Skip to main content
. 2019 Jun 12;13:594. doi: 10.3389/fnins.2019.00594

Table 2.

Cross validation results in terms of F-Measure, Precision, and Recall (± standard deviation) averaged on 3-folds.

Identity D BC CC E All-graphs
UNWEIGHTED
F-Measure 0.80 (±0.01) 0.39 (±0.03) 0.50 (±0.03) 0.47 (±0.06) 0.51 (±0.02) 0.56 (±0.04)
Precision 0.81 (±0.01) 0.33 (±0.03) 0.54 (±0.08) 0.47 (±0.11) 0.56 (±0.06) 0.57 (±0.04)
Recall 0.80 (±0.01) 0.48 (±0.04) 0.55 (±0.04) 0.55 (±0.04) 0.56 (±0.03) 0.60 (±0.04)
WEIGHTED
F-Measure 0.92 (±0.02) 0.64 (±0.01) 0.68 (±0.01) 0.64 (±0.02) 0.62 (±0.03) 0.74 (±0.02)
Precision 0.93 (±0.02) 0.70 (±0.02) 0.69 (±0.01) 0.66 (±0.01) 0.64 (±0.05) 0.76 (±0.02)
Recall 0.93 (±0.02) 0.65 (±0.02) 0.69 (±0.01) 0.64 (±0.02) 0.63 (±0.03) 0.75 (±0.03)

Rows report achieved results using unweighted graphs with unweighted features (upper) and using weighted graphs with weighted features (lower) [Degree (D), Betweenness Centrality (BC), Clustering Coefficient (CC), Local Efficiency (E), with all graph-metrics (all-graphs)] and without features (identity).