Regenerative Therapy 2 (2015) 32—41

ESJSRM

journal homepage: http://www.elsevier.com/locate/reth

Regenerative

Contents lists available at ScienceDirect

Regenerative Therapy

Original article

Identification of the small molecule compound which induces hepatic @CrossMark
differentiation of human mesenchymal stem cells

Noriko Itaba ?, Tomohiko Sakabe * !, Keita Kanki 2, Junya Azumi ¢, Hiroki Shimizu ¢,
Yohei Kono ¢, Yoshiaki Matsumi ?, Ken-ichiro Abe ?, Takayuki Tonoi ™3, Hiroyuki Oka ®,
Toshihiko Sakurai ¢, Hiroyuki Saimoto ¢, Minoru Morimoto b Yo Mabuchi ¢,

Yumi Matsuzaki €, Goshi Shiota "

2 Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan

b Research Center for Bioscience and Technology, Tottori University, 4-101, Koyama, Tottori 680-8550, Japan

¢ Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Koyama, Tottori 680-8552, Japan

d Department of Biochemistry and Biophysics, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510,

Japan

€ Department of Life Science, Laboratory of Tumor Biology, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan

ARTICLE INFO

Article history:
Received 24 July 2015
Received in revised form

ABSTRACT

Human mesenchymal stem cells (MSCs) are expected to have utility as a cell source in regenerative
medicine. Because we previously reported that suppression of the Wnt/B-catenin signal enhances he-
patic differentiation of human MSCs, we synthesized twenty-three derivatives of small molecule com-

11 September 2015

Accepted 3 October 2015 pounds originally reported to suppress the Wnt/B-catenin signal in human colorectal cancer cells. We

then screened these compounds for their ability to induce hepatic differentiation of human UE7T-13
MSCs. After screening using WST assay, TCF reporter assay, and albumin mRNA expression, IC-2, a de-
rivative of ICG-001, was identified as a potent inducer of hepatic differentiation of human MSCs. IC-2
potently induced the expression of albumin, complement C3, tryptophan 2,3-dioxygenase (TDO2),
EpCAM, C/EBPg, glycogen storage, and urea production. Furthermore, we examined the effects of IC-2 on
human bone marrow mononuclear cell fractions sorted according to CD90 and CD271 expression.
Consequently, CD90" CD271" cells were found to induce the highest production of urea and glycogen,
important hepatocyte functions, in response to IC-2 treatment. CD90" CD271 cells also highly expressed
albumin mRNA. As the CD90" CD271" population has been reported to contain a rich fraction of MSCs,
IC-2 apparently represents a potent inducer of hepatic differentiation of human MSCs.
© 2015, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Introduction Notch, Hedgehog, JAK-STAT, BMP, Hippo, and FGF-MAPK signaling
pathways [1]. Wnt signaling is important for the proliferation and

Wnt signaling plays essential roles in balancing the self-renewal maintenance of pluripotency [2—4] and differentiation of stem cells
and differentiation of adult stem cells in conjunction with the [5,6]. Wnt/B-catenin signaling is required for fate decision in neural
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crest stem cells [7], and Wnt3A promotes differentiation into the
neural and astrocytic lineages by inhibiting neural stem cell
maintenance [8], clearly indicating the crucial role of the Wnt/B-
catenin signaling pathway in the lineage restriction of stem cells
[1].

Our previous report demonstrated that Wnt/B-catenin signaling
is suppressed during hepatic differentiation of human MSCs [9,10].
Suppression of Wnt/B-catenin signaling molecules or target genes
induced the hepatic differentiation of human MSCs [9]. Dickkopf
WNT signaling pathway inhibitor 1 (Dkk-1), an antagonistic in-
hibitor of the WNT signaling pathway, promoted hepatic differen-
tiation of bone marrow-derived MSCs [11]. Taken together, these
findings indicate that the suppression of Wnt/B-catenin signals
plays an important role in the hepatic differentiation of MSCs.

Small molecules capable of modulating stem cell fate have sig-
nificant potential as therapeutic agents [12]. Small molecules have
been identified that modulate key developmental pathways,
including Wnt, FGF, Hedgehog, Notch, and BMP/TGF-$, during stem
cell differentiation [12]. Chemical screening approaches have
demonstrated utility in identifying an IDE (inducer of definitive
endoderm) compounds capable of inducing definitive endoderm
differentiation of ES cells [ 13]. In contrast, the use of small molecule
compounds has an advantage of being safer than the use of cyto-
kines, nucleic acids, or protein therapies. Thus, the identification of
small molecule compounds has enhanced the development of stem
cell biology. In the present study, we identified a small molecule
compound that efficiently induces hepatic differentiation of human
MSCs.

2. Materials and methods
2.1. Compounds

Twenty-three derivatives of Wnt/B-catenin signal inhibitors
formerly reported in colorectal cancer cells [15—17] were newly
synthesized inhouse [18]. Each inhibitor used was dissolved in 0.1%
DMSO.

2.2. Cells

To screen synthesized small molecule compounds, the human
bone marrow-derived mesenchymal stem cell (BM-MSC) line,
UE7T-13, was used [19]. To confirm the effects of small molecule
compounds, primary BM-MSCs were prepared as follows: human
bone marrow mononuclear cells purchased from Lonza Walkers-
ville, Inc. (Walkersville, MD, USA) were plated onto culture dishes.
Adherent cells were expanded as a whole cell fraction in DMEM
(Life Technologies Corp., Carlsbad, CA) containing 20% fetal bovine
serum (FBS; GE Healthcare UK Ltd, Little Chalfont, UK), 20 ng/ml
basic FGF (bFGF; TRANS GENIC INC,, Ltd. Kumamoto, Japan), 100 U/
ml penicillin, and 100 pg/ml streptomycin. Cell fractionation was
performed as follows: cells were stained with APC mouse anti-
human CD90 antibodies (BD Biosciences, San Jose, CA, USA) and
PE mouse anti-human CD271 antibodies (Miltenyi Biotec GmbH,
Bergisch Gladbach, Germany) for 30 min on ice. CD90" CD271*
cells, CD90~ CD2717 cells, and CD90~ CD271~ cells were sorted by
MoFlo XDP (Beckman Coulter Inc. Fullerton, CA, USA). Each popu-
lation was cultured and expanded in DMEM containing 20% FBS,
bFGF, and penicillin/streptomycin.

2.3. WST assay
UE7T-13 cells were seeded at a cell density of 9.0 x 10 cells/cm?

before the addition of various concentrations of compounds 1 day
after seeding. After 4 days of treatment, media was replaced with

fresh media containing each compound. Cell viability was assessed
using a cell counting kit (Dojindo Laboratories, Kumamoto, Japan)
at 0, 2, 4, and 8 days after treatment.

2.4. Reporter assay

To establish cell lines for the assessment of Wnt/B-catenin activity
in UE7T-13 cells, a TCF-4 motif-responsive luciferase reporter gene
was developed. In brief, three copies of the optimal TCF-4 motif
CCTTTGATC and cytomegalovirus (CMV) promoter were cloned from
the Tcf4-CMVpro-Luc plasmid [9] and inserted into the multiple
cloning site of the pGL4.20 luciferase reporter plasmid (Promega
Corp., Fitchburg, WI), subsequently designated pTCF4-CMVpro-GL4.2
(Fig. 1). UE7T-13 cells were stably transfected with pTCF4-CMVpro-
GLA4.2 by electroporation and were selected using puromycin result-
ing in the establishment of E7-TCF4 cells. At 24 h after seeding of E7-
TCF4 cells at a density of 9.0 x 103 cells/cm?, various concentrations of
small molecule compounds were added. At 4 days after treatment,
fresh media containing each compound was replaced. On day 1,4, and
8, a Luciferase reporter assay system (Promega Corp.) was performed
using a plate reader (PerkinElmer, Inc., MA).

To confirm Wnt/B-catenin signal transcriptional activity in hu-
man bone marrow mononuclear cells purchased from Lonza, cells
were cultured at a density of 1.8 x 10* cells/cm? for 1 day before
treatment with various concentrations of IC-2. On day 1, the TCF/
LEF reporter lentivirus (Cignal Lenti TCF/LEF Reporter [luc], SABio-
sciences, Qiagen N.V., Frederick, MD, USA) and control renilla
lentivirus (Cignal Lenti TK Renilla Control [luc], SABiosciences,
Qiagen N.V.) were transduced into cells. The Luciferase reporter
assay system (Promega) was performed on day 4 using a Lumin-
ometer (Berthold Japan K.K., Tokyo, Japan). Similarly, lentiviruses
were transduced on day 5 and luciferase reporter assay performed
on day 8.

2.5. Hepatic differentiation

UE7T-13 cells were seeded at a density of 9.0 x 10> cells/cm?,
and each compound was added at 24 h after seeding. Hepatic
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Fig. 1. Map of the pTCF4-CMVpro-GL4.20 plasmid. Three copies of the optimal TCF-4
motif CCTTTGATC and cytomegalovirus (CMV) promoter were cloned from the Tcf4-
CMVpro-Luc plasmid [9] and inserted at Bglll and HindlII restriction enzyme sites in
the multiple cloning sites of pGL4.20 luciferase reporter plasmid (Promega Corp.,
Fitchburg, WI), designated pTCF4-CMVpro-GL4.2. pTCF-CMVpro-GL4.20 was linearized
by Pst1 and electroporated into UE7T-13 cells to establish cell lines for the assessment
of Wnt/B-catenin activity in UE7T-13 cells.
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differentiation was assessed 8 days after treatment with each
compound. Media was changed on day 4. Hepatic differentiation of
primary BM-MSCs was performed using identical conditions except
for a starting cell density of 1.8 x 10% cells/cm?.

2.6. RNA extraction and quantitative RT-PCR analysis

Total RNA was extracted from UE7T-13 cells using TRIzol reagent
(Invitrogen, Life Technologies Corp., Carlsbad, CA). Reverse tran-
scription was performed using SuperScript II First-Strand Synthesis
System for RT-PCR (Invitrogen) and oligo (dT);g primers according
to manufacturer's instructions. Real-time PCR analysis was per-
formed using EXPRESS qPCR Supermix with Premixed ROX (Invi-
trogen) and appropriate combinations of Universal Probe Library
Probes (Roche Diagnostics GmbH, Mannheim, Germany). Primer
sets are listed in Table 1. For each assay, PCR was performed using a
7900 HT Fast Real-Time PCR System (Applied Biosystems, Life
Technologies Corp., Carlsbad, CA, USA). Following the extraction of
total RNA from primary BM-MSCs using TagMan Gene Expression
Cells-to-CT Kits (Life Technologies Corp.), qRT-PCR was performed
using TagMan® Universal PCR Master Mix (Applied biosystems, Life
Technologies Corp., Carlsbad, CA) and appropriate combinations of
Universal Probe Library Probes (Roche Diagnostics GmbH, Man-
nheim, Germany). PCR was performed using a LightCycler System
(Roche Applied Science, Mannheim, Germany).

2.7. Immunofluorescence, PAS staining, and urea assay

After 8 days of incubation with each compound, cells were fixed
and immunofluorescence analysis was performed as previously
described [20]. Urea assays and periodic acid—Schiff (PAS) staining
were performed as previously described [20].

2.8. Statistical analyses

All the values are expressed as means + SD. Groups were
compared using two-way ANOVA followed by Bonferroni's post-
hoc test and one-way ANOVA followed by Dunnett's post-hoc test
using predictive analytics software (SPSS Inc., Chicago, IL, USA).
Differences between two groups were analyzed using the Man-
n—Whitney U test. P-values less than 0.05 were considered statis-
tically significant.

3. Results

3.1. Newly synthesized derivatives of known small molecule
inhibitors of Wnt/B-catenin signaling

The following twenty-three compounds were newly-
synthesized inhouse based on known Wnt/B-catenin signaling

Table 1
Primer and probe number information for qRT-PCR.

Primer  Sequences (5'—3’) Product (bp) Probe
no.

ALB Forward: CAAAGATGACAACCCAAACCTC 126 54
Reverse: GGATGTCTTCTGGCAATTTCA

C3 Forward: CAGCACCATGGGACCCACCTCAG 120 40
Reverse:  CTCTCCAGCCGCAAGATGTTGGG

TDO2 Forward: CGATGACAGCCTTGGACTTC 76 67
Reverse: CGGAATTGCAAACTCTGGA

EpCAM  Forward: GATGGCTCTCATCCCAGACTT 111 3
Reverse:  AGTCCATGTGAATGGGTTCC

GAPDH Forward: AGCCACATCGCTCAGACAC 66 60
Reverse:  GCCCAATACGACCAAATCC

inhibitors [18]: HC-1, a derivative of hexachlorophene; PK-2 and
PK-3, derivatives of PKF118-310; IC-2, IC-3, and IC-4, derivatives of
ICG-001; RRRR, RSRS, and SRSR, derivatives of NSC668036; and PN-
1-2, PN-1-3, PN-2, PN-3, PN-3-3, PN-3-4, PN-3-5, PN-3-8, PN-3-9,
PN-3-12, PN-3-13, PN-3-16, PN-3-17, and PN-3-19, derivatives of
PNU-74654 (Fig. 2).

3.2. Effects on the viability of human MSCs

To identify compounds with low toxicity during hepatic differ-
entiation, cell viability of human MSCs was assessed using WST
assays. Not more than approximately 8 uM of HC-1 was regarded as
safe over 8 days of treatment (Fig. 3A). Correspondingly, approxi-
mately 20 pM or less of IC-2, approximately 7 uM or less of PN-1-2,
approximately 30 uM or less of PN-3-4, approximately 10 uM or less
of PN-3-13, and approximately 40 uM or less of PN-3-17 were
considered safe concentrations for use during hepatic differentia-
tion (Fig. 3B—F).

3.3. Small molecule compounds inhibiting TCF4/3-catenin
transcriptional activity in E7-TCF4 cells

TCF4/B-catenin transcriptional activity was measured using a
luciferase reporter assay. Of the twenty-three small molecule
compounds, six compounds were found to suppress TCF4/B-catenin
transcriptional activity in E7-TCF4 cells after 1, 4, and 8 days
treatment. HC-1 suppressed luciferase activity at 2 and 4 uM on day
8 only (Fig. 4A). IC-2 clearly suppressed luciferase activity in a time-
and dose-dependent manner (Fig. 4A). After 8 days of treatment,
IC-2 was found to suppress rates of luciferase activity by approxi-
mately 50%. Four derivatives of PNU-74654, including PN-1-2, PN-
3-4, PN-3-13, and PN-3-17, demonstrated modest inhibitory effects
on luciferase activity (Fig. 4C—F, respectively). Of the four de-
rivatives of PNU-74654, PN-3-13 was found to be the most potent
inhibitor of TCF4/B-catenin transcriptional activity.

3.4. Effects on hepatic differentiation of human MSCs

Of the six compounds that exhibited suppressive effects on
TCF4/B-catenin transcriptional activity, we evaluated the ability of
HC-1, PN-3-13, and IC-2 to induce hepatic differentiation of human
MSCs (Fig. 5). First, we examined mRNA expression of albumin, C3,
tryptophan 2,3-dioxygenase (TDO2), and EpCAM by UE7T-13 cells
treated with each compound for 8 days (Fig. 5A). Increased
expression of albumin was observed in cells treated with 15 pM IC-
2. Treatment with 7 uM PN-3-13 and 15 pM IC-2 induced com-
plement C3 expression. TDO2 expression was induced by 2 pM HC-
1 and 15 uM IC-2, respectively. Interestingly, 15 pM IC-2 signifi-
cantly increased the expression of TDO2, a key modulator of he-
patocyte function, compared with treatment with 0.1% DMSO.
Elevated expression of EpCAM was observed following treatment
with 15 uM IC-2 only. According to the expression of albumin, C3,
TDO2, and EpCAM, IC-2 is apparently a potent inducer of the he-
patic differentiation of human MSCs. Moreover, immunofluores-
cence analysis revealed that the expression of albumin was
observed in mainly in the cytoplasm and faintly in the nucleus
although it was restricted to the cytoplasm in Huh-7 cells (Fig. 5B).
C/EBPa. was also induced in cells treated with 15 uM IC-2, however,
its localization was not confined in the nucleus (Fig. 5B). These
phenomena may be supported by the reports that localization of
albumin and C/EBP« in the transdifferentiated hepatocytes differs
from in mature hepatocytes [21,22]. PAS staining demonstrated
increased glycogen storage in response to treatment with 15 uM IC-
2 compared with treatment with 0.1% DMSO (Fig. 5C). Moreover,
urea production, one of the most important hepatocyte functions,
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Fig. 2. Chemical structures of newly synthesized derivatives from known small molecule inhibitors of Wnt/f-catenin signaling. A, HC-1; B, PK-2; C, PK-3; D, IC-2; E, IC-3; F, IC-4; G,
RRRR; H, RSRS; [, SRSR; J, PN-1-2; K, PN-3-1; L, PN-3-2; M, PN-3; N, PN-3-3; O, PN-3-4; P, PN-3-5; Q, PN-3-8; R, PN-3-9; S, PN-3-12; T, PN-3-13; U, PN-3-16; V, PN-3-17; W, PN-3-19.

Inhibitors were dissolved in 0.1% DMSO for further use.

was increased by approximately 3-fold in response to treatment
with IC-2 compared with day 0 and was higher than in Huh-7 cells
(Fig. 5D). These data indicate that IC-2 could induce hepatic spec-
ification of MSCs through inhibiting Wnt/f-catenin signal.

3.5. Suppressive effects on TCF4/(-catenin transcriptional activity in
primary human bone marrow mononuclear cells fractionated
according to CD90 and CD271 expression

The CD90™ CD2717" population of primary human bone marrow
mononuclear cells has been reported to be enriched for CFU-Fs
with the potential to differentiate into osteoblasts, chondrocytes,
and adipocytes, indicating the presence of MSCs in this fraction
[23]. Primary human bone marrow mononuclear cells were

fractionated according to expression of CD90 and CD271 (Fig. 6A).
The appearances of the unsorted whole bone marrow nuclear cells,
CD90" CD271" cells, CD90~ CD271" cells, and CD90~ CD721" cells
are shown in Fig. 6B. All sorted cells had fibroblastic morphology.
CD90" CD271 cells grew very slowly and poorly expanded.
Accordingly, this fraction of cells was excluded from further anal-
ysis. In unsorted whole bone marrow mononuclear cells and CD90~
CD721~ cells, IC-2 suppressed TCF4/B-catenin transcriptional ac-
tivity in a dose-dependent manner after both 4 and 8 days treat-
ment (Fig. 6Ca and Cd). Suppressive effects of IC-2 on luciferase
activity in CD90" CD7217% cells were clearly observed on day 4 but
not on day 8 (Fig. 6Cb). In CD90~ CD271" cells, IC-2 suppressed
luciferase activity on day 4 and day 8 (Fig. 6Cc). These data
demonstrate that IC-2 is capable of suppressing TCF4/B-catenin
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points. *P < 0.05, and **P < 0.01 compared with 0.1% DMSO.

transcriptional activity in unsorted whole bone marrow nuclear
cells, CD90™ CD2717 cells, CD90~ CD2717 cells, and CD90~ CD721~
cells.

3.6. IC-2 potently induced hepatic differentiation of CD90" CD271"
human bone marrow mononuclear cells

Albumin mRNA expression after IC-2 treatment was assessed in
four populations, including the unsorted whole bone marrow nu-
clear cells, CD90" CD271% cells, CD90~ CD271% cells, and CD90~
CD721" cells (Fig. 7A). Unsorted whole bone marrow nuclear cells,

CD90" CD271" cells, and CD90~ CD721" cells demonstrated similar
expression profiles in response to IC-2 treatment in a dose-
dependent manner. However, the effects of IC-2 on CD90~
CD721~ cells were minimal. Immunohistochemical analysis
revealed that the expression of albumin and C/EBPa in CD90™
CD2717 cells was higher than that in unsorted whole bone marrow
nuclear cells and CD90~ CD721" cells (Fig. 7B). PAS staining
demonstrated greater glycogen contents in CD90" CD271% cells
than in unsorted whole bone marrow nuclear cells and CD90™
CD7217 cells (Fig. 7C). Finally, urea production was found to be the
highest in CD90" CD271" cells of the three assessed cell
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assay. Of the twenty-three small molecule compounds, six compounds suppressed TCF4/B-catenin transcriptional activity in E7-TCF4 cells. A, HC-1; B, IC-2; C, PN-1-2; D, PN-3-4; E,
PN-3-13; F, PN-3-17. Data are expressed as mean + SD (n = 3). Relative luciferase activity was expressed as a ratio of 0.1% DMSO. Two-way ANOVA followed by Bonferroni's post hoc-
test was used to compare the relative luciferase activities of UE7T-13 cells following treatment with different concentrations at different time points. *P < 0.05 and **P < 0.01

compared with 0.1% DMSO at each corresponding time point.

populations (Fig. 7D). These data indicate that IC-2 induces hepatic
differentiation of human bone marrow mononuclear cells, partic-
ularly CD90™ CD2717 cells.

4. Discussion

Human MSCs have been reported to be capable of differentiating
into hepatocytes [20,24—28]. Differentiating protocols predomi-
nantly involve incubation with combinations of several cytokines.
However, the overexpression of hepatocyte-specific transcription
factors, such as HNF-3p and HNF-4q, determines and enhances
hepatic specification [20,28]. The findings of the present study

demonstrated the use of a single compound, rather than a combi-
nation of cytokines or hepatocyte nuclear factor gene expression,
was able to induce the hepatocytic differentiation of human MSCs.
Our and other groups have reported that the downregulation of the
Wnt/B-catenin pathway induces hepatic differentiation of MSCs
[9—11]. Although the mechanisms regulating hepatic differentia-
tion of human MSCs have yet to be fully elucidated, B-catenin
expression has been shown to be suppressed during the compe-
tence and specification stages of normal liver development [29,30].
Wnt/B-catenin signaling has been reported to maintain stemness
[31]. Differentiation toward endoderm is induced by activin/Nodal
signals. Endodermal progenitor cells, including hepatic progenitors,
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experiments. One-way ANOVA, followed by Dunnett's post-hoc test, was used to compare urea production in UE7T-13 cells following treatment with different compounds at day 8.

*P < 0.05 and **P < 0.01 compared with 0.1% DMSO.

can be generated by the culture of ES cells with activin, BMP-4, and
FGF-4 [32]. Inhibition of Wnt/B-catenin pathways suppresses
expression of BAMBI, BMP, and activin membrane-bound inhibitor,
indicating that the suppression of Wnt/B-catenin signals may
induce activin/Nodal signaling in response to BAMBI inhibition

[33]. In the present study, HC-1, IC-2, and PN-3-13 similarly sup-
pressed Wnt/B-catenin signaling, however, IC-2 was the most
potent inducer of hepatic differentiation. These data indicate that
other factors are involved in hepatic differentiation, although the
suppression of Wnt/B-catenin signals is required for hepatic
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differentiation of human MSCs. Therefore, further studies are
required to identify other factors involved in regulating the hepatic
specification of human MSCs.

As small molecule compounds are more safe and stable than
nucleic acids and protein products, they have greater applicability
in clinical settings [12—14]. Small molecule compounds have been
reported to have diverse functions, including the modulation and

maintenance of pluripotent stem cells, self-renewal of tissue-
specific stem and progenitor cells, and induction of stem cell dif-
ferentiation and reprogramming [12]. Molecules that interact with
IC-2 were not determined in the present study. It has been reported
that ICG-001 suppresses Wnt/B-catenin signals by binding CREB-
binding protein (CBP) [34,35]. As IC-2 is a derivative of ICG-001
[18], IC-2 may interact with CBP. Therefore, further studies aimed
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test. *P < 0.05 and **P < 0.01 compared with 0.1% DMSO.

at identifying proteins that interact with IC-2 and determining the
precise mechanisms underlying the hepatic differentiation of hu-
man MSCs are required in the near future.

5. Conclusion

We screened twenty-three newly synthesized derivatives of
small molecule compounds generated from several known Wnt/[3-
catenin signal inhibitors. IC-2 was identified as a potent small
molecule inhibitor capable of inducing the differentiation of human
mesenchymal stem cells into hepatocytes. IC-2 potently induced

hepatic differentiation of human bone marrow mononuclear cells
which express CD90 and CD271.
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