allele 

(KrasG12D;p53(fl/+)) develop tumors around 16 weeks whereas dual mutant p53 alleles 

(KrasG12D;p53(fl/fl)) develop lethal tumors by 8 weeks.98 We encourage authors to follow 

this example and provide explicit descriptions of their models in every publication to avoid 

confusion in the field.

A key challenge with making GEMMs is the complexity of the genetics. As one moves from 

the basic to more complex models, there is a reduction in both cost-effectiveness and 

efficiency in breeding and utilizing these models (e.g. only 1 in 8 or 1 in 16 mice could have 

the genotype of interest). Many investigators have also opted to incorporate reporters into 

their models to allow for tracking of pancreatic-lineage cells as they transform, disseminate, 

and metastasize.104–106,108,109 Though a creative improvement on this already valuable 

technology, the resulting genetic complexity presents an increased risk for unknown or 

unexpected side effects. Bearing in mind the caveats of complex genetic models, GEMMs 

are a powerful tool to aid in our investigation of PDAC.

Although the majority of current pancreatic cancer models are Kras based, there are non-

Kras based models. The first transgenic mouse models of pancreatic neoplasia were 

generated by expressing the full-length or truncated oncogenic simian virus 40 T antigen 

(SV40) under the rat elastase-1 promotor.110,111 These mice exhibit acinar dysplasia that 

progresses to neoplasia in adulthood. Survival is approximately 4–6 months. More recently, 

non-Kras based models have been developed to study the contribution of specific tumor 

suppressor genes to the development of PDAC. Mutations in pten are commonly found in 

several tumor types. Stanger et al developed Pdx1-CreERTM;Ptenlox/lox in which pten is 

deleted from the pancreas and cre activity is confirmed through the Z/AP reporter.112 

Beginning at 3 weeks of age, mice exhibit an age-dependent phenotype with multifocal 

architectural changes. Acini are progressively replaced by proliferative mucin-expressing 

ductal structures, centroacinar cells proliferate, and ductal adenocarcinoma develops at 11 

weeks. In order to parse out the contribution of the tumor suppressor genes Ink4a/Arf 

(p16Ink4a/p19Arf ) and TP53, Bardeesy et al, examined the incidence, latency, and 

histological phenotype of PDAC following either hemi- or homozygous loss of p16 and p19 

or p16 and p53.113 These authors demonstrated that PDAC can develop in a non-Kras based 

GEMM, but also that specific tumor suppressor genotypes directly influence the phenotypes 

of resulting tumors.

3.3 Environmental Modulators

To explore the interactions between genetics and the environment, factors such as alcohol, 

diet, and tobacco can be paired with genetic models of disease. For instance, long-term 

ethanol feeding in the Mist1-creERT2;XBP1+/− model of spontaneous pancreatitis causes 

increased endoplasmic reticulum stress, thereby enhancing acinar cell pathology.114 

Similarly, exposure to tobacco induces flattening of ductal epithelial cells and significantly 

increases atrophy in the rEla1;sshIL-1β model of spontaneous pancreatitis.76 Ethanol and 

smoking have also been introduced into genetic models of pancreatic cancer. Exposing KC 

(Pdx1-Cre; K-Ras+/LSLG12D) mice to the Lieber-DeCarli alcohol diet in combination with 

cerulein results in synergistic and additive effects on PanIN formation.104,115 Exposing KC 
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mice to tobacco smoke also stimulates PanIN development, fibrosis, activation of stellate 

cells and M2 macrophages, as well as increased expression of both stem cell and epithelial-

mesenchymal transition markers.116,117 Smoking was found to activate histone deacetylases 

and regulate cytokines such as interleukin-6 and interleukin-4, which promote cancer 

development at the early stage.116 Smoking also activates stem cell features of pancreatic 

cells, through activation of PAF1 expression in KC mice.117 The same pro-cancer effects 

were observed in Kras+/LSLG12Vgeo;Elas-tTA/tetO-Cre (Ela-KRAS) mice.118 The effect of 

alcohol alone on promoting PDAC is less obvious than smoking in animal models. However, 

the combination of alcohol with pancreatitis further promotes the progression of the disease 

in KC mice.115 Analogous to the association between pancreatitis and diet, a high fat diet 

and obesity are associated with increased risk for pancreatic cancer. Several groups have 

taken of advantage of GEMMs in order to study the biological mechanisms linking obesity 

to pancreatic cancer. A high-fat lard-based diet in the Ela-CreERT; K-Ras+/LSLG12D GEMM 

promotes immune infiltration in addition to PanIN and PDAC development through 

regulating inflammation in a COX2 and lipocalin-2 dependent manner.119,120 Similarly, a 

high-fat, high-calorie, corn oil-based diet given to EL-Kras and KC mice is associated with 

accrual of additional genetic mutations, as well as more extensive inflammation, fibrosis and 

neoplasia.121,122 The incidence of cancer was particularly higher in males, which is thought 

to be associated with a sex-dependent localization of adipose (visceral vs. subcutaneous). 

Interestingly, a high calorie diet based on fish oil (menhaden) significantly delays PanIN 

progression.123 Using these early stage models, including KC mice, is sometimes criticized 

because PDAC has not yet developed and never develops in most of these mice. However, 

understanding the changes in the cancer precursor cells is equally important to 

understanding changes in cancer cells as it will help develop a preventive strategy. Moreover, 

the data published in KC mice was confirmed in the Pdx1-Cre;LSL-KrasG12D;Trp53R172H/+ 

(KPC) mice confirming that smoking and high fat diet up-regulate tumor growth and 

metastasis.118,124 It is very important to use the best model to study the effect of 

environmental factors on PDAC promotion; it is equally important to choose the best time to 

start or stop treatments as the disease progresses with different kinetics in each model.

4. Inducible Genetic models

Despite the ‘identical’ genetic background in models that use inbred strains, disease 

development and progression is variable across animals. Some investigators minimize this 

issue by utilizing inducible technologies to improve synchronization of experiments and 

avoid complications of expressing mutations throughout development of the animal. Many 

of the models described in Tables 4–6 take advantage of these inducible technologies. The 

most popular choice is to employ tamoxifen-dependent cre recombinase systems (e.g. 

CreER, CreERT, CreERT2) in which transgene expression is not induced until tamoxifen 

treatment. There are also models that take advantage of the tetracycline transactivator (tTA) 

method in which expression is triggered by the removal of doxycycline from drinking water 

or food.118,125–127

Viruses provide an alternative inducible method that allows more control over the 

localization of recombinant gene expression. For instance, adeno-associated virus serotype 6 

(AAV6) encoding Ela-iCre infused into the pancreatic duct of calcineurin B1 (CnB1)fl/fl 
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mice results in acinar cell specific loss of CnB1 gene expression.128 In newborn pigs, ductal 

expression of genes can be achieved by injecting AAV9 vectors into the celiac artery, 

accessed via umbilical catheterization.129 In Swiss Webster mice, intraductal infusion of 

lentivirus has been used to drive expression of shRNAp53, KrasG12D and luciferase.130 

These mice develop pathology similar to human PDAC without requiring alterations of 

embryonic development. They develop PanINs with increasing severity followed by tumor 

formation 28 weeks post-virus injection. Mice also have elevated levels of cancer markers 

and, in some cases, liver and lung metastases. Inducible methods have advanced the field of 

GEMMs by improving temporal and spatial control over these models.

Viruses also have the advantage of enabling the development of genetically engineered 

animal models in larger species. Viral models are becoming a popular route for developing 

large animal models because of their importance in drug development and improved 

resemblance to humans. Previously, large animal (e.g. dog, non-human primate) studies have 

been restricted to case reports of spontaneous disease. One type of pancreatic disease that 

has benefited from a viral approach is cystic fibrosis associated pancreatitis. Mutations in the 

CFTR gene lead to dysregulation of fluid transport in multiple organs, primarily lung and 

pancreas. Low flow of secretions leads to duct obstruction, acini destruction, severe 

inflammation, fibrosis, and fat replacement. With the advent of recent advances in genetics 

including viral-mediated gene targeting and somatic cell nuclear transfer, global 

manipulation of the CFTR gene in larger species has become possible. Two pig models, 

global CFTR-null and CFTR-Δ508, were generated using homologous recombination and 

somatic cell nuclear transfer.131,132 Fetal and neonatal CF pigs have pancreatic lesions seen 

typically in humans with CF including progressive acinar cells loss, ductal plugging and 

fibrosis.133,134 Although islets are morphologically normal, CF pigs demonstrate abnormal 

glycemic responses and decreased insulin secretion at birth.135 A similar approach has been 

executed to generate CFTR-null ferrets.136 CF ferrets exhibit a milder exocrine pancreatic 

phenotype compared to CF pigs. Newborn CF ferrets have only minor histological changes 

in the pancreas including dilated acini and ductules with inspissated, eosinophilic zymogen 

secretions, but no acinar atrophy and otherwise preserved pancreatic architecture.137 The 

pancreatic disease progresses rapidly in CF ferrets after birth (>1 month) with loss of acini, 

inflammation, fibrosis, islet destruction/remodeling and hyperglycemia.138,139 Another 

model that is worthwhile to mention is the CFTR-null zebrafish model.140 Loss of CFTR 

leads to exocrine pancreatic destruction in zebrafish larva. The CFTR models are based on 

expression of global alterations, but viral-mediated approaches can also be used to make 

tissue specific manipulations. The oncopig cancer model (OCM) is a novel model in which 

pigs have combined KrasG12D and TP53R167H mutations under control of a cre-inducible 

vector.141 Introduction of virus containing Ad-Cre directly into the pancreatic duct drives 

locally invasive disease that has the hallmarks of human PDAC including a dense 

fibroblastic stroma and acinar-to-ductal metaplasia.142 The development of large species 

models creates a unique opportunity in which not only pharmacological therapies, but also 

novel surgical approaches, can be tested.
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5. Pain

Pain is a prominent feature associated with both pancreatitis and pancreatic cancer. The role 

of the nervous system, neuroplasticity and neurogenic inflammation in exocrine pancreatic 

disease has been reviewed before.143–146 Chronic pain, such as that associated with 

pancreatic disease, is often a result of sensitization of peripheral neurons. Several studies 

have used molecular tools to examine the expression of molecules involved in neurogenic 

inflammation and peripheral sensitization including growth factors, neuropeptides, and TRP 

channels.147–154 A few labs have also performed functional studies (e.g. calcium imaging, 

electrophysiology) to directly assess sensory neuron excitability and sensitization.
148,150,155–161 Most studies, however, have focused on pain-associated behaviors (Table 7). 

There are two types of pain that can be assessed, experimentally evoked or ongoing pain. 

Experimentally evoked mechanical pain involves applying Von Frey monofilaments of 

increasing force to determine withdrawal thresholds. Application of radiant heat or placing 

the animal on a hot plate can be used to assess latency to respond to a noxious temperature. 

Finally, direct electrical stimulation of the pancreas evokes an abdominal muscle contraction 

called the visceromotor reflex (VMR). This is thought to be a model of referred pain. This 

technique can be used to determine the threshold to evoke a VMR or changes in the size of 

the VMR in controls versus animals with pancreatic disease. If the thresholds or latencies to 

evoke a response using any of these tests are reduced, this is interpreted as the animal 

experiencing pain. There are no strong models for directly measuring ongoing pain. In 

humans, however, ongoing pancreatic pain leads to hunching posture as well as a reduction 

in quality of life and spontaneous activity. Several investigators have taken advantage of this 

and used a variety of measures thought to indicate ongoing pain: reduced rearing, grooming, 

wheel running and ambulation as well as increased hunching, vocalization and catalepsy. 

Unfortunately, pancreatic pain related studies have been limited to rats and mice whose 

neural innervation, ductal structure, location, and gross anatomy is quite different from 

humans. Future studies need to address pain in a wider variety of animal models, including 

larger species, in order to improve our understanding of pain within the context of exocrine 

pancreatic disease.

6. Choosing a Model

One must consider the strengths and weaknesses implicit to each model as well as available 

resources and expectations regarding experiments and findings. Just as important, however, 

is which animal system to choose. Nongenic models can be applied to a greater variety of 

species, but there are a variety of potential responses. Indeed, it is important to choose the 

most appropriate method (+/− additional environmental factors) to induce pancreatitis and/or 

pancreatic cancer. For instance, the nitrosamine BOP preferentially drives pancreatic 

tumorigenesis in rodents, but not dogs (Table 2). There are also species differences 

associated with the nongenic models of pancreatitis. For example, cerulein administration to 

rats results in more interstitial edema and intracellular vacuolization while mice develop 

more acinar cell necrosis: a difference that may be explained by species-dependent roles of 

apoptosis and autophagy.162,163 Mechanical models of pancreatitis have been applied across 

the widest range of species, from mice to non-human primates, and a diversity of responses 

have been reported.164 In most species, ductal ligation and bile acid infusion evokes mild 
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disease; however, pigs and opossums exhibit severe disease. The variability in mechanical 

models is likely a consequence of the anatomical and functional differences across species.
165–167 Grossly, mouse and rabbit, for example, have diffuse pancreata scattered within the 

mesentery whereas dog, hamster, and pig have compact pancreata more closely resembling 

the retroperitoneal solid pancreas found in humans. Additionally, the ductal structure varies 

widely across species. Rats have a single outflow channel that may explain why rats develop 

fibrosis more rapidly than dogs following ductal ligation. Mice, on the other hand, have 

multiple ducts. This can provide an internal control within each animal if desired, but it also 

makes it technically challenging to execute a complete obstruction. When discussing data, it 

is important to consider how the anatomy of the animal may contribute to observed 

phenotypes.

Within a species, there are also important considerations when choosing a model (e.g. age, 

sex, strain, body fat). For instance, mouse strain directly impacts the severity of pancreatitis 

and systemic inflammation following intraductal infusion of taurocholate.168 Serum 

enzymes and morphological damage are increased compared to controls in nine different 

strains; however, NOD/SHILT and AKR/J mice had enzyme activity significantly higher 

than the other strains. Further, only half of the strains exhibited elevated IL-6, a marker of 

inflammation. Even within substrains, differences in the severity of disease can be observed. 

C57BL/6J mice, for example, are more susceptible to cerulein-induced pancreatitis than 

their C57BL/6NHsd counterparts with regard to atrophy, morphological changes, and 

fibrosis.169 Strain differences have also been reported in GEMMs. A study examining the 

effects of high fat diets on PDAC in the Ela- KrasG12D GEMM, reported that the incidence, 

frequency, and size of pancreatic neoplasia were significantly increased in mice on a F1 

background as compared to those on the FVB background.170 Differences are not restricted 

to strain, but also appear with respect to sex. Females, for instance, exhibit a much greater 

sensitivity to the choline-deficient ethionine-supplemented (CDE) diet because CDE induces 

hemorrhagic necrosis in an estrogen-dependent manner.171,172 Another consideration is 

body fat status. The co-administration of interleukin-12 and interleukin-18, cytokines 

elevated in AP patients, drives edematous AP in wild type or lean mice.173 However, the 

same doses induce necrotizing pancreatitis in both diet-induced obese mice as well as a 

GEMM of obesity called ob/ob mice.173,174 Finally, age understandably plays a role in the 

development of disease in non-inducible genetically engineered models. However, age has 

also been implicated in non-genetic models. For example, in the cerulein paradigm for AP, a 

loss of uncoupling protein 2 aggravated the severity of disease in older but not young mice.
175

7. Conclusion

The goal of animal models is to reproduce human disease including etiology, histopathology, 

pathophysiology, and therapeutic responsiveness. All of the animal models presented have 

both strengths and weaknesses with regard to disease phenotype. There are also 

considerations with respect to time and cost. The rationale for which model is chosen for a 

study should be clearly explained in publications. With the complex nature and variability of 

these models, it is essential to be overly transparent and provide explicit details regarding the 

design of the model used in a particular study, including which features of disease it 
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successfully recapitulates. Several of the models available provide an opportunity to 

examine the synergy between environmental and genetic contributors to disease, which 

would expand our understanding of the pathogenesis and progression of exocrine pancreatic 

diseases. However, neuroplasticity and pain are key features of both pancreatitis and 

pancreatic cancer. If models are going to be truly translational moving forward, they should 

also recapitulate alterations in the nervous system. At this time, how the nervous system is 

affected is unknown for most of the available models. To improve translation of basic 

pancreas research to clinically relevant therapies, there must be methods in place to ensure 

thorough interpretation of data, comparison across studies, and validation of findings. 

Towards that end, all future studies should incorporate objective quantitative measures to 

allow for these direct comparisons. Furthermore, in the event that potential therapeutics is 

identified, we strongly recommend simultaneous testing and/or validation by an independent 

laboratory at another institution. Indeed, such cross-validation should be incorporated into 

studies during the design phase, as potential collaborators are easily identified through the 

numerous pancreas associations and consortiums. Although we have made much progress, 

continued refinement of currently available models along with development of newer models 

will be important for bridging the gap between basic science and the clinic.
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FIGURE 1. 
Questions that should be considered during study design when choosing an animal model.
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