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a b s t r a c t

Cell surface engineering using single-stranded DNAepoly(ethylene glycol)-conjugated phospholipid
(ssDNAePEG-lipid) is useful for inducing cellecell attachment two and three dimensionally. In this re-
view, we summarize our recent techniques for cell surface engineering and their applications to islet
transplantation. Because any DNA sequence can be immobilized onto the cell surface by hydrophobic
interactions between ssDNAePEG-lipid and the cellular membrane without impairing cell function, a cell
ecell hybrid can be formed through the DNA hybridization. With this technique, it would be possible to
create three-dimensional hybrid structures of pancreatic islets coated with various accessory cells, such
as patients’ own cells, mesenchymal and adipose-derived stem cells, endothelial progenitor cells, neural
crest stem cells or regulatory T cells, which might significantly improve the outcome of islet trans-
plantation in diabetic patients.
© 2016, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
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1. Introduction

Diabetes is characterized by hyperglycemia due to an absolute
or relative lack of insulin to cover the metabolic needs of the body.
The disease is commonly divided in type 1 and type 2 diabetes but
its etiology and pathogenesis is quite heterogeneous. A common
denominator is, however, the loss of functional insulin producing
cell (beta-cell) mass. This is caused in by immunological mecha-
nisms in type 1 diabetes and is probably inherent when exposed to
external stress in type 2 diabetes. Exogenous insulin therapy cannot
sting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
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approximate normal physiological pulsatile insulin secretory pat-
terns with complete integrity and rarely attains normal blood
glucose levels without the risk of major hypoglycemic episodes and
devastating complications including retinopathy, nephropathy, and
neuropathy; therefore, more effective therapy needs to be
established.

Presently, diabetes can neither be prevented nor cured by other
means that cell replacement including pancreas and pancreatic
islet transplantation. Islets are aggregates of 1000e2000 endocrine
cells (including beta-cells) that form cell clusters of up to 300 mm
within the pancreas. For clinical islet transplantation, these cells are
isolated from the pancreases of a few brain-dead donors and
infused into the liver via the portal vein of diabetic recipients or
their body. Because the procedure is less invasive to patients, this
treatment is very promising, and various related clinical reports
have been published since the beginning of the 1970s [1e3].
However, recipients must take immune-suppressive drugs to pro-
tect grafts from immune rejection.

In addition, the first days after transplantation are characterized
by dynamic changes resulting in substantial early cell death and
dysfunction due to multiple factors including insufficient graft
revascularization [4], and re-innervation [5], alloimmune rejection
and recurrence or persistence of autoimmunity [6], toxicity of
immunosuppressive regimens [7], liver ischemia with subsequent
cytotoxicity [8] and inflammatory reactions. Exposure of the islet
surface to recipient blood activates blood coagulation and a com-
plement response, which subsequently induces inflammation after
infusion into the liver [9e11]. This series of reactions, is recognized
as instant blood-mediated inflammatory reaction (IBMIR), leads to
immediate islet destruction immediately after intraportal trans-
plantation [12]. Despite intense scientific efforts, this issue still
remains unresolved in clinical islet transplantation. Several studies
have been conducted to examine ways to protect islets from IBMIR
using systemic administration of anticoagulants, anti-thrombin
inhibitors, melagatran [13], low-molecular weight dextran sulfate
[14], and some complement inhibitors [9,15]. However, systemic
administration is always associated with a bleeding risk. Alterna-
tively, our group has examined immobilization of bioactive sub-
stances and living functional cells onto the islet surface, which
could provide local regulation of unfavorable reactions [16e20]. By
using this technique the risk of bleeding, associated with systemic
modulation of coagulation and complement after intraportal islet
transplantation would be avoided. In preclinical studies, co-
transplantation of islets of Langerhans with accessory non-islet
cells, such as mesenchymal and adipose-derived stem cells
[21e24], endothelial progenitor cells [25e27], neural crest stem
cells [28,29] or regulatory T cells [30], has been show to improve
the outcome of islet transplantation. Thanks to their pleiotropic
effects, including angiogenic, anti-apoptotic and immunomodula-
tory effects, these cells might prove to be superior compared to
drug-based approaches that often target single components of islet
graft failure. In particular, our group has already shown that coating
of the islet surface with endothelial cells has the potential to
significantly inhibit IBMIR completely because endothelial cells
express regulators for coagulation and complement systems and
the exposed surface can mimic the endothelium of the recipient. In
fact, our group has already published some promising results [31].

Co-transplantation of islets and other cells thus can be an
alternative to the surface-modification approach. However, the
hybrid of islets and other cells is not easy to achieve because
cellecell attachment cannot be induced without general cadher-
inecadherin interactions. Although interaction with collagen on
the islet surface can be available for attaching endothelial cells, an
engineering approach should be established to expand this idea to
the use of various functional cells. To address this issue, we have
used a cell surface-modification technique with single-stranded
DNAePEG-conjugated phospholipid (ssDNAePEG-lipid), which
enabled us to induce cellecell attachment two dimensionally (2D)
and three dimensionally (3D). In this review, we summarize our
recent techniques for cell surface engineering and their applica-
tions to islets transplantation.

2. Immobilization of ssDNA on the cell surface by
hydrophobic interactions

ssDNA can be immobilized on the living cell surface without
influencing cell viability by using an amphiphilic polymer, PEG-
conjugated phospholipid (PEG-lipid), which consists of both a hy-
drophilic domain (PEG) and a hydrophobic domain (lipid) (Fig. 1A)
[19,32,33]. For this purpose, ssDNAePEG-lipid is used where any
sequence of DNA is available for the conjugation [34]. When the
lipid domain of ssDNAePEG-lipids is spontaneously incorporated
into the lipid bilayer membrane by hydrophobic interactions, the
hydrophilic ssDNAePEG domain is displayed on the cell surface
(Fig. 1B). Here the molecular weight of PEG of ssDNAePEG-lipids
was 5 kD. The role of the PEG is a spacer for anchoring ssDNA on cell
surface. Thus, it is possible to immobilize ssDNA on the cell surface.
Although ssDNAePEG-lipids are incorporated into the cellular
membrane, there was no cytotoxicity for primary cells, cell lines,
and islets after the cell surface modification. In addition, this sur-
face modification of islets with ssDNAePEG-lipids does not impair
insulin secretion ability from the insulin release assay [20]. These
results indicated that our approach with ssDNAePEG-lipids did not
influence cellular function.

One approach is the use of polyA20ePEG-lipid and poly-
T20ePEG-lipid for attaching different cells through DNA hybridi-
zation. Because the hybridization between polyA20 and polyT20 is
a rapid and specific reaction, it is easy to design 2D and 3D cell
organization. Addition of ssDNAePEG-lipid solution to the cell
suspension and incubation at room temperature for 30min leads to
modification of the cell surface with ssDNAePEG-lipid. To examine
the existence of ssDNA (i.e., polyA20) on the cell surface, FITC-
labeled complementary ssDNA0 (FITC-polyT20) is used (Fig. 1C).
Clear fluorescence from FITC-polyT20 is observed only on the cell
surface, which is treated with polyA20ePEG-lipid, indicating the
immobilization of polyA20ePEG-lipid. Of importance, the whole
cell surface is uniformly covered with polyA20ePEG-lipid. Actually,
there are lots of membrane proteins existing on cellular mem-
branes. Since ssDNAePEG-lipids are hydrophobically interactive
with lipid bilayer membrane domains, they are separately located
on the cell membrane and available for DNA hybridization. There-
fore, using ssDNAePEG-lipid makes it possible to immobilize any
DNA sequence on the cell surface for further reactions that lead to
2D and 3D cell organization. Multiple membrane proteins and
glycocalyx components such as glycoproteins and glycolipids cover
the cell membrane. The combined thickness of this layer is assumed
to be up to several hundred nanometers. When the cell membrane
is modified with ssDNAePEG-lipids with 5 kD of PEG, they are
surrounded with membrane proteins and glycocalyx, where
ssDNAs are presumably located at the lower position than various
membrane proteins. However, ssDNA molecules on the cell mem-
brane can be accessible to the complementary DNAs when they are
added. Flexible PEG chain might be useful for the reaction.

3. 2D cell alignment by ssDNAePEG-lipid

To align cells on the substrate in a patterned way, various ap-
proaches have been reported. Usually, extracellular matrix such as
fibronectin, vitronectin, or RGD peptide is immobilized onto the
specific area, which allows cells to adhere selectively. Although the
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Fig. 1. Amphiphilic polymers employed for cell surface modifications. (a) Chemical structures of amphiphilic polymers: polyethylene glycol-conjugated phospholipid (PEG-lipid).
(b) Cell surface modification by hydrophobic interaction. Cell surfaces can be modified with PEG-lipid that interacts with the membrane through hydrophobic interactions. (c)
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Fig. 2. Schematic illustration of a method for cell immobilization on a pattern printed
in DNA. First, immobilization of DNA with a specific sequence on the cell surface was
done with DNAePEG-lipids. Second, printing a pattern with DNA0-SH was performed
by an inkjet printer. The cells modified by DNAePEG-lipid were applied to the sub-
strate and immobilized on the pattern.
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initial cell attachment is controlled by this approach, cells gradually
migrate freely on the substrate because of the non-specific binding
of extracellular matrix onto the substrate from serum in culture
medium. Therefore, the surface treatment with PEG or poly(2-
methacryloyloxyethyl phosphorylcholine) (PMPC) [35] is usually
necessary to repel the non-specific protein adsorption and cell
attachment. For the patterning of extracellular matrix on the sub-
strate surface, a micro contact-printing method and photolithog-
raphy have been used [36e39]. Poly(dimethyl siloxane) is often
used in themicro contact-printingmethod to produce a stampwith
a pattern, in which extracellular matrix dipped onto the stamp can
be printed to the substrate. For photolithography, the cell adhesion
area and non-cell adhesion area can be patterned by UV irradiation
through a photomask with micro-patterning.

With these approaches, adherent cells can be aligned in 2D via
integrins, i.e. an interactive extracellular matrix, while floating cells
cannot. In addition, one single cell type can be successfully aligned
with these methods but more than two types of cells cannot be
patterned separately as all adherent cells use the same integrins to
bind extracellular matrix. Another approach is the use of antibodies
against membrane proteins that are specific for each cell. Although
available antibodies are usually limited, this approach might be
effective to align several kinds of cells on the substrate surface.

The use of ssDNA immobilized on the cell surface is also avail-
able for patterning of cells. The advantage of using ssDNA is the
possibility of many combinations. In addition, any kind of
cellsdadherent cells and floating cellsdcan be applied due to the
fact that DNA hybridization is specific. Here we show some results
of 2D cell patterning with ssDNAePEG-lipid. First, we prepared the
complementary sequence of DNA with thiolation (ssDNA0-SH) and
printed onto a gold-coated glass surface (Fig. 2). For printing
ssDNA0-SH, a micro contact-printing method and photolithography
are available as described above. It is possible to use an inkjet
printer as well. Because the goldethiol reaction is rapid and pro-
ceeds under mild conditions, DNA is printed easily and stably with
the desired patterns. In addition, immobilized DNA is not dena-
tured under dry conditions, so it is convenient to use. Second, the
complementary sequence ssDNA is conjugated to maleimideePEG-
lipid to prepare ssDNAePEG-lipid, and cells are then treated with
ssDNAePEG-lipid. Finally, those treated cells are seeded to the
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ssDNA0-patterned surface for immobilization of cells through DNA
hybridization [34]. As multiple DNA hybridization reactions take
place simultaneously, cell immobilization reactions on the sub-
strate are rapid. Once the treated cells contact the substrate, cell
immobilization is immediately completed. Although attached
adherent cells move to non-DNA-immobilized area eventually
without blocking treatment, the initial attachment of cells could be
easily controlled by this approach. When cells are cultured on
patterned areas, the surface treatment with PEG or PMPC could be
useful to repel the non-specific protein adsorption and cell
attachment.

An example of a cell-printed pattern using an inkjet printer has
been described [40]. In this case, a solution of polyT20-SH was
injected through the nozzle of an inkjet printer to draw the logo of a
university. Then, cells treated with polyA20ePEG-lipid were added
to the substrate (Fig. 2). There is also an example of patterning with
two kinds of cells using two DNA sequences. The areawhere SeqA0-
SH or SeqB0-SH is injected exhibits selective binding of SeqA-cells
or SeqB-cells from the cell mixture. In addition, both SeqA-cells
and SeqB-cells are immobilized on the area with both SeqA0-SH
and SeqB0-SH injection.
4. 3D alignment of cells by ssDNAePEG-lipid

Above, we gave some examples of 2D cell alignment using
ssDNAePEG-lipid. With this DNA hybridization technique, it is also
possible to elicit 3D cell organization [34] (Fig. 3). Here, one cell is
treated with polyA20ePEG-lipids, and the other is treated with
polyT20ePEG-lipids. These twomodified cells then can be attached
through DNA hybridization. During the cellecell attachment pro-
cess, polyA20ePEG-lipids and polyT20ePEG-lipids on the cell
surface move towards the intercellular interface between two cells
by lateral diffusion and form the DNA hybridization. The DNA
Cellular membrane
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Fig. 3. (a) Schematic illustration of cell surface modification with ssDNAePEG-lipid by hy
modified with polyA20ePEG-lipid and polyT20ePEG-lipid and then mixed to induce attach
towards the interface between the two cells and elicited DNA hybridization, which induc
bridization with different ssDNA ratios to PEG-lipid without DNA: 2.5, 10, and 100 mol%. W
with the larger contact area.
hybridization proceeds at the intercellular interface with time [41].
Therefore, the total amount of ssDNAePEG-lipids on the cell surface
is the limiting factor for cellecell attachment. When a low number
of ssDNAePEG-lipids is present, the cellecell attachment is weak
because the intercellular interface is limited. On the other hand,
when cells are treated with a higher number of ssDNAePEG-lipids,
the cellecell attachment is strong, and most of the ssDNAePEG-
lipids contribute to the DNA hybridization at the interface to
strengthen the attachment. Thus, it is possible to elicit 3D cell or-
ganization with this technique.
5. 3D hybrid of pancreatic islets with living cells

Herewe introduce an example of a 3D hybrid of pancreatic islets
with living cells produced by DNA hybridization using ssDNAePEG-
lipids. Such an approach could significantly improve islet trans-
plantation outcomes by modulation of multiple processes impor-
tant for islet graft survival, including revascularization, local
immunomodulation and apoptosis.

In this case, a complementary pair of polyA20ePEG-lipid and
polyT20ePEG-lipid can be used to form the 3D hybrid of islet and
non-islet derived cells [34,42] (Fig. 4). The surfaces of accessory
cells are treated with polyT20ePEG-lipid, and the surfaces of islets
are modified with polyA20ePEG-lipids for the attachment. When
the islets modified with polyA20ePEG-lipid are mixed with cells
treated with polyT20ePEG-lipid, accessory cells are attached to the
islet surface through the hybridization of the polyA20 and polyT20.
We used the human endoderm kidney cell line HEK293 for
immobilization on mouse islets with polyT20ePEG-lipid and pol-
yA20ePEG-lipid. Of interest, when the 3D hybrid of islet and living
cells was cultured, the attached cells proliferated on the islet sur-
face without detaching from it. The attached cells initially spread at
1 day and proliferated eventually onto islets surface. During the
Hybridiza on between
polyA20 and polyT20 Cell-cell a achment

wards the 
nterface 
ll attachment

EG-lipid-
d cells

(c)
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drophobic interaction and of cellecell attachment by DNA hybridization. Cells were
ment. (b) During the cellecell attachment, ssDNAePEG-lipid on the cell surface moved
ed the cellecell attachment. (c) Influence of the shape of cells attached by DNA hy-
ith an increased ssDNA ratio on the cell surface, the cellecell attachment strengthened



Fig. 4. A 3D hybrid of pancreatic islets and living cells created via DNA hybridization. (a) Schematic illustration of the coating of an islet within living cells. Both the cell and islet
surfaces are modified with polyDNA. polyT20ePEG-lipid is immobilized on living HEK293 cells, and polyA20ePEG-lipid is immobilized on the islet surface. During mixing of the
modified cells and islets, DNA hybridization causes the attachment of HEK293 cells onto the islet surfaces. After several days of culture, HEK293 proliferation encloses the islet
within a cellular capsule. (b) Phase contrast microscopy and fluorescence microscopy of islets with attached HEK293 cells. At 0 day, GFP-HEK293 cells immobilized to islets were
observed with confocal laser-scanning microscopy, and after 3 day, frozen sections of islets with attached GFP-HEK293 cells were stained with Alexa488-labeled anti-insulin
antibody (green) and Hoechst 33342 dye (blue) for nuclear staining (Partially modified from Ref. [42]).
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suspension culture for 2e3 days, a layer of HEK293 cells was
formed on the islet surface where the whole islet surface was fully
covered with cell layer, with no central necrosis inside the islet
surrounded by living cells, based on immune staining. The thick-
ness of the cell layer is approximately 10 mm [42].

Moreover, HEK293-coated islets where positive for insulin and
able to respond by increasing insulin secretion following glucose
challenge. However, insulin secretion was reduced compared to
that observed in control non-coated islets. Although HEK293 cells
are a cell line, and therefore with no direct relevance for a clinical
perspective, these results demonstrate that the 3D-hybridization
approach proposed here can lead to a complete cell coating of islets
with non-islet cells without significantly inhibiting function. This
method may lead to a clinical procedure for encapsulating isolated
pancreatic islets with accessory cells able to significantly enhance
graft survival in patients with type 1 diabetes.
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6. Conclusions and outlook

The shortage of human donors is a major problem in trans-
plantation therapy but some day may not be a serious one because
functional cells, tissues, and organs could be available from em-
bryonic stem cells or induced pluripotent stem cells in the near
future [43]. Functional cells with simple roles can be transplanted
directly into patients; however, complicated functions such as
those of liver, heart, and kidney cells are not as straightforward to
replicate because both cell function and 3D structure are important.
Thus, the reorganization of various cells by engineering approaches
is critical. Cell surface engineering with ssDNAePEG-lipids makes it
possible to achieve 2D and 3D alignment of cells for further func-
tionalization. The hybrid cellular complex may be promising for
producing complicated 3D structures in regenerative medicine
using stem cells. Furthermore, with our surface modification
technique, solid organ can also be functionalized with living cells as
seen in 3D hybrid of pancreatic islets and cells. For instance,
damaged tissues or endothelial cells in solid organ can be replaced
or repaired by new cells, which are modified with PEG-lipid de-
rivatives. Thus, cell surface modification can be available in various
transplantation therapies.

Conformal coating or thin polymer membrane coating of islets
based on surface modification is promising in clinical islet trans-
plantation because there is no volume increase after coating and
any transplantation site in human body is available as non-coated
islets, which is advantage over microencapsulated and macro-
encapsulated islets using hydrogels and devices. On the other hand,
the membrane stability is not enough to suppress immune rejec-
tion reactions for the long time. The more stable polymer mem-
brane will be necessary before the clinical use.
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