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Abstract

Creativity depends on the ability to combine existing mental representations in new ways and 

depends, in part, on the hippocampus. Hippocampal function is, in turn, affected by a number of 

health factors, including aerobic fitness, excess adiposity, and diet. Specifically, in rodent studies, 

diets high in saturated fatty acids and sugar – hallmarks of a western diet– have been shown to 

negatively impact hippocampal function and thereby impair performance on cognitive tasks that 

require the hippocampus. Yet relatively few studies have examined the relationship between diet 

and hippocampal-dependent cognition in children. The current study therefore sought to explore 

the relationship of several diet quality markers including dietary lipids (saturated fatty acids and 

omega-3 fatty acids), simple carbohydrates (added sugars), and dietary fiber with creativity in 

preadolescent children. Participants (N = 57; mean age = 9.1 years) completed the Verbal Form of 

the Torrance Test of Creative Thinking (TTCT), a standardized test of creativity known to require 

the hippocampus. Additionally, participants completed a 3-day food intake record with the 

assistance of a parent, underwent dual energy x-ray absorptiometry (DXA) to assess central 

adiposity, and VO2max testing to assess aerobic fitness. Added sugar intake was negatively 

associated, and dietary fiber was positively associated with overall TTCT performance. These 
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relationships were sustained even after controlling for key covariates. These findings are among 

the first to report an association between added sugar consumption and hippocampal-dependent 

cognition during childhood and, given the key role of the hippocampus in learning and memory, as 

well as creative thinking, have potential educational and public health implications.
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Introduction

There is mounting cross-species evidence that nutrition plays a critical role in neural and 

cognitive function across the lifespan [1,2]. The impact of diet on cognitive outcomes during 

the aging process, when the brain is particularly susceptible to oxidative damage, has long 

been a promising target of study. The consumption of a diet high in saturated fatty acids 

(SFAs) and refined sugar, the key components of the modern “Western” diet, is associated 

with cognitive decline [3] and the development of dementia [4] in aged individuals. 

Critically, consumption of a Western diet appears to negatively impact cognition directly by 

inducing morphological and functional changes to key brain regions like the hippocampus 

[5,6] and indirectly by contributing to the development of systemic metabolic and 

cardiovascular pathology which in turn have downstream effects on the brain [3,7,8].

Similar to advanced aging, childhood represents a period in the lifespan when the brain 

appears to be highly susceptible to the influence of diet, as brain regions, including the 

hippocampus, continue to undergo developmental changes during this period [9]. 

Furthermore, the evidence that dietary habits established during childhood continue into 

adulthood [10] suggests that this may be a critical period during which to implement dietary 

interventions to improve dietary habits, and thus perhaps enhance cognitive outcomes across 

the lifespan.

The majority of children living in the United States fail to meet federally established dietary 

guidelines and consume a diet characterized by an excess of added sugar and calories from 

SFAs [11]. This dietary pattern predisposes children to develop systemic conditions, 

including obesity and metabolic syndrome, associated with cognitive impairment in 

adulthood [12]. Despite these circumstances, the relationship between dietary patterns and 

specific cognitive functions among children who are not clinically nutritionally deficient 

remains relatively unexplored.

Among the brain regions susceptible to modulation by diet, the hippocampus is particularly 

sensitive, possibly due to its high metabolic demand and its ability to undergo neurogenesis 

beyond the gestational period [13]. Rodents fed a diet high in refined sugar and saturated fat 

(comparable to the modern Western diet) experience reduced expression of brain-derived 

neurotrophic factor (BDNF) in the hippocampus, decreased neuronal plasticity and 

neurogenesis, and impairments in learning and memory [3,5,14]. Given the protracted 

development of the hippocampus [15], the impact of diet on this region may be particularly 

pronounced during childhood and adolescence. Within the rodent literature, there is robust 
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evidence that early life exposure to high-fat and/or high-sugar diets produces deficits on 

hippocampal-dependent tasks [16,17] that may, in some cases, persist into adulthood [18]. In 

a prospective study of human adolescents, consumption of a ‘Western’ dietary pattern was 

associated with subsequent cognitive deficits [19], and among preadolescent children 

consumption of saturated fatty acids were associated with deficits on a hippocampal-

dependent relational memory task [20]. Furthermore, the cognitive functions supported by 

the hippocampus, namely the ability to create and flexibly utilize the bindings between 

arbitrary constituents of an experience [21], are critically important for children’s success 

within and outside of the classroom, making it all the more important to understand the 

impact of diet on this brain structure while it is still developing.

While the cognitive contributions of the hippocampus are perhaps best understood in the 

context of memory, a growing body of evidence implicates this region in performance across 

a variety of domains, including language [22], decision-making [23], and creativity [24,25]. 

Compelling evidence for hippocampal involvement in creativity comes from lesion studies 

in which individuals with damage to the hippocampus demonstrated profound impairments 

on tests of creative thinking, including the Torrance Test of Creative Thinking (TTCT) [24]. 

Given the role of the hippocampus in creativity, tests of creative thinking, particularly those 

designed for use with children and known to require the hippocampus (like the TTCT), may 

be useful tools for understanding the associations between diet and hippocampal function 

during childhood. Furthermore, previous work has demonstrated the predictive validity of 

the TTCT [26], highlighting the potential utility of this task in predicting creative behavior 

beyond the laboratory.

The goal of the current study was to investigate the relationship between diet and creative 

ability among preadolescent children. We chose to focus our analyses on nutrients associated 

with a Western diet pattern (SFAs and added sugar) which have been implicated in 

hippocampal dysfunction in rodent models of adolescence [18,27], as well as nutrients like 

Omega-3 FAs and fiber, which are purported to positively impact hippocampal function and 

hippocampal-dependent cognition across the lifespan [7,28,29] and have previously been 

associated with hippocampal-dependent memory in preadolescent children [20]. We 

additionally assessed lifestyle factor covariates previously implicated in performance on 

hippocampal-dependent tasks in children and adolescents, including aerobic fitness [30,31] 

and central adiposity [32]. We predicted that higher intake of SFAs and added sugar would 

be associated with lower performance on the TTCT, while consumption of Omega-3 FAs 

and fiber would be positively associated with creativity.

Methods

Participants

Participants in this study were children (N =57, 31 female) between the ages of eight and 

twelve years (mean age 9.1; s.d. 0.8) from an East-Central Illinois community (for additional 

demographic characteristics of the sample, see Table 1). Three participants were excluded 

from creativity-related analyses due to incomplete creativity data, leaving a total of 54 

participants in those analyses. Additionally, one participant did not complete aerobic fitness 

or body composition assessment and was therefore excluded from analyses involving those 
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variables. Participants were recruited from a sample of children who recently completed or 

were about to participate in the larger randomized controlled Fitness Improves Thinking in 

Kids (FITKids2) Trial. Exclusion criteria included neurological or attentional disorders, 

physical disabilities that might prevent participation in the physical activity intervention, and 

psychoactive medication status. All participants had normal or corrected-to-normal vision. 

Intelligence quotient (IQ) was assessed for all participants using the Woodcock-Johnson 

Brief Intelligence Assessment [33]. Socioeconomic status (SES) was measured according to 

a previously utilized trichotomous index based on (1) participation in free- or reduced-price 

meal program at school, (2) the number of parents who worked full-time, and (3) the highest 

level of education obtained by both parents [34]. Pubertal status was assessed using the 

Tanner Staging Scales [35]. Participants provided written assent and their legal guardians 

provided written informed consent in accordance with the regulations of the Institutional 

Review Board.

Diet Assessment

Participants completed a 3-day food record (encompassing 2 week days and 1 weekend day) 

with the assistance of a parent or guardian. Both parent and child received instructions on 

how to properly complete the 3-day food record and were provided with a booklet 

containing supplementary instructions for completing the food record, including how to 

describe food preparation methods, portion sizes, brand name products, and ingredients in 

mixed dishes and recipes. Participants were also instructed to report all beverage and 

supplement consumption. All food records were analyzed using Nutrition Data Systems-

Research (NDSR 2014; Nutrition Coordinating Center, Minneapolis, MN, USA) software. 

Nutrient intake was averaged across the three days (see Table 2 for a summary of nutrient 

intake for the sample) and normalized to intake per 1000 kcal to create the measures used in 

subsequent analyses.

Aerobic Fitness Assessment

Aerobic fitness was assessed using a graded exercise test, during which maximal oxygen 

consumption (VO2max) was measured via an indirect calorimetry system (True Max 2400; 

ParvoMedics, Sandy, UT). Participants completed a modified Balke protocol [36]. During 

testing, the heart rate of each participant was monitored constantly using a Polar heart rate 

monitor (Polar WearLink1 131, Polar Electro, Finland) and a measure of perceived exertion 

was attained every 2 minutes using the children’s OMNI scale of perceived exertion [37]. 

VO2max was based on accomplishing two of the following four criteria: (1) a heart rate 

within ten beats/min of the age predicted maximum, (2) a respiratory exchange ratio (the 

ratio between carbon dioxide and oxygen percentage) greater than 1.0, (3) a rating greater 

than eight on the children’s OMNI scale of perceived exertion, and/or (4) a plateau in VO2 

despite an increase in workload.

Traditional VO2max scores are calculated relative to an individual’s body weight (relative 

VO2max). The present investigation focused on fat-free VO2max, for which scores are 

calculated relative to an individual’s fat-free mass rather than total body weight to more 

effectively parse out the contributions of muscle and fat mass to the primary outcomes.
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Anthropometrics and Central Adiposity Assessment

Participants’ height and weight were measured using a stadiometer (model 240; Seca, 

Hamburg, Germany) and a digital scale (WB-300 Plus; Tanita, Tokyo, Japan). These 

measures were used to obtain a body mass index (BMI) value for each participant. Each 

participant’s BMI-for-age percentile was determined using the 2000 CDC growth charts [38] 

and this metric was used in subsequent analyses. According to CDC growth charts for 

children, individuals falling below the 5th percentile BMI-for-age are considered 

“underweight”, those falling between the 5th and less than 85th percentiles are considered 

“healthy” weight, those falling between the 85th and less than 95th percentiles are considered 

“overweight”, and children who fall at or above the 95th percentile are classified as “obese” 

[38].

As previously described [32], body composition was assessed by dual-energy 

absorptiometry (DXA) using a Hologic QDR 4500A bone densitometer (software version 

13.4.2; Hologic, Bedford, MA). Central adiposity was estimated using a measure of total 

abdominal adipose tissue (TAAT). The abdominal region of interest was a 5-cm-wide section 

placed across the entire abdomen level approximately coinciding with the fourth lumbar 

vertebrae on the whole-body DXA scan. TAAT was defined as the total adipose tissue 

(visceral and subcutaneous) within this region and was selected as the adiposity measure of 

interest given the association between abdominal obesity and cardio-metabolic risk factors in 

children [39], and previous work demonstrating a relationship between central adiposity and 

hippocampal-dependent cognitive performance in a similar sample of preadolescent children 

[32].

Creativity

Creativity was assessed using the verbal form of the Torrance Test of Creative Thinking 

(TTCT-Verbal Form A, STS Testing). The TTCT has long been used in studies of creativity 

[40] and its reliability and validity have been investigated on multiple occasions [41,42]. The 

verbal form of the TTCT consists of six timed activities, each lasting 5–10 minutes, during 

which participants were required to ask questions and offer potential explanations for and 

consequences of a depicted event, develop ideas about how to improve a toy to make it more 

fun to play with, generate a list of unusual uses for a common object, and list the 

hypothetical consequences of an improbable scenario. For each activity, participants were 

prompted to list as many responses as they could during the allotted time. To ensure that 

writing speed and legibility did not limit performance, participants listed their responses to 

each prompt verbally and a trained experimenter recorded all responses in the TTCT 

response booklet.

Booklets were scored by the Scholastic Testing Service (STS, Earth City, MO) to ensure that 

all tests were scored consistently and without experimenter bias. Participants’ responses 

were scored along three dimensions: fluency (number of interpretable, meaningful, and 

relevant ideas), flexibility (number of different categories of relevant responses) and 

originality (number of statistically infrequent ideas) with higher scores indicating more uses 

of that skill in their answers. Scores were averaged across individual activities to create one 

composite score for each of the three dimensions. While we report both aged-based standard 
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scores and the equivalent age-based national percentile scores for our sample, all subsequent 

analyses focused on the age-based standard scores.

Statistical Analyses

The nutrients selected for analysis included those indicative of a modern Western diet 

(saturated fat and added sugar) as well as those previously implicated in cognitive function 

among children of this age including omega-3 fatty acids and dietary fiber [20,43]. For each 

of the measures of interest, normality was confirmed (Shapiro-Wilk test) prior to further 

statistical analysis and data were log transformed when necessary to ensure a normal 

distribution. Bivariate correlations (Pearson’s r) were conducted between normalized 

nutrient intake and TTCT composite measures. These were followed by partial correlation 

analyses, controlling for participant characteristics identified as significant correlates of 

intake of the nutrients of interest. All statistical analyses were conducted with SPSS 

Statistics 24.0 (http://www.spss.com).

Results

Participant Characteristics and Nutrient Intake

Dietary intake data are reported in Table 2. Participants reported an average energy intake of 

~1855 kcal, 52% of which were derived from carbohydrates, 33% from fat, and 15% from 

protein.

Creativity Performance

Participants’ age-based standard scores and corresponding national percentile on the 

Torrance Test of Creativity (TTCT) Verbal are summarized in Table 3. To further 

characterize TTCT performance, we examined the correlations between the three task 

dimensions. All three dimensions were highly correlated (all Pearson’s r < 0.83), which was 

expected given the interrelated nature of the scoring criteria for each dimension.

Associations between Creativity and Nutrient Intake

We initially examined the relationship between nutrient intake and TTCT performance (age-

based standard score) by conducting bivariate correlations (Table 4). Of the nutrients 

selected for analysis, only added sugars and total dietary fiber were significantly associated 

with TTCT performance (Figures 1 and 2).

To determine whether the observed associations of added sugar and fiber intake with 

creativity performance could be explained by demographic (age, sex, SES) or other health 

(aerobic fitness, BMI, and TAAT) factors, we conducted bivariate correlations, t tests, and 

one-way ANOVAs, as appropriate between these measures and added sugar and fiber intake. 

TAAT was significantly and negatively associated with fiber intake (r=−.319 p=.017). There 

was also a significant difference in mean dietary fiber intake between SES levels (F(2,54) = 

3.339, p = 0.042). A Tukey post hoc test revealed that dietary fiber intake was significantly 

lower in the ‘low’ SES group compared to the ‘middle’ SES group (p = 0.03), but there were 

no significant differences in dietary fiber intake between the ‘low’ and ‘high’ (p = 0.30) and 
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‘middle’ and ‘high’ SES groups (p = 0.72). We therefore controlled for both SES and TAAT 

in the subsequent partial correlation analyses.

The results of the partial correlation analyses are reported in Table 5. These results 

demonstrate a similar pattern of results as the bivariate correlations, with significant negative 

associations between creativity, driven by the fluency and originality dimensions of the 

TTCT, and added sugar consumption. With regard to dietary fiber, a significant positive 

association remained between nutrient intake and overall creativity performance, although 

only the originality dimension of the task that remained significantly associated.

Discussion

The current study is, to our knowledge, the first to examine the relationship between diet and 

creativity in healthy children. While consumption of dietary lipids (saturated fatty acids and 

Omega-3 fatty acids) was not significantly associated with creativity, children who 

consumed higher amounts of added sugar scored lower on a standardized creativity 

assessment relative to children who consumed lower amounts of added sugar, while the 

inverse relationship was observed with respect to dietary fiber. The associations between diet 

(added sugar and fiber consumption) and creativity remained significant even after 

accounting for central adiposity and socioeconomic status. This finding highlights the 

contribution of added sugar in predicting cognitive performance independent of the increase 

in adiposity that often accompanies consumption of a diet high in added sugar [44]. This 

result is also consistent with findings in animal models, in which the detrimental effects of a 

high-fat, high-sugar diet on hippocampal function and hippocampal-dependent learning and 

memory were observed prior to or independent of significant increases in BMI or adipose 

tissue accumulation [45,46]. The incorporation of adiposity data in our investigation of the 

relationship between diet and creativity critically marks a step forward in the effort to 

untangle the interconnected web linking diet, body composition, and cognitive performance. 

Building on this approach, future studies should continue to incorporate body composition 

measures when investigating the impact of diet on cognitive function.

The role of nutrition and, in particular, individual nutrients, in typical neurodevelopment has 

been increasingly investigated in recent years. Of the two major hallmarks of the Western 

diet (saturated fat and added sugar), saturated fat has received considerably more attention 

within this domain. While previous studies involving children have reported negative 

associations between saturated fat intake and hippocampal-dependent relational memory, as 

well as hippocampal-independent item memory [20], the evidence with respect to other 

cognitive domains has been mixed [43,47,48]. This ambiguity may be due in part to the 

variety in specificity of the dietary and cognitive assessments employed across studies, but 

also hints at the potential heterogeneity of the impact of saturated fat consumption across 

different brain regions or networks. While we were somewhat surprised that saturated fat 

consumption was not significantly associated with creativity performance in our sample, it 

must be noted that, while added sugar and saturated fat consumption tend to co-vary within 

pediatric and adolescent populations [49,50], this was not the case in our sample (Pearson’s 

r = −0.125; p = 0.353). With respect to dietary fiber, the findings presented here are 
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consistent with existing work demonstrating a positive association between dietary fiber 

intake and cognitive function during childhood [43].

Associations between added sugar consumption and cognitive function have rarely been 

reported in humans of any age [51–53]. However, the findings of this study converge with 

the rodent literature in this regard. Hsu et al. [27] reported that the consumption of sucrose 

and high-fructose corn syrup were both associated with impaired hippocampal-dependent 

spatial learning and memory in adolescent rats, and additional studies have observed deficits 

in hippocampal-dependent learning and memory following consumption of a Western diet 

(characterized in part by large amounts of added sugar) [3,5,54]. Strikingly, Noble et al. 
recently reported that added sugar consumption early in life resulted in long-term deficits in 

hippocampal-dependent memory that extended into adulthood [55].

While this study is the first to report a negative association between added sugar 

consumption and hippocampal-dependent cognition in humans, there is clear mechanistic 

support for the association between chronic added sugar consumption and hippocampal 

function within the animal literature. One mechanism by which the consumption of large 

quantities of added sugar impairs hippocampal function is via disruption of hormone 

signaling, both peripherally and within the hippocampus itself. The consumption of a 

Western diet (notably high in simple sugars) is a major contributor to the development of 

resistance to hunger and satiety hormones, including insulin, leptin, and ghrelin [3,56,57], 

which in turn can reduce the efficiency with which these hormones are taken up by the brain 

[58] and blunt intracellular signaling of these hormones within the hippocampus [59,60]. 

Since the signaling systems involving these hormones promote hippocampal synaptic 

plasticity and neurogenesis [61,62], the hormonal resistance brought about by Western diet 

consumption is believed to be a major contributor to reductions in hippocampal plasticity 

and thereby hippocampal function [3,14]. This is borne out behaviorally by the impairments 

in hippocampal-dependent memory performance that accompany the development of insulin 

and ghrelin resistance [3,63]. Notably, while the development of central resistance to these 

hormones is often accompanied by obesity, there is evidence that resistance can develop 

even prior to the onset of obesity [64]. Given the prevalence of insulin resistance among 

children worldwide [65–67] and the presence of multiple risk factors for insulin resistance in 

this population, including but not limited to physical inactivity [68,69], obesity [70], and 

consumption of an excess of carbohydrates [71], future extensions to this work should 

additionally assess insulin resistance in order to address this potential mechanism

The gut microbiome provides another mechanistic link between Western diet and deficits in 

hippocampal-dependent cognition. The composition of the microbial ecosystem within the 

digestive tract is heavily influenced by diet [72], and the putative mechanisms by which 

these Western-diet-induced changes in gut microbiome composition negatively impact 

hippocampal function include the stimulation of neuroinflammatory cytokines [73], the 

alteration of central and peripheral insulin sensitivity [74], and disruptions in the integrity of 

the blood brain barrier within the hippocampus [75]. Dietary fiber has also been shown to 

act via these same mechanisms, by producing bacterial fermentation products such as short-

chain fatty acids which, in turn, down-regulate neuroinflammatory cytokines [76], and by 

promoting insulin sensitivity [77]. While the current data are unable to speak to the 
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associations between participant diet, gut microbiome composition, and cognitive function, 

future studies should include such measures to address this potential connection.

In conclusion, the current study found that children’s performance on a hippocampal-

dependent creativity task was negatively associated with their reported added sugar 

consumption and positively associated with dietary fiber intake. While these significant 

associations did not extend to dietary lipid intake, as has been demonstrated by other studies 

in this age group [20], it remains notable that added sugar, a key component of the Western 

diet previously linked to hippocampal dysfunction, predicted creativity performance even 

after controlling for central adiposity and socioeconomic status. Current recommendations 

as set forth in the 2015–2020 Dietary Guidelines for Americans specify a maximum 

consumption of no more than 10% of daily calories from added sugar [78]. However a recent 

report from the American Heart Association suggests that children in the U.S. between the 

ages of 6 and 11 consume on average 16.4% of their daily calories in the form of added 

sugars, equivalent to approximately 78 g/day [71]. While average added sugar consumption 

in our sample was slightly lower than the national average (64.81 g/day), it still exceeded the 

recommended 10% threshold, consistent with trends observed among U.S. children. Average 

reported fiber intake in our sample was 16.6g/day, which is, at most, two-thirds of the 

adequate intake (AI) value for dietary fiber in children of this age [79]. This fiber intake is 

similar to U.S. national average for children of a similar age [80], which supports the 

generalizability of the results presented here.

Given current dietary trends among U.S. children (namely, overconsumption of added sugar 

and insufficient consumption of dietary fiber) [71,80], the associations between these 

nutrients and cognitive function have broad public health implications and warrant further 

investigation. However, it must be noted that the current cross-sectional study design cannot 

support any causal claims about the relationship between diet and creativity. Future research, 

involving well-controlled longitudinal or interventional studies will provide causal evidence 

of this link in humans.
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Figure 1. 
Scatterplots depicting associations between added sugar intake and TTCT performance. All 

statistics reflect bivariate correlations between creativity measures and normalized nutrient 

intake (Pearson’s r).
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Figure 2. 
Scatterplots depicting associations between dietary fiber intake and TTCT performance. All 

statistics reflect bivariate correlations between creativity measures and normalized nutrient 

intake (Pearson’s r).
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Table 1.

Participant Demographics and Health Characteristics (N=57 unless indicated otherwise)

Measure n (%)

Sex

    Female 34 (60%)

    Male 23 (40%)

Socioeconomic Status

    Low 17 (30%)

    Middle 26 (45%)

    High 14 (25%)

Race/Ethnicity (n=50)

    American Indian or Alaskan Native 1 (2%)

    Asian 5 (10%)

    Black or African American 4 (8%)

    White or Caucasian 30 (60%)

    Mixed Race or Other 10 (20%)

Body Mass Index-for-age percentile

    <85th percentile 34 (60%)

    85th - 95th percentile 16 (28%)

    ≥95th percentile 7 (12%)

Sample Mean ± SEM

Age (years; range = 7.9 – 10.6) 9.1 ± 0.11

Maximal Oxygen Consumption (ml · 1kg−1 · min−1) (n=56) 42.83 ± 1.44

Total Abdominal Adipose Tissue (cm2) (n=56) 169.35 ± 10.51
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Table 2.

Mean daily nutrient intake among preadolescent children (N=57)

Nutrient Value
1

Energy, kcal/d 1855.2 ± 54.0

Carbohydrate, g/d 246.7 ± 8.9

Fat, g/d 70.1 ± 2.3

Protein, g/d 66.4 ± 2.0

SFAs, g/d 24.6 ± 0.9

Omega-3 FAs, g/d 1.41 ± 0.07

Total dietary fiber, g/d 16.67 ± 0.99

Added sugars, g/d 64.81 ± 3.71

1
Mean ± SEM
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Table 3.

Average TTCT Verbal Scores (N=54)

Age-based Standard Score Mean (SEM) Age-based National Percentile Mean (SEM)

Fluency 106.83 (2.62) 60.44 (3.79)

Flexibility 110.26 (2.31) 65.94 (3.46)

Originality 114.52 (2.47) 70.76 (3.55)

Average 110.33 (2.36) 67.43 (3.68)

Nutr Neurosci. Author manuscript; available in PMC 2021 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hassevoort et al. Page 20

Table 4.

Bivariate correlations (Pearson’s r) between nutrient intake and TTCT Verbal score (Age-based standard 

score) (N=53)

Fluency Flexibility Originality Average

SFAs (mg·kcal−1·d−1) −0.128 −0.016 −0.134 −0.100

Omega-3 fatty acids (mg·kcal−1·d−1) 0.177 −0.035 0.137 0.099

Dietary fiber (mg·kcal−1·d−1) 0.242 0.278* 0.342* 0.295*

Added sugars (mg·kcal−1·d−1) −0.332* −0.237 −0.333* −0.313*

*
p < .05

**
p<0.01 (two-tailed)

All nutrient measures have been normalized to intake per 1000 kcal
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Table 5.

Partial correlations (controlling for TAAT and SES) between nutrient intake and TTCT Verbal score (Age-

based standard score). (N=53)

Fluency Flexibility Originality Average

Dietary fiber (mg·kcal−1·d−1) 0.230 0.246 0.355* 0.286*

Added sugars (mg·kcal−1·d−1) −0.430** −0.344* −0.450** −0.427**

*
p < .05

**
p<0.01 (two-tailed)
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