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Serum miR-17 levels are downregulated in obese, African American
women with elevated HbA1c
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Abstract
Purpose Type 2 diabetes is heterogeneous disease characterized by several conditions including hyperglycemia. It is estimated
that over 350 million people worldwide are suffering from type 2 diabetes and this number is expected to rise. According to the
CDC, African Americans were observed to have a 40% higher incidence of diabetes compared to European Americans.
Epigenetic modulating mechanisms such as microRNAs (miRNAs), have recently been established as a massive regulatory
machine in metabolic syndrome, obesity and type 2 diabetes. In the present study, we aimed to investigate the serum levels of
circulating miRNA 17 (miR-17) of obese, African American women with elevated HbA1c.
Methods We investigated miR-17 serum levels using qPCR. Then we used Pairwise Pearson Correlation Test to determine the
relationship between clinical metabolic parameters and miR-17 serum levels.
Results The results indicated that participants with elevated HbA1c exhibited a down regulation of serum miR-17 levels com-
pared to participants with normal HbA1c. MiR-17 was also correlated with serum calcium in participants with normal HbA1c.
Conclusions The results suggest that serummiR-17 is involved in the regulation of glucose and calcium homeostasis, which may
contribute to the development of type 2 diabetes.
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Introduction

Type 2 diabetes is a heterogeneous disease characterized by
hyperglycemia, insulin resistance, beta-cell malfunction, and

obesity-induced deterioration of systemic insulin sensitivity
[1, 2]. It is estimated that over 350 million people worldwide
are suffering from type 2 diabetes and this number is expected
to reach 600 million by 2030 [3, 4]. Type 2 diabetes has been
identified as the most widespread metabolic disease world-
wide and the prevalence is increasing exponentially [5].
Individual risk of developing type 2 diabetes is assessed by
a combination of clinical metabolic parameters, physical char-
acteristics, and lifestyle choices.

According to the CDC, African Americans (AA) are ob-
served to have a 40% higher incidence of diabetes compared
to European American (EA). AA women (58.6%) and men
(38.8%) have a higher prevalence of obesity than EA women
(33.4%) and men (36.4%) [6]. Thus, racial differences in type 2
diabetes incidence may be related to obesity. Hyperinsulinemia
and insulin resistance are also more common in AA than EA,
which may be due to correlation with obesity [7]. In a previous
study, obese AAwomen had a 30% higher incidence of type 2
diabetes than EA women [8]. Interestingly, non-obese AA
women also have a 2-fold higher chance of developing diabetes
than EA women [8], which suggests additional etiologies and
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mechanisms may be driving type 2 diabetes, racial differences.
Nutritional availability and distinct environmental factors may
interact with AA genome and enhance susceptibility to altered
epigenetic patterns. This may also influence metabolic disor-
ders and adult chronic diseases [9]. Epigenetic modulating
mechanisms such as miRNAs, have recently been established
as a massive regulatory machine in metabolic syndrome, obe-
sity and type 2 diabetes [10].

MiRNAs are short, noncoding sequences approximately 22
nucleotides in length. MiRNAs bind to the 3’UTR region of
target mRNA to negatively regulate gene expression at the
post-transcriptional level. MiRNAs are major controllers of
numerous biological and pathological processes. Mature
miRNAs may have hundreds of targets and can be released
by the cells or integrated in the RNA-induced silencing com-
plex to guide translational repression. MiRNAs can attach to
proteins, lipoproteins, or are loaded inside vesicles that are
discharged into the extracellular space [11]. Several
miRNAs are found in bodily fluids such as blood, urine, sali-
va, amniotic fluid, and breast milk [12–15]. The function of
circulating miRNAs remains to be established. This observa-
tion raises the intriguing possibility of the involvement of
miRNAs in a novel cell-to-cell communication. Several
miRNAs are involved with insulin-sensitive organs, including
skeletal muscle, white adipose tissue, liver and insulin-
producing pancreatic cells, all of which, are linked to diabetes
[16]. Circulating miRNAs are very stable and may have ad-
vantages as potential biomarkers of type 2 diabetes in AA.
Therefore, a better understanding of the mechanisms of serum
miRNAs in type 2 diabetes pathogenesis in AA is of great
clinical significance.

MiR-17 belongs to a family of polycistronic miRNA genes
containing 15 mature miRNA species (miR-17, 18a, 18b, 20a,
20b, 93, 106a, 106b) [17]. MiR17–92 cluster has been preva-
lent in many types of cancer, coronary artery disease and mul-
tiple sclerosis [18]. MiR-17 is also involved in the patholog-
ical progression of type 2 diabetes. Previously, miR-17 was
linked to obesity-associated biological mechanisms in the pa-
thology of type 2 diabetes [19].

In this study we aimed to investigate the expression of
serum miR-17 levels and how they correlate with serum clin-
ical metabolic parameters. We aimed to identify the role of
miR-17 serum levels in metabolism and type 2 diabetes.
This study aims provide new information on the development
and potential biomarkers of type 2 diabetes.

Materials and methods

Serum samples from human patients

Blood samples were obtained from 69 African
American women over 40 years old in a rural

northeastern county in North Carolina. We selected
for BMI over 30 in participants with elevated and nor-
mal HbA1c. Participants with HbA1c > 6.5 were classi-
fied as the experimental, diabetic group and partici-
pants with HbA1c < 6.4 were classified as the control,
non-diabetic group. Serum was collected and immedi-
ately frozen and stored at −80 °C until use. The North
Carolina Central University Institutional Review Board
approved protocol, with that allowed written informed
consent, was obtained from all participants prior to the
collection of blood samples. The right to privacy was
observed for all participants.

RNA isolation

Total RNA was isolated from 69 serum samples (23
normal HbA1c and 46 high HbA1c) using Exiqon
miRCURY RNA isolation kit-Biofluids (Woburn, MA,
USA) per the manufacturers’ protocols. The RNA qual-
ity and yield of each total RNA sample was obtained
from A260 measurements using a NanoDrop 2000;
Thermo Fischer (Waltham, MA, USA).

CDNA synthesis and qPCR analysis

For analysis of miR-17, cDNAwas prepared from total RNA
and amplified using the Taqman Advanced miRNA from
Applied Biosystems (Cartsbad, CA, USA). Reverse transcrip-
tion was carried out according to the manufacturers’ protocol.
qPCR was performed using Taqman Advanced MicroRNA
Assays from Applied Biosystems (Pleasanton, CA, USA) in
combination with Taqman Fast Advanced Master Mix
(Austin, TX, USA) fromApplied Biosystems. qPCRwas used
to amplify miRNA target gene hsa-miR-17-5p and reference
gene hsa-miR-221-3p was used for a control. MiR-221-3p is a
marker for obesity. We used it as a control because the average
BMI for both groups was <30, which is classified as obese.
Samples were analyzed according to manufacturer’s instruc-
tions. Each sample was run in triplicate and averaged. Wells
with Ct values >37 were excluded.

Statistical analysis

Descriptive statistics were computed for each variable for par-
ticipants with elevated and normal HbA1c. Data are expressed
as mean ± SEM. A series of unpaired t-test were computed to
determine significant differences between participants with
elevated and normal elevated HbA1c. Pairwise Pearson
Correlation Test was computed for each variable and miR-
17 ΔCt value.
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Results

Serum parameters and circulating miR-17 levels

Circulating miRNAs function in various pathways such
as metabolism. Metabolic dysregulation is caused by
abnormally functioning miRNAs and is implicated in
the development of type 2 diabetes. We analyzed
miRNA serum levels in serum of 23 normal HbA1c

participants and 44 high HbA1c participants. The basic
demographic and clinicopathological properties of these
participants were shown in Table 1. It shows that age is
balanced between the two groups. There is a significant
difference in BMI (p = 5.44* 10−13), HbA1c (p = 3.8*
10−13) and glucose level in the serum (p = 0.0001). We
also observed a significant difference in HDL cholester-
ol (p = 0.02), VLDL cholesterol (p = 0.001) and triglyc-
erides (p = 0.0001) between the two groups. Then,
qPCR analysis determined that serum miR-17 was sig-
nificantly downregulated in participants with elevated
HbA1c (Fig. 1, p = 0.03).

Correlations between miR-17 and serum parameters

We then investigated possible correlations between miR-17
serum levels and the parameters listed in Table 1. Positive
correlations were observed between serum miR-17 in all par-
ticipants with HbA1c (r = 0.22, p = 0.05), serum miR-17 in

participants with normal HbA1c and calcium (r = 0.41, p =
0.02), and serum miR-17 in all participants with BUN/
Creatinine (r = 0.23, p = 0.03) (Fig. 2). The other parameters
listed in Table 1 were not significantly correlated.

Discussion

Type 2 diabetes is the most common metabolic disorder in the
United States. It is estimated that over 350 million people
worldwide are suffering from type 2 diabetes. The number
of individuals affected by type 2 diabetes is increasing expo-
nentially each year. It has been reported that African
Americans are affected at a disproportional rate [3, 4].
MiRNAs, an epigenetic modulating mechanism, has recently
been established as a massive regulatory machine in obesity
and metabolic disease. Therefore, more effective therapeutic
strategies are needed immediately to control the incidence and
progression of type 2 diabetes.

Circulating miRNAs are ideal biomarker contenders be-
cause of stability in serum, even in freeze/thaw conditions,
resistance against ribonuclease degradation, and other extreme
conditions [20]. Several miRNAs are released into blood cir-
culation to regulate specific gene function by binding of
3’UTR of target mRNA. MiRNAs play a role in modifying
normal physiology and acting as mediators of disease, includ-
ing type 2 diabetes. We investigated the expression of serum
miR-17 and how it correlates with several clinical metabolic

Table 1 Clinical characteristics
of the study population Patient Characteristics All Diabetics Non-Diabetics

(mean ± SEM) (mean ± SEM) (mean ± SEM)

Age, (years) 61.32 ± 1.08 62.27 ± 1.23 60.11 ± 1.89

BMI, (kg/m2) 34.914 ± 1.01 38.31 ± 1.27 30.55 ± 1.29 ****

HbA1c, (mmol/mol) 56.80 ± 2.16 65.07 ± 2.41 40.26 ± 0.73 ****

HbA1C, (%) 7.143 ± 0.18 8.14 ± 0.23 5.87 ± 0.05 ****

Glucose Serum, (mg/dl) 123.375 ± 6.66 143.84 ± 10.71 97.06 ± 2.96 ***

Total Cholesterol, (mg/dl) 179.25 ± 4.10 175.33 ± 5.05 184.29 ± 6.76

Cholesterol HDL, (mg/dl) 58.45 ± 2.32 53.31 ± 1.96 65.06 ± 4.46 *

Cholesterol LDL, (mg/dl) 101.34 ± 3.43 98.76 ± 4.29 104.66 ± 5.58

Cholesterol VLDL, (mg/dl) 19.46 ± 1.24 23.27 ± 1.89 14.57 ± 0.94 ***

Triglycerides, (mmol/l) 97.11 ± 6.15 115.93 ± 9.45 72.91 ± 4.68 **

Creatinine, (mg/dl) 0.87 ± 0.02 0.90 ± 0.03 0.83 ± 0.03

BUN/ Creatinine, Ratio 16.65 ± 0.54 17.24 ± 0.75 15.89 ± 0.74

Sodium (Na+), (mmol/l) 140.49 ± 0.29 140.11 ± 0.42 140.97 ± 0.37

Calcium (Ca2+), (mg/dl) 9.51 ± 0.05 9.49 ± 0.67 9.53 ± 0.08

Potassium, (mmol/l) 4.19 ± 0.04 4.23 ± 0.06 4.15 ± 0.06

MIR17, (ΔCT) 1.33 ± 0.06 1.65 ± 0.20 0.92 ± 0.26 *

*significant at p < 0.05; **significant at p < 0.005;

***significant at p < 0.001; ****significant at p < 0.0001
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parameters. Previous studies have shown that obesity alters
miRNA serum levels in organs involved in metabolism [17,
21–27]. The average BMI of participants with elevated HbA1c

was greater than 30. MiRNAs have been found to regulate
multiple pathways linked to diabetes including insulin signal-
ing, immune-mediated inflammation, adipokine expression,
adipogenesis, lipid metabolism, and food intake regulation
[28–34]. Serum miR-17 is downregulated in participants with
elevated HbA1c, which causes an upregulation in genes
targeted by this miRNA (Fig. 1). The abnormal upregulation
of serum miR-17 target genes may contribute to disease
manifestation.

In previous studies, it has been shown that type 2
diabetes patients have lower serum levels of miR-17 in
adipose tissue in comparison to normal glucose toler-
ance patients [35]. In our study, the participants with
elevated HbA1c were all obese. We observed a positive
correlative between HbA1c and serum miR-17 across all
patients (Fig. 2). This suggests that serum miR-17 may
regulate cellular metabolism. In addition, there are mul-
tiple reports linking plasma levels to cardio-metabolic
disease, which also suggest circulating miR-17 may be
a useful biomarker in multiple disease [36–38]. We also
observed a 1.66 fold downregulation in serum levels of
miR-17 in participants with elevated HbA1c in compar-
ison to participants with normal HbA1c (Fig. 1).
Calcium metabolism is also impaired in participants
with elevated HbA1c. This dysregulation has been ob-
served in many cell types including: erythrocytes, cardi-
ac muscle, platelets, skeletal muscle, kidney, aorta, adi-
pocytes, liver, osteoblasts, arties lens, peripheral nerves,
brain synaptosomes, retinal tissue and pancreatic beta
cells [39–44]. This suggests that abnormalities in cell
calcium metabolism are basic pathology associated with
diabetes.

The most common abnormality found in participants
with elevated HbA1c is increased intracellular calcium
levels [39]. Although we did not find a difference in

H
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Fig. 2 Mir-17 is associated with HbHBA1C, Calcium and Bun/
Creatinine ratio. a In all participants, HbHbA1c correlates with mir-17
(b) In participants without diabetes, calcium correlates with mir-17 (c) In
all participants, Bun/Creatinine ratio correlates with mir-17

Fig. 1 Circulating mir-17 was downregulated 1.66 fold (p = 0.029)
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serum calcium levels between the two groups (Table 1),
we did observe a positive correlation between serum
miR-17 and serum calcium in participants with normal
HbA1c. This suggests that serum miR-17 may regulate
normal maintenance of serum calc ium leve ls .
Abnormalities in cell calcium metabolism may be sig-
nificant for the observed pathologies in insulin secretion
in diabetes. In previous studies, it has been found that
pancreatic islets from mice with induced diabetes lacked
the initial reduction of intracellular calcium levels and
subsequent calcium oscillations in response to glucose
[45–47]. Oscillations are important for pulsatile insulin
secretion. We believe that decreased serum levels of
miR-17 may play a role in the dysfunction of intracel-
lular calcium levels. This phenomenon may also impair
insulin secretion and contribute to diabetes. Calcium al-
so regulates glucose homeostasis mechanisms such as
glycogen synthesis, glycolysis, gluconeogenesis, and
glycogenolysis. In previous studies, early stage partici-
pants with diabetes have decreased serum miR-17 levels
are associated with the upregulation of a calcium-
activated potassium channel subunit alpha 1. MiR-17
binds to the 3’UTR and regulates the gene expression
of this channel protein [48]. This calcium activated po-
tassium channel has also been linked to obesity [49].

In normal physiology, calcium metabolism is regulat-
ed through hormonal control of a three-tissue axis of
intestine, kidney, and bone to tightly control serum ion-
ized calcium within a narrow range [50]. The kidneys
play a critical role in the balance between the internal
milieu and external environment. Kidney failure is
known to disrupt several homeostatic mechanisms that
control serum calcium and normal bone metabolism
[50]. We observed that serum miR-17 is positively cor-
related with the BUN/Creatinine in all participants.
BUN/Creatinine is a measure of kidney damage. Type
2 diabetes may significantly affect the kidneys; approx-
imately 40% of all patients requiring routine dialysis
therapy suffer from diabetes [51]. Downregulation of
serum miR-17 serum levels in participants with elevated
HbA1c may affect normal calcium maintenance and at-
tribute to kidney disease.

In the present study, we investigated the role of se-
rum miR-17 in participants with elevated HbA1c. This
study is one of few discussions on AA women although
AA women have the highest prevalence of obesity and
type 2 diabetes [6, 8]. Further investigation is required
to elucidate the mechanisms behind these phenomena.
Although serum miR-17 is not unique to AA women,
in future studies, we plan to conduct larger studies in-
clusive to other ethnicities to help validate the role of
serum miR-17 in glucose and calcium metabolism in
AA women. MiR-17 has been suggested to regulate

stk11 which would down regulate anabolic metabolism
through LKB1 [52]. Hormonal regulation of calcium
homeostasis would also assist in a better understanding
of serum miR-17 and calcium. More recently, miR-17
has been implicated in calcium metabolism in bone stem
cells, in a reverse relationship. This suggests that calci-
um serum levels could lower as calcium is absorbed and
utilized by bone and induce a direct relationship with
serum mirR-17 [53]. Though limited, the role of miR-17
in metabolism is emerging and evident is multiple cell
types including tumor biology and metabolism.

This study adds to the exploration of miRs in metabolic
disorders and may be, useful in establishing MIR biomarkers
for metabolic syndrome. With the addition of newly devel-
oped of technologies, the treatment of metabolic syndrome
with miRNAs and appropriate delivery system could offer a
new arena of treatment in this area.
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