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a b s t r a c t

Much attention has been paid to three-dimensional cell culture systems in the field of regenerative
medicine, since three-dimensional cellular aggregates, or spheroids, are thought to better mimic the
in vivo microenvironments compared to conventional monolayer cultured cells. Synthetic calcium
phosphate (CaP) materials are widely used as bone substitute materials in orthopedic and dental sur-
geries. Here we have developed a technique for constructing a hybrid spheroid consisting of mesen-
chymal stem cells (MSCs) and synthetic CaP materials using a spheroid culture device. We found that the
device is able to generate uniform-sized CaP/cell hybrid spheroids rapidly and easily. The results showed
that the extent of osteoblastic differentiation from MSCs was different when cells were grown on
octacalcium phosphate (OCP), hydroxyapatite (HA), or b-tricalcium phosphate (b-TCP). OCP showed the
greatest ability to increase the alkaline phosphatase activity of the spheroid cells. The results suggest that
the spheroids with incorporated OCP may be an effective implantable hybrid consisting of scaffold
material and cells for bone regeneration. It is also possible that this CaPecell spheroid system may be
used as an in vitro method for assessing the osteogenic induction ability of CaP materials.
© 2016, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

The development of three dimensional (3-D) cell culture models
has attracted a great deal of attention in the field of tissue engi-
neering, since 3-D cell cultures appear to better mimic the micro-
environment around cells within the body as well as stimulate
physiological responses compared to conventional two dimen-
sional (2-D; monolayer) cultures. The creation of functional 3-D
tissue with or without scaffold materials could be useful not only
for tissue engineering, but also for helping to better understand
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basic mechanisms of cellecell and/or cellematrix interactions and
tissue development.

One of the biggest problems of using 3-D cell aggregates in
regenerative medicine is the development of hypoxia and subse-
quent cell death due to a lack of oxygen supply in the center of cell
aggregates. To overcome this problem, we have developed an
oxygen-permeable spheroid culture device [1]. As an alternative
approach, other groups have reported the use of microspheres in
cell aggregates in order to prevent a lack of oxygen and nutrients in
the center of spheroids. In those studies, it was shown that the
incorporation of microbeads made of gelatin [2] and alginate [3]
into cell aggregates promoted cell activities.

Here we present a methodology to promote osteoblastic dif-
ferentiation of mesenchymal stem cells by incorporating micro-
particles consisting of calcium phosphate (CaP) materials. We
hypothesized that the presence of the CaP minerals may favor
osteoblastic differentiation of cells in the cell aggregates. In this
paper, we compare the formation of aggregates and the
sting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
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osteoblastic differentiation of mesenchymal stem cell strain D1
with or without three types of CaP materials: hydroxyapatite (HA),
b-tricalcium phosphate (b-TCP), or octacalcium phosphate (OCP).
HA and b-TCP are commonly used bone substitutes in clinical use.
Our previous study showed that OCP promotes new bone forma-
tion compared to HA and b-TCP in bone defects of rat tibia [4]. In
this study we present a novel 3-D cell culture system that could be
an effective strategy for promoting osteoblastic differentiation of
MSCs in vitro.
2. Materials and methods

2.1. Fabrication of spheroid culture chips

We prepared a spheroid culture chip as previously described [1].
Briefly, a polydimethylsiloxiane (PDMS) negative mold was repli-
cated from a prototype culture device utilizing the thin PDMS
membrane deformation by applying negative pressure [5]. A PDMS
(Silpot 184, Dow Corning Toray, Co. Ltd., Tokyo, Japan) prepolymer
was prepared bymixing the base and curing agent at a ratio of 10:1.
The negative mold was immersed in 4% Pluronic F-127 (Sigma-
eAldrich, St. Louis, MO, USA) solution for 24 h to facilitate wetting
of the surface of the mold and to prevent PDMS-to-PDMS adhesion
[1]. PDMS prepolymer was poured into the PDMS negative mold
and cured at 70 �C for 1 h. The PDMS replicawas peeled off from the
mold and used in the cell culture in the present study (Oxy chip).
The Oxy chip was designed to consist of multicavities (512 wells,
1.00 mm in diameter, 1.05 mm pitch, 1.06 mm in depth) in a
triangular arrangement on a 25 � 25 mm section of the cell culture
area.
2.2. Cell culture

Mouse bone marrow-derived mesenchymal stem cells (D1 ORL
UVA [D1]) were obtained from ATCC (Rockville, MD, USA). The cells
weremaintained in minimumDulbecco's Modified Eagle's medium
(DMEM) containing 10% fetal bovine serum (FBS; SigmaeAldrich,
St. Louis, MO) and 1% penicillin/streptomycin (PS, Invitrogen-Gibco,
Carlsbad, CA) at 37 �C in a 5% carbon dioxide environment. The
PDMS chips were sterilized in an oven (160 �C, 2 h). Before use, the
PDMS chips were incubated with 2 ml of 4% Pluronic F-127 solution
overnight. The polymer is adsorbed on the surface of the PDMS and
prevents cell attachment [1,6]. The chips were then rinsed three
times with DMEM to remove excess Pluronic F-127.

OCP was prepared by mixing calcium and phosphate solutions
as previously described [7]. Commercially available sintered b-TCP
(OSferion: OLIMPUS TERUMO BIOMATERIALS, Tokyo, Japan) and
HA (APACERAM: PENTAX, Tokyo, Japan) were purchased. OCP, b-
TCP, and HA granules were obtained by passing them through a
standard testing sieve (270-mesh sieve and 53 mm). The sieved
granules were sterilized by heating at 120 �C for 12 h. The average
particle size of CaPs was measured using a SHIMAZDU SALD-2000J
laser diffraction particle size analyzer. The analysis revealed that
the average size of OCP, HA, and b-TCP were 30.5, 18.8, 41.9 mm,
respectively.

D1 cells (1.0� 106 cells) weremixed with OCP granules (1.0 mg),
b-TCP granules (2.0 mg), or HA granules (5.0 mg) in 3 ml of oste-
ogenic differentiation medium (DMEM supplemented with 10%
FBS, 1% PS, 50 mg/ml ascorbate 2-phosphate, 10 mM b-glycero
phosphate, and 100 nM dexamethasone). Cells (1.0 � 106 cells)
without calcium phosphate granules were inoculated in the Oxy
chip as a control group. All cells were cultured at 37 �C, 5% CO2, and
95% air in humidified incubators. The culture mediumwas changed
every two days.
2.3. Spheroid diameter measurement

To evaluate changes in spheroid diameter, spheroids were
photographed with a photomicroscope (Leica DFC300 FX, Leica
Microsystems Japan, Tokyo, Japan). Spheroid diameters were
analyzed using an image analysis program forWindows (Image-Pro
Plus 7.0, Media Cybernetics Inc., Bethesda, MD, USA). Aminimum of
30 spheroids on each chip were photographed and diameters were
measured. Spheroid diameter was defined as the average length of
diameters measured at two-degree intervals joining two outline
points and passing through the centroid.

2.4. Measurement of DNA content and alkaline phosphatase (ALP)
of D1 cells

Cells on culture chips were rinsed three times with phosphate
buffered saline (PBS). Spheroids were then retrieved from culture
chips by washing them out with PBS using a plastic pipette. The
collected spheroids were suspended in 0.5 ml of 0.2% Triton X-100
solution and sonicated in an ice bath. DNA concentration in cell
lysate was measured using a Quant-iT™ PicoGreen® dsDNA kit
(Invitrogen). ALP activity was measured using a commercially
available kit (Wako Pure Chemical Industries, Ltd.). The ALP activity
was normalized using DNA amounts as determined with the Pico
Green kit.

2.5. Analysis by histochemistry

Cells with or without calcium phosphate materials were incu-
bated in the culture chip for 7 days as described above. At day 7, cell
culture chips were rinsed three times with PBS. The spheroids
collected from the culture chips were fixed in 10% formalin for 24 h.
Spheroids were then rinsed with PBS and embedded in 2.5% fibrin
gel. Fibrin clot containing spheroids were fixed in 10% formalin for
24 h at 4 �C. Serial sections (3.5 mm) were mounted onto silane-
coated slides and stained with hematoxylin-eosin (HE). Photo-
graphs were takenwith a photomicroscope (Leica DFC300 FX, Leica
Microsystems Japan, Tokyo, Japan).

2.6. Statistical analysis

Results were expressed as the mean ± standard deviation (SD).
All experiments were performed at least three times and showed
reliable reproducibility. Statistical differences among specimens
were evaluated by TukeyeKramer multiple comparison analysis. A
value of p < 0.05 was regarded as statistically significant.

3. Results

3.1. Formation of D1 cell spheroids and CaP/cell spheroids

Fig. 1 shows light microscopic images of spheroid formation of
D1 cells and formation of CaP/cell spheroids on the culture chips.
Spheroids of only D1 cells formed on the chip within one day. The
size of CaP/cell spheroids was always larger than that of spheroids
consisting of only D1 cells during the culture period. An assembly of
cells with OCP or HAwas slower than that with b-TCP. However, all
spheroids of CaP/cells became well-assembled at day 7. This result
indicates that the efficiency of incorporation of CaP granules was
very high with the Oxy chip without rotation or shaking regardless
of the type of CaP material used.

Changes in spheroid diameter of each cell aggregate on the
culture chips were measured and shown in Fig. 2. The initial mean
diameter of OCP/cell, HA/cell, and b-TCP/cell spheroids was 300 mm,
383 mm, and 214 mm, respectively, and larger than D1 cells alone



Fig. 1. Light microscopic images of spheroid formation on the Oxy chips. Bar ¼ 1 mm.
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Fig. 2. Changes in the diameter of D1 cell spheroids and CaP/cell spheroids. N ¼ 30 spheroids at each point.
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(181 mm). However, the size of the spheroids of HA/cells at day 7
became gradually smaller and approached the diameter of the OCP/
cell spheroids. In contrast, the size of OCP/cells, b-TCP/cells, and D1
cells alone remained a constant size during the culture period.
3.2. Effect of CaP granule incorporation into the spheroids on
osteoblastic differentiation of D1 cells

To evaluate the effect of CaP material incorporation on osteo-
blastic differentiation, the ALP activity of D1 cells in each spheroid
wasmeasured at day 7 (Fig. 3). Incorporation of CaPmaterials in the
spheroids promoted ALP activity compared to spheroids consisting
of only cells. In particular, the incorporation of OCP in the spheroids
dramatically improved the ALP activity of D1 cells, which was
approximately 20 times higher than that of D1 cells alone.
3.3. Histological analysis of D1 cell spheroids and CaP/cell spheroids

Fig. 4 shows the photographs of H-E staining of D1 cell spheroids
and CaP/cell spheroids. No necrotic regions were found in the
spheroid cores for all experimental conditions based on cross-
sections of H-E staining. In the CaP/cell spheroids, CaP granules
were incorporated in the spheroids and surrounded by cells.
4. Discussion

The present study describes methods for preparing spheroids
consisting of D1 cells and CaP materials by using a spheroid culture
device, Oxy chip. Our findings suggest that these spheroids have
potential utility in bone regeneration. Osteoblastic differentiation
of D1 cells tended to occur in the CaP/cell spheroids, but was
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dramatically induced in OCP/cell spheroids. These results suggest
that OCP provides an appropriate scaffold for supporting the
osteoblastogenesis of MSCs.

Previous studies have reported that a 3-D culture system is
useful for promoting cell differentiation because it can bettermimic
in vivo conditions compared to 2-D cultures. For example, Garreta
et al. showed that mouse embryonic fibroblasts (MEFs) cultured in
a 3-D environment show enhanced osteoblastic differentiation
compared to those in a 2-D environment [8]. Other groups have
shown that proliferation and osteoblastic differentiation of human
MSCs is promoted when cells are cultured in a 3-D culture with a
radial flow bioreactor [9]. We preliminarily confirmed that D1 cell
spheroids prepared with the Oxy chip exhibited significantly
increased osteoblastic differentiation compared to D1 cells cultured
Fig. 4. H-E staining of (A) D1 cell spheroids, (B) OCP/cell spheroids, (C) HA/cell spheroids, a
and b-TCP/cell spheroids in the medium was 294 mm, 297 mm, and 250 mm, respectively.
in a conventional (gas non-permeable) chip or in 2-D cultures. In
the present study, the formation of spheroids with CaP materials
tended to promote osteoblastic differentiation compared to D1 cells
cultured alone, indicating that CaP adjacent to D1 cells represents
an effective material for inducing osteoblastogenesis in the 3-D
spheroid cultures. The light microscopic images and histochemi-
cal analysis demonstrated that the surface structure and topology
of the Oxy chip provide appropriate environments for the incor-
poration of CaP materials into the spheroids. Moreover, histological
analysis revealed that CaP granules were incorporated into the core
of the spheroid and covered by cells. One of the challenges with a
spheroid structure is the prevention of oxygen and nutrient ex-
change within the center of the spheroid due to its tightly packed
and highly dense structures. It is likely that oxygenation by PDMS
as well as the reduction in cell density through CaP granule
incorporation within the scaffold promotes osteoblastic differen-
tiation of MSCs in the hybrid spheroids.

Among CaP materials, it is noteworthy that OCP induced the
greatest ALP activity of D1 cells in a 3-D spheroid system (2.5 times
higher than HA, 2.8 times higher than b-TCP). OCP possesses unique
characteristics, including the gradual conversion to HA accompa-
nied with the incorporation of calcium ions and release of phos-
phate ions under physiological conditions [10,11]. We previously
showed that OCP can induce osteoblastic differentiation of a mouse
stromal cell line in vitro [12,13] and rat MSCs in vivo [14].

The physicochemical properties of CaP also influenced the for-
mation of the spheroids. We postulate that the different behaviors
of spheroid formation are due to the characteristics of CaP crystals,
such as solubility, crystal surface topography, hydrophilicity, and
electrical potential when CaP is incorporated in the spheroids of D1
cells. Solubility decreases in the order of OCP, b-TCP, and HA at
physiologic pH 7.4 and 25 �C [11,15,16]. The difference in solubility
among CaP materials and the process of converting OCP to HA
would affect cell activity [17]. A previous study revealed that the
size and microstructure of CaP dramatically altered initial cell
adhesion, which affected the bone regeneration of a mouse calva-
rial defect [17]. Consistent with our previous studies, the
nd (D) b-TCP/cell spheroids after 7 days in culture. Mean diameter of OCP/cell, HA/cell,
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physicochemical and biological characteristics of OCP affected the
activity of D1 cells and enhanced osteoblastic differentiation, even
in 3-D spheroids. The present technique is currently being applied
to primary MSCs and in vivo bone regeneration experiments.

5. Conclusions

In the present study, we have developed a method to success-
fully incorporate CaPs into D1 cell aggregates using the Oxy chip.
Incorporation of CaP microparticles promoted ALP activity of D1
cells. However, the factors responsible for regulating osteoblastic
differentiation of MSCs in the spheroids remain unknown. Further
studies are needed to elucidate the mechanism facilitating osteo-
blastic differentiation over a longer time period and to identify the
appropriate conditions of CaP/cells for application in bone regen-
eration. Moreover, it is possible that this CaP/cell spheroid system
may be useful as an in vitro assessmentmethod for determining the
osteogenic induction capacity of CaP materials.
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