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Abstract

Summary: Computational drug target prediction has become an important process in drug

discovery. Network-based approaches are commonly used in computational drug–target

interaction (DTI) prediction. Existing network-based approaches are limited in capturing the con-

textual information on how diseases, drugs and genes are connected. Here, we proposed a

context-sensitive network (CSN) model for DTI prediction by modeling contextual drug phenotypic

relationships. We constructed a Drug-Side Effect Context-Sensitive Network (DSE-CSN) of 139 760

drug-side effect pairs, representing 1480 drugs and 5868 side effects. We also built a protein–pro-

tein interaction network (PPIN) of 15 267 gene nodes and 178 972 weighted edges. A heteroge-

neous network was built by connecting the DSE-CSN and the PPIN through 3684 known DTIs. For

each drug on the DSE-CSN, its genetic targets were predicted and prioritized using a network-

based ranking algorithm. Our approach was evaluated in both de novo and leave-one-out cross-

validation analysis using known DTIs as the gold standard. We compared our DSE-CSN-based

model to the traditional similarity-based network (SBN)-based prediction model. The results sug-

gested that the DSE-CSN-based model was able to rank known DTIs highly. In a de novo cross-

validation, the area under the receiver operating characteristic (ROC) curve was 0.95. In a leave-

one-out cross-validation, the average rank was top 3.2% for known DTIs. When it was compared to

the SBN-based model using the Precision-Recall curve, our CSN-based model achieved a higher

mean average precision (MAP) (0.23 versus 0.19, P-value< 1e� 4) in a de novo cross-validation

analysis. We further improved the CSN-based DTI prediction by differentially weighting the drug-

side effect pairs on the network and showed a significant improvement of the MAP (0.29 versus

0.23, P-value< 1e� 4). We also showed that the CSN-based model consistently achieved better

performances than the traditional SBN-based model across different drug classes. Moreover, we

demonstrated that our novel DTI predictions can be supported by published literature. In summary,

the CSN-based model, by modeling the context-specific inter-relationships among drugs and side

effects, has a high potential in drug target prediction.

Availability and implementation: nlp/case/edu/public/data/DSE/CSN_DTI.
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1 Introduction

Identifying drug targets is an important process in pharmaceutical

research (Barabási et al., 2011; Hopkins, 2008). Predicting potential

drug–target interactions (DTIs) can facilitate the drug discovery pro-

cess such as drug repositioning and identifying drug combinations

(Chen et al., 2016). However, experimentally exploring DTIs can be

both time-consuming and costly (Whitebread et al., 2005).

Therefore, many computational-based methods have been devel-

oped to automate the DTI discovery process.

Traditional computational approaches in predicting DTIs in-

clude docking simulation (Li et al., 2006; Luo et al., 2011; Mohan

et al., 2005; Shoichet et al., 2002), feature vector-based approach

(Nagamine et al., 2009; Nagamine and Sakakibara, 2007; Yabuuchi

et al., 2014) and similarity-based method (Bleakley and Yamanishi,

2009; Gönen, 2012; Jacob and Vert, 2008; van Laarhoven et al.,

2011; Xia et al., 2010; Yamanishi et al., 2008). With the emergence

of multi-target drug design concept (Csermely et al., 2005; Hopkins,

2008), various network-based approaches have been proposed to

predict DTIs. For network-based methods, novel DTIs are usually

predicted based on protein–protein interactions (Chu and Chen,

2008), chemical structure similarities (Chen et al., 2012; Keiser

et al., 2009) or known DTIs (Lu et al., 2017).

Drug side effects are observable phenotypic effects of drugs act-

ing on their genetic off-targets in human bodies. While DTIs have so

far been predicted mainly on the basis of molecular or cellular fea-

tures (Chen et al., 2012; Chu and Chen, 2008; Keiser et al., 2009),

phenotypic side-effect similarities have been recently used to predict

drug targets. A previous study built drug similarity-based-networks

(SBNs) based on shared side effects among drugs to predict DTIs

assuming that drugs shared same side effects also shared the similar

targets (Campillos et al., 2008). In another study, the authors calcu-

late the pharmacological similarity scores among drugs based on

number of shared side effects and fitted a kernel regression model to

predict DTIs (Takarabe et al., 2012).

The fundamental of those previous studies is calculating the simi-

larity scores among drugs. However, similarity scores only reflect

the strength of connections among entities while ignoring how (i.e.

context) two entities are connected. In the real world, the connec-

tions among drugs, diseases and genes are multi-typed (Fig. 1a). A

new model, context-sensitive network (CSN), can simultaneously

capture context-specific relationships among tens of thousands of

different biomedical entities (Fig. 1b). We have recently applied this

concept to model interrelationships among diseases and predicted

disease genetics (Chen and Xu, 2016a). In this study, we proposed a

CSN model for DTI prediction by directly modeling drug-side effect

relationships.

We built a Drug-Side Effect Context-Sensitive Network (DSE-

CSN) to model the phenotypic relationships among 1480 drugs and

5868 side effects (SEs) and predicted DTIs using the DSE-CSN-

based model. Compared to the traditional SE-driven SBN model,

the DSE-CSN captures more information by preserving semantic

drug-SE relationships. For example, a traditional SBN (Fig. 2a)

shows that goserelin is connected with afatinib and crizotinib with a

similar number of side effects. However, a CSN (Fig. 2b) on which

drugs are connected through specific side effects, captures the infor-

mation that goserelin shares different kinds of side effects with afati-

nib and crizotinib. We showed that the DSE-CSN-based model have

superior performances in both de novo and leave-one-out predic-

tions than the SBN-based model. To the best of our knowledge, our

study represents the first CSN-based model for DTI prediction.

2 Materials and methods

We built a heterogeneous network which includes a Drug-Side

Effect Context-Sensitive Network and a Protein–Protein Interaction

Network. For each input drug, we predicted its genetic targets using

a standard network-based ranking algorithm. Specifically, our

approach’s outline is shown in Figure 3 and includes the following

steps: (a) construct a DSE-CSN and a PPIN; (b) integrate the DSE-

CSN with the PPIN through known drug–target interactions; (c) for

each input drug, rank all the genes in the PPIN with a network-

based ranking algorithm. To further improve the prediction, we

experimented several weighting schemes to build weighted DSE-

CSNs. We evaluated the performance of our approach in both de

novo and leave-one-out cross-validation analysis and compared the

CSN-based model with the traditional SBN-based model.

2.1 Drug-Side Effect Context-Sensitive Network
We constructed the DSE-CSN using drug-SE pairs from Side Effect

Resource (SIDER) 4, where drug-SE pairs were extracted from pack-

age inserts and public documents (Kuhn et al., 2016). We obtained a

total of 139 760 drug-SE pairs between 1430 drugs and 5868 SEs.

As shown in Figure 3a, the DSE-CSN consists of 1430 drug nodes,

5868 SE nodes and 139 760 edges among drugs and SEs. The con-

nections between drug nodes and SE nodes are equally weighted.

Fig. 1. (a) Different relationships among drugs, diseases and genes. (b) The visualization of the integrated context-sensitive network
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2.2 Protein–protein interactions network
We extracted protein–protein interactions in human from STRING

v 10 database (Szklarczyk et al., 2015) to build the protein–protein

interaction network (PPIN). The protein–protein interactions in

STRING were collected from multiple data sources, such as experi-

ments, pathway knowledge and text mining (Szklarczyk et al.,

2015). Here we only included PPIs with experimental evidence. The

PPIN has 178 972 edges and 15 267 gene nodes (Fig. 3b). The edges

on the PPIN were weighted based on the protein–protein interaction

scores from STRING.

2.3 Connect the Drug-Side Effect Context-Sensitive

Network and the protein–protein interaction network
The DSE-CSN and the PPIN were connected by the known interac-

tions between drugs and genes in DrugBank 4.0 (Wishart et al.,

2006). We mapped the drug labels in SIDER to drug labels in

DrugBank based on drugs’ common names and synonyms. After

mapping, 1125 of 1430 drug labels in SIDER were mapped to drug

labels in DrugBank. This bipartite network included 884 approved

drugs in SIDER and 802 genes in STRING. The drugs and genes

were connected with 3684 drug–target interactions.

2.4 Predict potential drug–target interactions
Different from existing network-based prediction algorithms (Chen

et al., 2015b; Li and Patra, 2010), where biological networks were

based on similarity measures, we developed a context-sensitive net-

work-based modeling techniques to capture the context specific

interrelationships among biomedical entities. In this study, we con-

structed a context-sensitive drug network, where two drugs are dir-

ectly linked through their specific shared side effects. Through

comparative studies, we demonstrated in this study that DTI predic-

tion based on context-sensitive network modeling performed signifi-

cantly better than traditional similarity-based network modeling.

Suppose that the initial probability vector is p0, and pk is the vector

whose ith element represents the probability score of ith node at step

k. The score vector at step kþ1 can be calculated as:

pkþ1 ¼ 1� að ÞM>pk þ ap0 (1)

in which a denotes the probability of restarting from the seed node

at each step, p0 consists of the initial probabilities for all nodes and

M denotes the transition matrix. The initial probability is 1 for the

seed node and 0 for all other nodes. Suppose G represents the gene

nodes, D represents the drug nodes and S represents the side effect

nodes, the transition matrix is defined as:

MGG MGD MGS

MDG MDD MDS

MSG MSD MSS

2
64

3
75 (2)

Suppose Axy x; y 2 G;D; Sf gð Þ represents the adjacency matrix of

each subnetwork. To calculate the transition matrix M, we set kDG

as the transition probability from the DSE-CSN to the PPIN and

kGD as the transition probability from the PPIN to the DSE-CSN.

For example, if the random walker stands on a node on the DSE-

CSN which is connected with the PPIN, it may transpose to the

PPIN with the probability of kDG or transpose within the DSE-CSN

with the probability of 1� kDG and vice versa. The transition matrix

among gene nodes was calculated as:

MGGð Þij ¼
1� kGDð Þ AGGð Þij=

P
j AGGð Þij;

P
j AGDð Þij 6¼ 0

AGGð Þij=
P

j AGGð Þij; otherwise

8<
: (3)

Since drug nodes only connected with SE nodes on the DSE-

CSN, the transition matrices among drug nodes (or SE nodes) were

MDD ¼MSS ¼ 0. Similar, SE nodes did not connect with gene

nodes, the transition matrices from SE nodes to gene nodes (or

versa) were MGS ¼MSG ¼ 0.

Fig. 2. (a) Drug nodes from a traditional similarity-based network (SBN), where drugs are connected based on the side effect similarity scores. (b) Drug nodes

from a novel context-sensitive network (CSN), where drugs are directly connected through specific side effects

Fig. 3. The outline of the DSE-CSN-based approach: (a) Construct a DSE-CSN and a PPIN. (b) Integrate the DSE-CSN and the PPIN. (c) Prioritize the genes by a net-

work-based algorithm
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Suppose n;m 2 G;Df g. The transition matrics from drug nodes

to gene nodes (or versa) were calculated as:

Mnmð Þij ¼
knm Anmð Þij=

P
j Anmð Þij;

P
j Anmð Þij 6¼ 0

0; otherwise

(
(4)

The transition matrics from drug nodes to SE nodes (or versa)

were calculated as:

MDSð Þij ¼
1� kDGð Þ ADSð Þij=

P
j ADSð Þij;

P
j ADGð Þij 6¼ 0

ADSð Þij=
P

j ADSð Þij; otherwise

(
(5)

MSDð Þij ¼ ASDð Þij=
X

j

ASDð Þij (6)

2.5 Performance evaluation and comparison
To demonstrate the advantage of the DSE-CSN model to the trad-

itional SBN models, we also constructed a DSE-SBN using the same

datasets. Compared to the DSE-CSN, the DSE-SBN does not include

SE nodes. Instead, the 1430 drug nodes were connected with

969 575 weighted edges. The weights of edges were formulated with

the side effect similarity scores in the study of Campillos et al.

(2008). We replaced the DSE-CSN with the DSE-SBN on the hetero-

geneous network and predicted DTIs. To demonstrate the contribu-

tion of the drug-SE network on the heterogeneous network, we also

replaced the DSE-CSN with a random DSE-CSN on which drugs

and SEs are randomly connected.

We conducted a de novo cross-validation analysis to evaluate

our DSE-CSN-based model. In each de novo cross-validation, we

removed all DTIs for a specific drug. Then we set the drug as the

seed node and prioritize all the genes on the PPIN. We plotted the

ROC curves to evaluate the overall performance of our method. We

then used the 11-point interpolate Precision-Recall (PR) curves to

compare different approaches (Schütze et al., 2008). When using

PR-curve, the overall performance was measured by the mean aver-

age precision (MAP) which approximates the area under the

11-point interpolate PR-curve (Schütze et al., 2008). To avoid the

normality assumption of the data, we used Bootstrap resampling to

compare the difference of MAPs. The reason for using PR-curves in-

stead of ROC curves for comparison is that PR-curves provide a

more accurate picture of algorithms’ performance than ROC curves

for highly skewed datasets, which are true for most of the prediction

problems in biomedical domains, including our DTI prediction task

(Davis et al., 2005; Davis and Goadrich, 2006).

We also conducted a leave-one-out cross-validation analysis to

compare the DSE-CSN-based model with the traditional DSE-SBN-

based model. In each leave-one-out cross-validation, we removed a

link between a specific drug and a specific gene. We set the drug as

the seed node and ranked all the genes while excluding those genes

which already connected with the drug. Then we studied the rank of

the tested gene. For a specific ranking threshold, if the rank of the

tested gene was above the threshold, it was considered as successful

prediction. For each model, we reported the number of successfully

predicted DTIs for top 1, 5, 10 and 100 ranking thresholds.

2.6 Investigate the influence of parameter selection
To demonstrate that parameter selection did not significantly influ-

ence the performance, we ran the de novo cross-validation with dif-

ferent parameters for DSE-CSN-based and DSE-SBN-based models.

We first fixed a and changed kDG from 0.1 to 0.9 while setting kGD

as 1� kDG. Then we fixed k s and changed a from 0.1 to 0.9. We

plotted the MAPs and their 95% confident intervals versus the dif-

ferent parameters in Figure 4. The figure indicates that there is no

significant change in MAPs when kDG is within [0.5, 0.9] and when

a is within [0.3, 0.9] for both DSE-SBN-based and DSE-CSN-based

models. This was consistent with the previous studies (Chen et al.,

2015b; Chen and Xu, 2015, 2016a,b; Li and Patra, 2010). In the fol-

lowing experiments, we set kGD as 0.7 which is the median of range

[0.5, 0.9] and set a as 0.3 which is the minimum value of range [0.3,

0.9] to ensure the walker can travel to the broadest area of the

network.

2.7 Improve the DSE-CSN-based model by different

weighting schemes
We weighted drug-SE pairs on DSE-CSN with different context in-

formation to improve the DTI prediction.

2.7.1 Frequency-based Drug-Side Effect Context-Sensitive Network

In this DSE-CSN model, edges connecting drug nodes and SE nodes

are weighted by the frequency of occurrence of drug-SE pairs which

was extracted from the package inserts (Kuhn et al., 2016). For

some of the drug-SE pairs, the frequencies are not included in

SIDER. We used the average frequencies of other drug-SE pairs to

impute those missing frequencies.

2.7.2 Information content-based Drug-Side Effect Context-Sensitive

Network

In this DSE-CSN, edges connecting drug nodes and SE nodes are

weighted by the information content-based weights of each SEs

which were calculated followed the definitions in the study of

Campillos et al. (2008). For each SE si i ¼ 1;2; . . . 5868ð Þ, the

information-content-based weight wi were calculated based on its

rareness weight fi and correlation weight gi:

wi ¼ fi � gi (7)

The rareness weight fi, which represents the abundance of the

SEs in the dataset, is calculated as:

fi ¼ �log mi=Mð Þ (8)

in which mi is the number of drugs associated with each SE si, M is

the total number of drugs. The intuitive explanation is that drug

pairs sharing lower abundant SEs are more likely to share same or

similar targets.

Fig. 4. (a) Mean average precision versus the transition probabilities and

(b) mean average precision versus the probability of restarting from the seed
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The correlation weight gi of each SE was calculated by first hier-

archal cluster all the SEs then weighted each SE based on the cluster-

ing using Gerstein-Sonnhammer-Chothia algorithm (Campillos

et al., 2008). This weight can be explained as SEs have higher corre-

lations with others are less likely to represent shared drug targets.

For a drug dj associated to SE si, the weight score of the corre-

sponding edge eij is represented as:

eij ¼ wi (9)

2.8 Compare drug–target interaction prediction across

different classes of drugs
To investigate whether the performance of our model varies among

different drug classes, we classified the drugs into different thera-

peutic groups according to the Anatomical, Therapeutic and

Chemical (ATC) classification system(Law et al., 2014), and eval-

uated the performance of our model within each group.

3 Results

3.1 De novo cross-validation
3.1.1 The DSE-CSN-based model achieved high performance

The receiver operating characteristic (ROC) curve in Figure 5 shows

that the DSE-CSN-based model achieved an area under the curve

(AUC) of 0.95. This result suggests that using drug side-effect infor-

mation is a promising approach in predicting DTIs. The ROC, how-

ever, did not show a clear advantage of the DSE-CSN-based model

compared to the DSE-SBN-based model. We noticed that the num-

ber of the negative examples (genes not targeted by drugs) greatly

exceeds the number of positive examples (known drug targets) in

our dataset. For highly skewed data, the ROC curves usually over-

estimate the performance (Davis and Goadrich, 2006). Therefore,

the similar performance in ROC curve may be caused by: (i) The

two models had similar prediction ability. (ii) The difference of the

prediction ability was hidden by the highly skewed data (Davis and

Goadrich, 2006). Compared to ROC curves, PR-curves are able to

evaluate prediction algorithms more accurately with highly skewed

data, which is common in biomedical field. We showed that the

DSE-CSN-based model outperformed the DSE-SBN-based model

when using PR-curves in the next section.

3.1.2 The DSE-CSN-based model performed better than the DSE-

SBN-based model

Figure 6a shows that the unweighted DSE-CSN-based model

achieved the MAP of 0.23, which is significantly higher than 0.09

achieved by the random DSE-CSN-based model (P-value < 1e� 4,

Bootstrap resampling). This result demonstrated the contribution of

the drug-SE network in the heterogeneous network. Since we did

not randomize the PPIN, the PR-curve for random DSE-CSN was

not flat. Figure 6b shows that DSE-CSN-based model outperformed

traditional DSE-SBN-based model which yielded the MAP of 0.19

(P-value < 1e� 4, Bootstrap resampling). Those results demon-

strated that while drug-SE information is promising in predicting

DTIs, the performance would be highly depended on how to model

the relationships among drugs. Here we demonstrated that directly

modeling drug-SE relationships outperformed using SE similarity

scores.

3.1.3 Weighting the drug-SE pairs on the network improved the

DSE-CSN based model

Figure 7a shows that the frequency-based DSE-CSN yielded the

similar MAP as the unweighted DSE-CSN. Given that the current

version of SIDER misses more than half of (60%) the drug-SE pairs’

frequency information (Kuhn et al., 2016), we have the reason to be-

lieve that the frequency-based DSE-CSN will achieve higher per-

formance than unweighted DSE-CSN with the abundance of side

effect frequency information. Figure 7b shows that the information

content-based DSE-CSN-based model achieved a MAP of 0.29,

which is significantly higher than the unweighted DSE-CSN-based

approach (P-value < 1e� 4, Bootstrap resampling).

3.2 Leave-one-out cross-validation: the DSE-CSN-based

model performed better than the DSE-SBN-based model
We evaluated the DSE-CSN (information content-based)-based

model in a leave-one-out cross-validation analysis. Our model

Fig. 5. ROC curves for the DSE-CSN-based approach and the DSE-SBN-based

approach

Fig. 6. (a) Comparison between the Unweighted DSE-CSN and the Random

DSE-CSN; (b) Comparison between Unweighted the DSE-CSN and the DSE-SBN

Fig. 7. (a) Comparison between the Frequency-based DSE-CSN and the

Unweighted DSE-CSN; (b) Comparison between the Information-content-

based DSE-CSN and the Unweighted DSE-CSN
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achieved an average rank of top 3.2% for all the known DTIs. This

result suggested that our model has a promising performance for

drugs with known targets. We then used the number of successfully

predicted DTIs to reflect the discriminatory ability of different mod-

els. Figure 8 shows that the DSE-CSN-based model successfully pre-

dicted more retained DTIs than the traditional DSE-SBN-based

model for different top-rank thresholds. For example, the DSE-

CSN-based model ranked 550 known DTIs on top 1 which is signifi-

cantly higher than 282 achieved by the traditional DSE-SBN-based

model (P-value ¼ 8.52e� 23; v2 test).

3.3 Evaluate the performance of the DSE-CSN-based

model across different drug classes
We evaluated the performance of the eight ATC top level classes for

the DSE-CSN-based model (information content-based) and the

DSE-SBN-based model. In Figure 9, we reported the PR-curves and

MAPs for the DSE-CSN-based model for each classes. The predic-

tion abilities were varied among different drug classes.

We would like to investigate why the performance varies across

different drug classes. We chose the Musculo-skeletal system class

(MAP ¼ 0.45) and the Antineoplastic and Immunomodulating

agents class (MAP¼0.17) to perform a case study. We first

extracted top 20 related SEs for each of these two classes. Then we

found the unique top SEs for each class. Each of these two drug

classes has six unique top related SEs. Table 1 shows the top unique

SEs for Musculo-skeletal system class. Table 2 shows the top unique

SEs for Antineoplastic and Immunomodulating agents class. We

found that SEs related to Antineoplastic and immuno-modulating

agents class tend to connected more drugs than those related to

Musculo-skeletal system class. This result means drugs with more

specific SEs tend to have a better performance because they are

more accurately connected to similar drugs on the network.

We also compared the performance between the DSE-CSN-

based model and the DSE-SBN-based model across different drug

classes. Table 3 shows the MAP comparison across different drug

classes. The DSE-CSN-based model significantly outperformed the

DSE-SBN-based model in all eight drug classes (P-value < 1e� 4,

Bootstrap resampling).

Fig. 8. The number of successfully predicted drug–target interactions for the

DSE-CSN-based model and the DSE-SBN-based model

Fig. 9. PR curves for the DSE-CSN approach across different ATC class in de

novo cross-validation

Table 1. Top related side effects for the Musculo-skeletal system

class

Side effect name Side effect ID Number of related drugs

Thrombocytopenia C0040034 604

Paraesthesia C0030554 599

Oedema C0013604 571

Leukopenia C0023530 513

Vertigo C0042571 508

Palpitations C0030252 506

Table 2. Top related side effects for the Antineoplastic and immu-

nomodulating agents

Side effect name Side effect ID Number of related drugs

Fatigue C0015672 723

Constipation C0009806 701

Insomnia C0917801 675

Pain C0030193 663

Hypotension C0020649 662

Confusional state C0009676 542

Table 3. Comparing DSE-CSN-based model to the DSE-SBN-based

model in the de novo cross-validation across different drug classes

Drug Class SBN-based

(MAP)

CSN-based

(MAP)

Antineoplastic and immunomodulating

agents

0.090 0.17

Alimentary tract and metabolism 0.15 0.27

Genito urinary system and sex hormones 0.29 0.46

Cardiovascular system 0.19 0.30

Nervous system 0.19 0.30

Musculo-skeletal system 0.30 0.45

Respiratory system 0.28 0.33

Dermatologicals 0.31 0.33
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3.4 Novel drug target predictions
We predicted novel drug–target interactions using the DSE-CSN-

based model (information content-based). For each of the drugs, we

ranked all the genes on the PPIN and excluded those known targets

from the rank list. We studied the top 1% predicted targets for each

of the drugs and found many of them can be supported by previous

known experimental results or clinical evidence. Since we are cur-

rently interested in drug development for drug addiction, we pre-

sented predicted addiction-related drug–target interactions in

Table 4. For example, our predictions showed that pregabalin could

act on Dopamine Receptor D2, which is a member of the family of

seven transmembrane domain G-protein-coupled receptors

(Montmayeur et al., 1993). This prediction can be supported by the

previous evidence that pregabalin decreased Dopamine Receptor

D2-receptor gene expression in the prefrontal cortex and accumbens

(Navarrete et al., 2012). Since Dopamine Receptor D2 is a target of

action for antipsychotic drugs, this prediction is also supported by a

recent clinical trial which suggests pregabalin as a treatment of anx-

iety in patients with schizophrenia (Schjerning et al., 2018).

4 Conclusions and discussion

In this study, we proposed a Drug-Side Effect Context-Sensitive

Network (DSE-CSN) model to predict potential drug–target interac-

tions (DTIs) based on clinical phenotypes. We proposed different

approaches to build the DSE-CSN. To evaluate the performance of

our approach, we built a Drug-Side Effect Similarity-Based Network

(DSE-SBN) followed the definitions of a previous study (Campillos

et al., 2008). Our experiment results indicated that the DSE-CSN-

based model outperformed the traditional similarity-based network

model in both de novo and leave-one-out cross-validation analyses

by directly modeling the semantic drug-SE relationships. We also

demonstrated that weighting drug-side effect pairs on DSE-CSN

could further improve the prediction ability. In addition, our novel

predicted drug targets could be supported by published literature.

Our study can be improved in several aspects. First, the DSE-

CSN and the PPIN are connected by known DTIs from DrugBank.

We believe that the prediction ability can be further improved if we

incorporate more known DTIs form other databases. Currently,

DTIs from different databases are extracted from different sources

(Chen et al., 2016). We plan to use different weighting schemes to

incorporate DTIs from multiple databases on the network.

Second, our DSE-CSN can be further improved by incorporating

more drug side effect data sources. For example, some side effects

are patient specific and may not represent drug–target interactions.

As more patient population information become available in the fu-

ture, this contextual information of drugs and SEs can be modeled

on the networks to improve the prediction performance further.

Another example is that many of the side effects have not been

included in SIDER (Xu and Wang, 2014b). We have done natural

language processing, data mining and machine learning works in

extracting drug-side effect pairs (Xu and Wang, 2014a,b, 2015). We

plan to incorporate those results in our DSE-CSN to support DTI

prediction in the future.

Third, our current CSN mainly uses the drug side-effect informa-

tion. Currently, we are also incorporating other properties of drugs as

well as disease information into the CSN framework. For example, we

are using drugs’ chemical structures and genomics data. We are also

connecting our previously constructed disease CSN (Chen and Xu,

2016a) into the DSE-CSN to further improve the DTI predictions.
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