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Abstract

Oxygen-sensitive MRI has been extensively used to investigate tumor oxygenation based on the 

response (R2* and/or R1) to a gas breathing challenge. Most studies have reported response to 

hyperoxic gas indicating potential biomarkers of hypoxia. Few studies have examined hypoxic gas 

breathing and we have now evaluated acute dynamic changes in rat breast tumors.

Rats bearing syngeneic subcutaneous (n = 15) or orthotopic (n = 7) 13762NF breast tumors were 

exposed to a 16% O2 gas breathing challenge and monitored using blood oxygen level dependent 

(BOLD) R2* and tissue oxygen level dependent (TOLD) T1-weighted measurements at 4.7 T. As a 

control, we used a traditional hyperoxic gas breathing challenge with 100% O2 on a subset of the 

subcutaneous tumor bearing rats (n = 6). Tumor subregions identified as responsive on the basis of 

R2* dynamics coincided with the viable tumor area as judged by subsequent H&E staining. As 

expected, R2* decreased and T1-weighted signal increased in response to 100% O2 breathing 

challenge. Meanwhile, 16% O2 breathing elicited an increase in R2*, but divergent response 

(increase or decrease) in T1-weighted signal. The T1-weighted signal increase may signify a 

dominating BOLD effect triggered by 16% O2 in the relatively more hypoxic tumors, whereby the 

influence of increased paramagnetic deoxyhemoglobin outweighs decreased pO2. The results 

emphasize the importance of combined BOLD and TOLD measurements for the correct 

interpretation of tumor oxygenation properties.
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Oxygen-sensitive MRI of 13762NF breast tumors growing subcutaneously or orthotopically in 

syngeneic rats showed expected opposite R2* (BOLD) responses to 16% O2 and 100% O2 

breathing challenges. T1-weighted signal (TOLD) was consistent with 100% O2, but showed 

divergent response (increase or decrease) in response to 16% O2. In light of R2* responses as well 

as pimonidazole staining, we attribute the apparent anomaly to the influence of deoxyhemoglobin 

on R1 under hypoxia conditions generating a caveat for interpretation of oxygen-sensitive data.
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INTRODUCTION

Hypoxia has become a key target in cancer therapy development (1). Hypoxia is associated 

with tumor aggressiveness and resistance to therapy (2–4). Oxygen-sensitive MRI presents 

potential for characterizing tumor hypoxia and predicting therapeutic efficacy non-invasively 

(3,5–8). Oxygen-sensitive MRI studies are typically conducted with a hyperoxic gas 

breathing challenge, such as air to oxygen or carbogen (7–33), especially because alleviating 

tumor hypoxia via hyperoxic gas breathing has proven beneficial to radiotherapy 

(7,17,26,34,35). During the time course of a gas breathing challenge, MRI metrics based on 

spin–lattice relaxation rate constant (R1) and/or transverse relaxation rate constant (R2*) are 

measured to reveal the changes in tumor oxygenation. In a classical scenario, tumor R1 (or 

T1-weighted, T1w, signal) increases in response to hyperoxic gas breathing, consistent with 

increased concentration of paramagnetic oxygen molecules and hence oxygen partial 

pressure (pO2) in tissue: the tissue oxygen level dependent (TOLD) effect. On the other 

hand, a decrease in tumor R2* (or an increase in T2*-weighted signal) indicates the 

conversion of deoxy- to oxyhemoglobin and increased blood oxygen saturation (sO2): the 

blood oxygen level dependent (BOLD) effect. Distinct relationships have been reported 

between R2* and tumor oxygenation based on polarographic electrodes, fiber optic probes, 
19F MRI and immunohistochemistry assays (36–38), but while specific correlates have been 

observed there are often trends rather than direct correlations. Indeed, vasoactive agents may 
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alter vascular volume and hence the amount of deoxyhemoglobin within a tumor (more 

specifically imaging voxel), causing apparently contrary response in R2* (11).

R1 in solution is linearly dependent on the concentration of free oxygen molecules and 

hence pO2 (18,27,39,40). In well-defined media such as vitreous humor and cerebrospinal 

fluid R1 may reliably measure pO2, but many additional factors influence relaxation 

including macromolecules, pH and temperature. Nonetheless a change in R1 with respect to 

an acute intervention such as oxygen breathing challenge is expected to indicate change in 

pO2. However, apparently contradictory R1 responses to hyperoxic gas breathing have been 

reported, i.e., decrease or minimal change in R1 (or T1w signal) (7,8,30,41,42). This 

apparently contradictory R1 response is denoted as the “alternative” TOLD response in the 

following context. The most popular hypothesized mechanism underlying this alternative 

TOLD response is the infiltration of a blood oxygenation effect on R1, since 

deoxyhemoglobin is itself paramagnetic (7,8,30,41,42). Indeed, in vascular regions the 

conversion of deoxyhemoglobin to oxyhemoglobin may reduce R1, while ultimately, O2 is 

released into the tissue enhancing R1. The direction of R1 response in a voxel depends on the 

balance of these two processes. This effect has been thoroughly investigated in blood 

samples (43–45). We have now sought to better characterize this seemingly contradictory 

MRI behavior in tumors by examining their acute response to a hypoxic gas breathing 

challenge.

To better characterize the apparently contradictory TOLD response, we evaluated tumor 

response to a hypoxic gas (16% O2) breathing challenge using oxygen-sensitive MRI, and 

compared it to the classical 100% O2 breathing challenge. We hypothesized that by reducing 

the fraction of inspired oxygen, tumors would exhibit this alternative TOLD response. 

Therefore, MR metrics accompanying hypoxic gas breathing should not simply “mirror” the 

effect of hyperoxic gas breathing. There have been few previous reports of MRI with respect 

to hypoxic gas (< 21% O2) challenge, predominantly in the brain or brain tumors (27,46–49) 

and recently placenta (28) and abdominal tissues (50) and apparently none comparing 

dynamic BOLD and TOLD response in tumors.

EXPERIMENTAL

Investigations were approved by the Institutional Animal Care and Use Committee.

Animal preparation

Rat mammary adenocarcinoma 13762NF tissue (originally obtained from the Division of 

Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA) was 

implanted subcutaneously in the right thigh (n = 15) or orthotopically in the lower right 

mammary fat pad (n = 7) of adult female Fischer 344 rats (~125–200 g; Charles River 

Laboratories, Wilmington, MA, USA). Briefly, a donor rat was anaesthetized via inhalation 

of a mixture of isoflurane (2–3%) and oxygen and the right hind limb was shaved. A thawed 

piece of frozen 13762NF tissue, measuring approximately 2 × 2 × 2 mm3, was inserted 

subcutaneously into a small incision (approximately 0.5–1 cm long) on the outer thigh of the 

right hind limb. The skin was closed using wound clips (9 mm). After 7 to 10 days, the 

incision site had healed and the clips were removed. The donor tumor was allowed to grow 
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to 1–1.5 cm in diameter before it was excised and pieces implanted subcutaneously into the 

thigh or in the orthotopic mammary fat pad of no more than four recipient rats.

Subcutaneous (SC) tumors were allowed to grow to small (0.2–1.5 cm3) and large (2.5–6 

cm3) volumes for MRI experiments. A subset of SC tumors (3 small and 3 large) was 

subjected to a hyperoxic gas breathing challenge using 100% O2 (gbc100). On the following 

day, all SC tumors (8 small and 7 large) were subjected to a hypoxic gas breathing challenge 

using 16% O2 (gbc16). Meanwhile, orthotopic (OT) tumors grew faster so only large (2.5–6 

cm3) volumes were available for MRI experiments upon the release of rats from surgery 

recovery. The OT tumors were subjected to only gbc16. On the following day, ten SC tumors 

(5 small and 5 large) and four OT tumors were excised for histology. The procedures 

performed for each tumor are specified in Table 1.

MRI with gas breathing challenge

MRI was performed using a horizontal bore 4.7 T system (Agilent/Varian, Santa Clara, CA, 

USA). Each tumor-bearing rat was anesthetized using isoflurane (typically, 2.5% for 

induction and at a specific concentration in the range 1.75–2.25% during MRI, with constant 

breathing gas flow rate at 2 L/min). Isoflurane was chosen since it is reported to have 

minimal effect on pO2 and BOLD MRI signal in tumors and skeletal muscles (51). Warm air 

and a circulating water blanket were used to maintain the body temperature at 36–37 °C. For 

SC tumors, the tumor-bearing limb was placed inside a lab-made, single-turn volume 

solenoid radiofrequency coil (25-mm diameter). For OT tumors, the rat was placed inside a 

Litzcage coil (Model DSI-1366, Doty Scientific, Columbia, SC, USA). Physiological 

parameters, including body (rectal) temperature, respiration rate, and peripheral oxygen 

saturation (spO2; measured on the forearm), were recorded during MRI using a monitoring 

system (Model 1030; Small Animal Instruments, Stony Brook, NY, USA). To minimize 

potential effects of varying environmental factors on rat physiology, isoflurane concentration 

was kept constant throughout the MRI session for each rat. Breathing gas flow rate (2 L/

min), circulating water temperature (45 °C), and rat placement on the MRI platform 

(including position, orientation, taping location and tightness) were kept consistent across 

different MRI sessions. Medical air (21% O2) was used during baseline measurements, and 

then the breathing gas was switched to either 100% or 16% O2 (balance N2). Each gas was 

delivered via a nose cone directly from a commercial container (Airgas, Radnor Township, 

PA, USA) without further mixing except with isoflurane.

Two T2-weighted (T2w) anatomical scans were acquired using a fast spin-echo sequence. 

The first scan covered the whole tumor volume with 15 to 35 slices without gap, depending 

on tumor size (transaxial view; slice thickness: 1 mm for SC tumors; 2 mm for OT tumors), 

which was used for image planning and tumor volume calculation. The second scan selected 

a target slice that captured the largest cross section of the tumor with 2 mm thickness. Other 

parameters were: TR = 3 s, echo train length of 8, effective TE = 64 ms, k-space size 128 × 

128, field of view 25 × 25 or 30 × 30 mm2 for SC tumors and 70 × 70 mm2 for OT tumors, 4 

averages, and scan time of 3 min 12 s. The spatial planning of this target slice was 

transferred onto all following measurements.
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Images for R2, R1, R2* (BOLD), and T1-weighted (TOLD) measurements were acquired 

with k-space size 128 × 64, generating raw in-plane resolution of 0.20 × 0.40 or 0.23 × 0.46 

mm2 for SC tumors and 0.55 × 1.1 mm2 for OT tumors, depending on the field of view. 

Zero-filling was applied to the phase-encoding direction, which resulted in a k-space size of 

128 × 128 and the corresponding in-plane resolution was 0.20 × 0.20 or 0.23 × 0.23 mm2 for 

SC tumors and 0.55 × 0.55 mm2 for OT tumors. R2 measurements used a Carr-Purcell-

Meiboom-Gill (CPMG) sequence with TR = 2 s, 15 TEs ranging from 20 to 300 ms in 

increments of 20 ms, 2 averages, 20 dummy scans, and scan time of 4 min 56 s. R1 

measurements used the modified fast inversion-recovery (MFIR) method (52) integrated 

with a slice-selective inversion pulse and a segmented turboFLASH acquisition (53). The 

scan parameters were: inversion-recovery TR = 6 s, TI = 0.01, 0.35, 1.4, 3.1, 5.5 s 

(quadratically spaced (54)), 4 averages, and scan time of 8 min. During each inversion-

recovery TR, 16 k-space lines were acquired with the following parameters: 10° flip angle, 

acquisition TR = 10 ms, and TE = 5 ms.

BOLD and TOLD measurements were interleaved, with 20 acquisitions during baseline and 

20 accompanying challenge gas. BOLD measurements were acquired as R2* maps using a 

multi-gradient-echo sequence with transverse-magnetization spoiling (TR = 150 ms, TE 

ranging from 5 to 100 ms for SC tumors and 5 to 80 ms for OT tumors in increments of 5 

ms, 20° flip angle, 4 averages, 20 dummy scans, and scan time of 41 s). TOLD 

measurements were acquired as T1-weighted (T1w) images using a gradient-echo sequence 

with transverse-magnetization spoiling (TR = 30 ms, TE = 5 ms, 45° flip angle, 8 averages, 

20 dummy scans, and scan time of 16 s). Including the systematic time lag between two 

sequential scans, the total scan time of the interleaved BOLD and TOLD session was 

approximately 49 min.

During the anatomical scans and R2 measurement, the rat typically reached a stable state 

with body temperature of 37 °C and respiration rate of 40–60 breaths per min. When a rat 

needed a longer stabilization period (0–30 min), additional R2 and R1 maps were acquired. 

Once the physiology became stable, an R1 measurement for baseline was acquired and then 

the interleaved BOLD/TOLD session was initiated. Immediately after BOLD/TOLD scan set 

#20 (the last baseline acquisition), the breathing gas was switched to the challenge gas. After 

the completion of BOLD/TOLD scan set #40, another R1 measurement for challenge gas 

was acquired.

Histology and immunohistochemistry

Immunohistochemical assessment of hypoxia was conducted in 14 tumors (specified in 

Table 1). Within 24 hr post MRI, the tumor-bearing rats received intravenous infusion of 

pimonidazole (60 mg/kg; Hypoxyprobe™-1 Plus Kit; Hypoxyprobe Inc., Burlington, MA, 

USA). From 20 min before to 45 min after the injection of pimonidazole, the rats were kept 

awake in a gas chamber supplying air (n = 10) or 16% O2 (n = 4). Then, the tumors were 

excised from anesthetized rats and cut in half at the location replicating the MRI target slice. 

The tumor specimens were rapidly immersed in 4% paraformaldehyde with overnight 

fixation followed by a series of hydrations within 24 hr, before they were submitted for 

routine paraffin embedding, sectioning, and H&E staining (Histo Pathology Core, UT 

Yang et al. Page 5

NMR Biomed. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Southwestern). Pimonidazole was stained in 5 µm paraffin sections using a 

Hypoxyprobe™-1 Plus Kit according to the manufacturer’s protocol for paraffin-embedded 

tissue. Whole mount images were obtained using a Zeiss Axio Scan.Z1 (Zeiss, Peabody, 

MA, USA).

Data analysis

MRI data were processed using MATLAB R2017a (MathWorks, Natick, MA, USA). 

Regions of interest (ROIs) were selected based on the T2w anatomical images (Fig. 1a). 

Tumor volume was calculated from the multislice anatomical scan. R1 maps were generated 

by fitting the inversion-recovery data set (signal intensity, SI, vs. TI) on a voxel-by-voxel 

basis to a three-parameter, mono-exponential model:

SI TI = A − B ⋅ exp −TI ⋅ R1 . [1]

R2 (from CPMG measurement) and R2* (from BOLD measurement) maps were generated 

by fitting the transverse-relaxation data set (SI vs. TE) on a voxel-by-voxel basis to a two-

parameter, mono-exponential model:

SI TE = A ⋅ exp −TE ⋅ R , [2]

where R represents R2 or R2*.

The T1-weighted signal intensity (T1w SI) from TOLD measurements was corrected to 

remove T2*-weighted signal decay as follows:

SI = SIraw/exp −R2* ⋅ TE , [3]

where SIraw is the raw signal intensity prior to correction, TE = 5 ms for all TOLD 

measurements, and R2* was determined voxel-by-voxel from the BOLD measurement 

preceding each TOLD measurement.

To present dynamic parameter changes, R2* and T1w SI at each time point were referenced 

to their corresponding baseline means:

Δ R2* t ≡ R2* t − R2* baseline , [4a]

Δ SI t ≡ SI t − SI baseline
SI baseline × 100%   , [4b]
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where t denotes the time of measurement, and R2*(baseline) and SI(baseline) are the 

temporal means in each voxel during the designated baseline interval (Eq. 5).

P period = ∑
t  ∈  period

P t
nperiod

. [5]

(period = baseline or challenge)

In Eq. 5, P denotes the parameter of interest (R2* or T1w SI) and nperiod is the number of 

time points included in a given period interval. In order to allow for physiological 

stabilization, especially after the change of breathing gas, the baseline and challenge 

intervals each included the final 60% of time points during the respective gas breathing 

period (i.e., BOLD/TOLD scan sets 9 to 20 for baseline, and sets 29 to 40 for challenge). In 

5 out of 28 MRI experiments, the baseline interval was slightly adjusted to exclude time 

points acquired when the rats’ physiological parameters were unstable, maintaining at least 8 

time points for baseline.

When presented without a time index (t), ΔR2* and T1w ΔSI denote the difference between 

the (temporal) means for the gas breathing periods (Eq. 5):

Δ R2* ≡ R2* challenge − R2* baseline [6a]

Δ SI ≡ SI challenge − SI baseline
SI baseline × 100% . [6b]

In the analysis of intratumoral heterogeneity, to characterize tumor response to a challenge 

gas, the following voxel-by-voxel classification was performed for R2* and T1w SI, 

respectively:

ΔP
> 2 × SDtemporal baseline   : responsive voxel           
≤ 2 × SDtemporal baseline   : nonresponsive voxel,    [7]

where ΔP denotes ΔR2* or T1w ΔSI as defined in Eq. 6, and SDtemporal(baseline) is the 

temporal standard deviation (SD) for P over the baseline interval. Based on this criterion, 

each tumor voxel was classified as responsive or nonresponsive (Fig. 2a–e). The responsive 

fraction was calculated by dividing the number of responsive voxels by that of all tumor 

voxels. The derived response class assignments were then used to calculate the class-specific 

ΔR2* and T1w ΔSI (Figs. 4–6).
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In MRI data processing, two types of data quality thresholds were applied to the relevant 

data sets: based on signal-to-noise ratio (SNR) or goodness of fit, respectively. The SNR 

threshold was:

SI ≫ 2 × μbackground, [8]

where SI denotes signal intensity in each voxel and μbackground is the mean signal intensity in 

a representative background area that did not enclose any subject or apparent artefact 

(manually outlined). This criterion recognizes that MRI magnitude signal distribution 

(Rician) deviates from Gaussian-like to Rayleigh distribution under noisy conditions (SNR < 

2) (55). In practice, Eq. 8 corresponds approximately to SNR ≥ 2.5 (μbackground ≈ σ π /2 for 

background area; σ being the standard deviation of Gaussian noise (55)). For R1 

measurements, the fitting result for a voxel was passed on to further analysis only if the 

inversion-recovery data set (signal intensity, SI vs. TI) in that voxel had at least 3 (out of 5) 

data points above the SNR threshold (Eq. 8). For R2 and R2* measurements, the transverse-

relaxation data set (SI vs. TE) in each voxel was truncated at the first data point that fell 

below the SNR threshold (Eq. 8) and only the data points with TE shorter than the cutoff 

point were used for fitting. The R2 or R2* fitting results for a voxel were passed on to further 

analysis only if the number of included data points was 3 or larger. For TOLD 

measurements, in each voxel, the dynamic time points that did not meet Eq. 8 were excluded 

from further analysis.

The goodness of fit was evaluated using the Pearson correlation coefficient (r) between data 

and model with the P value for testing the hypothesis that there was no relationship between 

data and model. The goodness-of-fit threshold was: for SC tumors, r2 ≥ 0.95 with p < 0.05 

(for R1 and R2 measurements) or r2 ≥ 0.9 with p < 0.05 (for R2* measurements due to 

relatively lower SNR in BOLD data sets); for OT tumors, r2 ≥ 0.75 for R1, R2, and R2* 

measurements (due to relatively lower SNR in OT data sets). For BOLD measurements, 

fitting result for a voxel was passed on to further analysis only if the data and fit met both 

the SNR and goodness-of-fit criteria.

Histological images were processed in the Fiji distribution of ImageJ (56). Stain separation 

was achieved using the Color Deconvolution plugin for ImageJ (57). For the H&E staining, 

regions of viable tumor and necrotic tissue were identified (Fig. 2f and h). Viable tumor 

fraction was calculated by dividing the viable tumor area by the whole tumor area. 

Pimonidazole stained regions within the viable tumor regions were identified (Fig. 2g and i). 

The hypoxic fraction was calculated by dividing the pimonidazole stained area by the viable 

tumor area.

Student’s t-tests (two-tailed, paired or unpaired, as appropriate) were performed for relevant 

statistical analyses with significance level p < 0.05, unless otherwise specified.
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RESULTS

Two weeks after implantation, the volume of SC 13762NF tumors ranged from 0.2 to 1.3 

cm3, and reached 2.6 to 5.1 cm3 during the third week (except for tumor #8, only reaching a 

volume of 1.4 cm3 during the third week; Table 1). MRI and histology are shown for a 

representative tumor (#12) in Figures 1 and 2. A large necrotic region was identified by 

H&E staining (Fig. 2f). The center of the necrotic region had visually smaller baseline (air 

breathing) R1, R2, and R2* values compared to viable tumor regions in the periphery (Fig. 

1b–d). Baseline parameter histograms showed extensive overlap between viable and necrotic 

tumor regions (Fig. 1b–e; right panel), while tumor and muscle were well separated by R2 

(Fig. 1c). Within the viable tumor region, pimonidazole staining indicated a hypoxic fraction 

of 31%, while the tumor-bearing rat was breathing air (Fig. 2g and i). The tumor BOLD 

response map based on R2* time course (Fig. 2d) had a spatial pattern matching the tissue 

type map based on H&E staining (Fig. 2h): responsive voxels resided predominantly in the 

viable tumor periphery, whereas the nonresponsive voxels were located primarily in the 

necrotic tumor center. The TOLD response map revealed fewer responsive voxels compared 

to BOLD with responsive fractions 30% and 53%, respectively, Fig. 2e and d).

Representative time courses of BOLD and TOLD parameters (ΔR2*(t) and T1w ΔSI(t), 
respectively) during gbc100 and gbc16 are shown in Figure 3 together with respiration rate 

and spO2 (tumor #7). Both rat and tumor physiology appeared stable during the air breathing 

baseline (Fig. 3). Intervention generated rapid response in spO2 generally yielding a new 

stable value within 1 min. For this rat gbc100 caused spO2 to increase from 83 ± 3 % to 96 

± 3 % (p < 0.001; values representing the highlighted periods in Fig 3), while the respiration 

rate initially decreased and then returned to the same level as air breathing (42 ± 2 bpm for 

air breathing; 42 ± 3 bpm for oxygen breathing; p = 0.32; Fig. 3a). For gbc16, spO2 

decreased from 83 ± 4 % to 56 ± 4 % (p < 0.001), while the respiration rate remained 

constant (52 ± 2 bpm for air breathing; 51 ± 2 bpm for 16% O2 breathing; p = 0.15; Fig. 3b). 

Temperature was stable within 36–37 °C (gbc100: 36.3 ± 0.0 °C for air breathing vs. 36.8 

± 0.1 °C for oxygen breathing, p < 0.001; gbc16: 36.1 ± 0.1 °C for air breathing vs. 35.9 

± 0.1 °C for 16% O2 breathing, p < 0.001). Characteristics and MRI parameters for 

individual tumors are presented in Table 1.

BOLD responsive area was found to correlate with the viable tumor area identified by H&E 

stain in SC tumors (Fig. 4a). Both the BOLD responsive fraction and the viable tumor 

fraction decreased with increasing tumor volume (Fig. 4b). Based on the pimonidazole 

staining, hypoxic fraction within the viable tumor regions of the SC tumors was 36 ± 11% (n 
= 6) for air breathing, and significantly greater (58 ± 17%; n = 4; p < 0.05) for the rats 

breathing 16% O2. A correlation was observed between the T1w ΔSI for gbc16 and the 

pimonidazole-based hypoxic fraction for tumors harvested while rats breathed 16% O2 (r2 > 

0.9; Supplementary Fig. S1). There was no correlation for those harvested while rats 

breathed air. Pimonidazole staining was found to be highly consistent between nearby slices 

(Supplementary Fig. S2 and Table S1).

Recognizing the association of BOLD responsive voxels to the viable tumor regions (Figs. 2 

and 4a), parameter responses were classified as presented in Figure 5 and Table 1. Upon 
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respiratory challenge with 16% O2 the BOLD responsive voxels showed significant R2* 

increase in all tumors (n =15) and significant change in T1w SI in 9 of 15 tumors (Table 1). 

With respect to the oxygen breathing challenge, the BOLD responsive voxels showed 

significant R2* decrease and T1w SI increase in all tumors (n = 6) (Table 1). For each 

volume category (small and large), the parameter changes triggered by 16% and 100% O2 

were significantly different (p < 0.05; Fig. 5). In the BOLD responsive regions mean R2* 

increased for gbc16 (small tumors: +4.4 ± 1.7 s−1; large tumors: +4.1 ± 1.4 s−1) and 

decreased for gbc100 (small tumors: −2.4 ± 1.5 s−1; large tumors: −4.3 ± 3.8 s−1). The T1w 

SI increased for gbc100 (small tumors: +4.2 ± 1.8%; large tumors: +6.3 ± 4.2%). 

Remarkably, gbc16 triggered a binary T1w response: decreased T1w SI in small tumors 

(−1.1 ± 1.5%; e.g., Fig. 3b), but increased T1w SI in large tumors (+1.4 ± 2.4%). Histograms 

demonstrating the voxel-by-voxel T1w response for individual tumors are shown in 

Supplementary Figure S3. A typical time course of BOLD and TOLD parameters for a 

tumor exhibiting apparently contradictory T1w response with gbc16 is shown in 

Supplementary Figure S4. In this particular tumor (#10), there was some initial instability, 

which settled after about 12 min and then all parameters remained stable until the switch of 

breathing gas to 16% O2. R2* responded rapidly appearing similar to the tumor in Figure 3, 

while the T1w signal increased gradually, but significantly (p < 0.001). Responses of R2* 

and T1w SI in individual tumors to the gas challenges are compared in Figure 6, together 

with the proposed contributing factors. For gbc100, tumor responses were confined to the 

upper-left quadrant (R2* decreased; T1w SI increased). For gbc16, the responses spread 

across both upper-right and lower-right quadrants (R2* increased; binary response in T1w SI, 

sensitive to tumor volume).

To extend the study with more biological relevance to breast cancer, we also examined a 

cohort of 13762NF tumors growing in the lower mammary fat pad. The OT tumors grew 

faster reaching a mean volume of 3.9 ±1.3 cm3 in 15 days, compared with 0.8 ± 0.4 cm3 in 

15 days and 3.4 ± 0.9 cm3 in 21 days for the SC tumors. Extensive central necrosis was 

observed for both tumor sites (Supplementary Fig. S5). The OT tumors developed a necrotic 

fraction of 46 ± 10 % (n = 4), similar to the SC (30 ± 15 %; n = 10). MRI parametric images 

also showed intratumoral heterogeneity for OT tumors (Supplementary Fig. S5), similar to 

SC tumors. Baseline R1 and R2 in OT tumors were significantly greater than SC (p < 0.05). 

The OT and SC tumors shared a similar pattern with respect to the BOLD and TOLD 

responses to hypoxic gas breathing, with larger magnitude of responses for OT tumors (Fig. 

6).

R1 measurements required relatively long scan time and were implemented mainly for 

validating the T1w results. A strong correlation was found between the responses of T1w SI 

and R1 to gas breathing challenge (Supplementary Fig. S6) when analyzing the closest 

TOLD time points to the adjacent R1 measurements. The binary response to gbc16 was also 

observed for ΔR1 data (Table 1), although ΔR1 data may be affected baseline drifting in 

some tumors (Supplementary Fig. S4). While we focused on the acute response to gas 

breathing challenge, longitudinal stability over a longer time frame may also be important. 

For those SC tumors undergoing both gbc100 and gbc16 we compared the air-breathing 

baseline measurements on consecutive days. There were no significant differences in mean 

values for the groups of tumors: R1(day 1) = 0.49 ± 0.04 s−1 vs. R1(day 2) = 0.52 ± 0.08 s−1 
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(p = 0.40, unpaired t-test; p = 0.29, paired t-test) and R2*(day 1) = 44.0 ± 8.4 s−1 vs. 

R2*(day 2) = 47.8 ± 11.6 s−1 (p = 0.53, unpaired t-test; p = 0.33, paired t-test). A distinct 

correlation was observed between ΔR1 with respect to gbc100 vs. gbc16 (r2 = 0.71). ΔR2* 

showed no similar correlation (r2 = 0.09), but if a single measurement (tumor #9) was 

eliminated as outlier then r2 = 0.77.

DISCUSSION

The primary goal of this study was to explore the oxygen-sensitive MRI response of tumors 

to hypoxic gas breathing challenge. BOLD and TOLD measurements were successfully 

performed on both SC and OT rat 13762NF breast tumors. BOLD response showed 

increased R2* consistent with conversion of oxy- to deoxyhemoglobin accompanying 16% 

O2 breathing challenge, which mirrored the response to 100% O2 breathing challenge. 

Meanwhile, the TOLD response showed the expected increase in T1w signal (and R1) with 

100% O2, but binary behavior with 16% O2, whereby T1w signal decreased in some tumors 

but increased in others.

In common with previous reports, the rat 13762NF tumor model was found to develop 

extensive central necrosis (36,58–60), which replicates the pathological feature in many 

clinical cases of primary breast cancer (61). Intratumoral heterogeneity is an important 

factor to be considered in the analysis and interpretation of tumor MRI data. Subregion-

based parameters may provide a more comprehensive and accurate representation of tumor 

characteristics compared to whole-tumor average parameters (8,27,62–65). Manually drawn 

ROIs may attempt to differentiate the viable and necrotic regions (based on the visual 

contrast provided by the static parameter maps; Fig. 1b–e, left panel), but the histograms of 

these regions overlapped (Fig. 1b–e, right panel). An alternative approach examined the 

intratumoral heterogeneity in oxygenation response by classifying voxel-wise time courses 

of BOLD and TOLD parameters (Fig. 2b–e). The response classification based on the 

BOLD contrast (Fig. 2d) showed similarity with H&E staining (Fig. 2h; Fig. 4a). If a voxel 

was classified as BOLD responsive, it indicates that the voxel had access to vascular 

perfusion. On the other hand, the response classification based on the TOLD contrast is 

subject to the net balance between local oxygen supply and consumption (5,18,30). Indeed, 

the TOLD responsive area (Fig. 2e) was smaller than the BOLD responsive area (Fig. 2d, e). 

The correlation between the BOLD responsive area and the viable tumor area identified by 

H&E staining (Fig. 4a) shows the connection between the (vascular) functional 

heterogeneity and the biological/pathological heterogeneity, consistent with a recent report 

regarding rat subcutaneous C6 gliomas (63). Based on this correlation, the BOLD response 

map was used as a filter to select the perfused responsive tumor regions. Both the BOLD 

responsive fraction and viable tumor fraction decreased with increasing tumor volume (Fig. 

4b).

Necrotic regions have been identified using diffusion methods (ADC and IVIM) based on 

the intrinsic tissue water properties (66,67) or DCE MRI based on the intravenous infusion 

of gadolinium contrast agents (8,68,69). BOLD contrast has been compared to the non-

model-based DCE parameters and showed similar capability of imaging vasculature (48) and 

revealing intratumoral heterogeneity (63,70). Potential advantages of using BOLD response 

Yang et al. Page 11

NMR Biomed. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to classify intratumoral heterogeneity include: 1) BOLD response relates directly to tumor 

oxygenation (36); 2) BOLD measurements can be interleaved with TOLD measurements for 

a single gas breathing intervention, avoiding the need for an additional scanning sequence 

such as DCE or IVIM; 3) avoiding the need for exogenous gadolinium contrast agents, 

which have become controversial for routine use (71).

Tumors were found to be distinctly heterogeneous with regional differences in MR 

parameters at baseline (Fig. 1). Local heterogeneity was also observed with respect to gas 

breathing challenge: some regions (voxels) showed significant response to intervention 

whereas others remained essentially unchanged (Fig. 2). When voxels were clustered based 

on parametric response to each intervention (Figs. 3 and S1), R2* showed a biphasic 

response to each gas with an initial rapid component over the first minute, reflecting well 

perfused arteriolar components, followed by a slower phase which continued for several 

minutes (Fig. 3). This is similar to the observation in this tumor type based on near-infrared 

spectroscopy of hemoglobin saturation accompanying a gas breathing challenge (67,72). The 

magnitude of R2* response for gbc16 was generally larger than that for gbc100 (Figs. 3, 5, 

and 6), although gbc16 made a relatively smaller change in the inspired oxygen fraction 

(fiO2). This “asymmetrical” R2* response has also been reported for rat abdominal organs 

(50), mouse placenta and fetus (28). Due to the nonlinear (sigmoidal) shape of the oxygen-

hemoglobin dissociation curve, the change in local deoxyhemoglobin concentration ([dHb]) 

in the blood depends not only on the magnitude of change in fiO2 but also on the local, 

baseline oxygenation state (i.e., the location on the dissociation curve). A “downhill” move 

across the steep portion of the dissociation curve, even triggered by a relatively small change 

in fiO2, may result in a larger change in local [dHb] (and hence R2*) than an “uphill” move 

towards the plateau portion of the curve (illustrated in Fig. 1 of (8)). This may be 

particularly relevant to tumors due to poor oxygen delivery and large oxygen consumption. 

T1w signal also showed a biphasic response (Fig. 3).

In this study, the hyperoxic gas breathing challenge (gbc100) served as a reference for the 

hypoxic gas breathing challenge (gbc16). The BOLD and TOLD responses to gbc100 (Fig. 

5) agree with the “classical” observations: increased blood oxygenation (decreased R2*) and 

increased tissue oxygenation (increased T1w SI) (7,8,18,19,22–24,26,27,31). For gbc16, the 

BOLD response mirrored that observed for gbc100 (Fig. 5a): decreased blood oxygenation 

(increased R2*). A similar trend of BOLD response to hypoxic gas breathing was reported 

for normal abdominal organs (50), placenta (28), and the brain (46). Remarkably, for gbc16, 

T1w SI decreased in small SC tumors, but increased in larger SC tumors (Figs. 5b and 6), 

demonstrating a binary response associated with tumor volume. The basis for TOLD 

measurements is the dependence of tissue R1 (and hence T1w SI) on the concentration of 

molecular oxygen (an endogenous paramagnetic contrast agent) dissolved in the tissue fluid, 

[O2] (5). For the hyperoxic gas breathing challenges, the dominant factor underlying an R1 

increase in tumor is typically the increased tissue pO2 (proportional to [O2]) 

(7,8,18,26,27,30) — the classical TOLD effect. Yet, under certain circumstances, the 

vascular components may also have an observable impact on R1 in a tumor voxel. Assuming 

constant hematocrit within the experimental time period, R1 can be altered by a change in 

the concentration of the paramagnetic deoxyhemoglobin, which can be considered another 

facet of BOLD contrast (43–45). This study employed a hypoxic gas breathing challenge, so 
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that the impact of [dHb] on R1 may be enlarged in the presence of decreased blood sO2 

(increased [dHb]; Figs 5 and 6). For gbc16, the “classical” TOLD response should be 

decreased T1w SI (the lower-right quadrant in Fig. 6), signifying decreased pO2. By 

contrast, the alternative TOLD response to gbc16 would be increased T1w SI (the upper-

right quadrant in Fig. 6). This alternative response should not be attributed to a hypothetical 

“increased pO2”, because the oxygen supply was globally reduced (Fig. 4b) and 

pimonidazole staining verified increased hypoxic fraction from air breathing (36 ± 11%; n = 

6) to 16% O2 breathing (58 ± 17%; n = 4). These data indicate the importance of combining 

BOLD and TOLD measurements for the correct interpretation of tumor oxygenation 

properties.

Rapidly interleaved BOLD and TOLD measurements allowed monitoring of baseline 

stability and filtering out the highly unstable portion of baseline for data analysis. Some 

animals showed initial instability of both systemic physiological and BOLD and TOLD 

parameters, but once the baseline parameters stabilized they remained consistent until the 

intervention (Fig. S4). In 5 out of 28 MRI sessions, the baseline interval for BOLD and 

TOLD data analysis was slightly adjusted to exclude time points acquired when the rats’ 

physiology was unstable, maintaining at least 8 time points for baseline. While inversion-

recovery measurement of R1 potentially provides higher precision, any artifacts due to 

baseline instability during the 8-min R1 measurement could not be readily identified and 

eliminated. Moreover, any significant drift in R1 is immediately apparent in the dynamic 

T1w time course, but is not obvious when compared with R1 measured several minutes 

apart. Therefore, R1 data were mainly used for validating T1w measurements in this study 

(Fig. S6).

In a strict sense, the R1 and T1w SI we report could be considered R1* (apparent R1) and 

T1*w SI due to the “in-flow” effect (73). Change in blood flow and volume can potentially 

alter the apparent R1 (11,73,74). This factor is often neglected in the simplified modeling of 

oxygen-sensitive parameters (5). To systematically evaluate the impact of blood flow and 

volume during gas breathing challenge, one would need to implement perfusion-sensitive 

methods (75) or flow suppression control (76), which was beyond the scope of this study. R1 

is also sensitive to changes in temperature (~3% per oC vs. 0.1% per Torr (18,42)) and thus 

it is crucial to maintain stable animal temperature. Here most animals showed stable rectal 

temperature within 1 oC over the 50 min experimental time course. Five TI values were used 

for R1 measurements in order to limit the scan time. If a longer scan time were feasible, bi-

exponential modeling of the inversion-recovery data set could be attempted by acquiring 

more TI values (e.g., 15–64 TIs (77,78)). Bi-exponential modeling may potentially reveal 

subtle biophysical factors (e.g., magnetization transfer (77) and intercompartmental water 

exchange (78)), compared to an apparent R1 based on mono-exponential modeling, although 

the correct interpretation of bi-exponential components is often challenging.

CONCLUSION

To explore tumor response to hypoxic gas breathing, oxygen-sensitive MRI was conducted 

in subcutaneous and orthotopic rat 13762NF tumors. The subcutaneous cohort served as a 

benchmark for investigating factors contributing to the MRI observations, which included 
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the use of hyperoxic gas as the control. The orthotopic cohort was included to expand the 

study with more biological relevance to breast cancer. Despite the difference in growth rate, 

both tumor sites were associated with similar patterns regarding necrosis formation and MRI 

responses to hypoxic gas breathing. BOLD responses behaved as expected with both 

hyperoxic and hypoxic gas breathing challenges, whereas TOLD responses were apparently 

contradictory in many tumors undergoing hypoxic gas breathing challenge (increased, 

instead of decreased, T1w signal), attributable to the increase in paramagnetic 

deoxyhemoglobin exceeding the loss of paramagnetic oxygen. The current results provide a 

caveat for interpreting oxygen-sensitive MRI and indicate the importance of combining 

BOLD and TOLD approaches.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. MRI parameter maps and histograms at baseline (air breathing) for a representative 
subcutaneous 13762NF tumor (#12).
a: T2w anatomical image with the transaxial view of the tumor-bearing thigh. ROIs were 

manually selected. Muscle ROI (yellow) was selected excluding the thigh bone region. b–e: 

maps of baseline R1, R2, R2*, and T1w SI, respectively (left panel) and the corresponding 

histograms (right panel). To illustrate the viable and necrotic tumor regions, respectively, the 

red and blue ROIs (a) were drawn based on the visual contrast in the parameter maps (b–e) 

with reference to the H&E staining (Fig. 2f).
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Figure 2. Data processing procedure (illustrated for the same tumor as in Fig. 1).
a: T2w anatomical image of the tumor. Two representative voxels were chosen (red and blue 

squares) to demonstrate the procedure of voxel-by-voxel response classification (for better 

visualization, the square is 8 times larger than the actual voxel). The red voxel was classified 

as responsive based on the R2* (b) or the T1w SI (c) time course, while the blue voxel was 

classified as nonresponsive. The maps of (d) BOLD and (e) TOLD response were derived 

using the (b) R2* and (c) T1w SI classifications, respectively. Histological images (f and g) 

were converted to tissue type map (h; viable tumor in magenta; necrotic tissue in pink) and 

hypoxia map (i; pimonidazole stained regions in yellow) based on color deconvolution. 

Pimonidazole stain in the necrotic regions (g) was excluded (based on the tissue type map; 

h) from the hypoxia map (i). For this tumor, pimonidazole was administered while the rat 

breathed air (Table 1).
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Figure 3. Time courses of oxygen-sensitive parameters with respect to gas breathing challenge 
using (a) 100% O2 and (b) 16% O2 (subcutaneous tumor #7).
Top row: physiological parameters (respiration rate (green); peripheral arterial oxygen 

saturation, spO2, on the forearm (purple)); middle row: ΔR2*(t) (Eq. 4a); bottom row: T1w 

ΔSI(t) expressed as percentage of baseline (Eq. 4b). The time courses for responsive (red) 

and nonresponsive (blue) classes are shown separately (mean ± SEM at each time point), 

based on the BOLD and TOLD classification, respectively (Eq. 7; Fig. 2). The designated 

baseline and challenge intervals (Eq. 5) are highlighted in yellow. Data within these intervals 

were used to calculate the mean parameter changes (Eq. 6; Figs. 5 and 6). Switch of gas is 

marked by the gray vertical lines.
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Figure 4. Comparison of BOLD MRI and H&E staining in subcutaneous 13762NF tumors.
a: Significant correlation was observed between the viable tumor area identified by H&E 

stain and BOLD responsive area (r2 = 0.78; p < 0.001). The plot shows the BOLD results 

from gbc16 experiment performed the day before histology (n = 10; Table 1). b: Significant 

correlations were observed between viable tumor fraction (filled circles; r2 = 0.43; p < 0.05) 

or BOLD responsive fraction (open circles; r2 = 0.27; p < 0.05) and tumor volume. BOLD 

responsive fractions include those determined with gbc16 (n = 15) and gbc100 (n = 6).
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Figure 5. Mean ΔR2* (a) and T1w ΔSI (b) associated with the BOLD responsive regions in 
subcutaneous tumors.
Values are shown as group mean ± SD, according to the type of challenge and volume 

category. Asterisks mark significant difference (p < 0.05) between groups.
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Figure 6. Two-parameter oxygenation profile for individual tumors.
Each tumor is located according to the ΔR2* and T1w ΔSI values (mean ± SEM) associated 

with the BOLD responsive voxels. Data points are labeled according to tumor location and 

challenge type: open circles for small SC tumors; filled circles for large SC tumors; red 

circles for gbc16; green circles for gbc100; black triangles for OT tumors in the lower 

mammary fat pad (gbc16). Proposed contributing factors ([dHb] and pO2) underlying the 

tumor responses are given in the corresponding quadrants. The solid connecting lines 

indicate the dominating factor, while the dashed connection lines indicate the minor factor.
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