Table 2.
Identity | D | BC | CC | E | All-graphs | |
---|---|---|---|---|---|---|
UNWEIGHTED | ||||||
F-Measure | 0.80 (±0.01) | 0.39 (±0.03) | 0.50 (±0.03) | 0.47 (±0.06) | 0.51 (±0.02) | 0.56 (±0.04) |
Precision | 0.81 (±0.01) | 0.33 (±0.03) | 0.54 (±0.08) | 0.47 (±0.11) | 0.56 (±0.06) | 0.57 (±0.04) |
Recall | 0.80 (±0.01) | 0.48 (±0.04) | 0.55 (±0.04) | 0.55 (±0.04) | 0.56 (±0.03) | 0.60 (±0.04) |
WEIGHTED | ||||||
F-Measure | 0.92 (±0.02) | 0.64 (±0.01) | 0.68 (±0.01) | 0.64 (±0.02) | 0.62 (±0.03) | 0.74 (±0.02) |
Precision | 0.93 (±0.02) | 0.70 (±0.02) | 0.69 (±0.01) | 0.66 (±0.01) | 0.64 (±0.05) | 0.76 (±0.02) |
Recall | 0.93 (±0.02) | 0.65 (±0.02) | 0.69 (±0.01) | 0.64 (±0.02) | 0.63 (±0.03) | 0.75 (±0.03) |
Rows report achieved results using unweighted graphs with unweighted features (upper) and using weighted graphs with weighted features (lower) [Degree (D), Betweenness Centrality (BC), Clustering Coefficient (CC), Local Efficiency (E), with all graph-metrics (all-graphs)] and without features (identity).