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Abstract. We present an algorithm for automatic anatomical measurements in tomographic datasets of the
knee. The algorithm uses a set of atlases, each consisting of a knee image, surface segmentations of the bones,
and locations of landmarks required by the anatomical metrics. A multistage volume-to-volume and surface-to-
volume registration is performed to transfer the landmarks from the atlases to the target volume. Manual
segmentation of the target volume is not required in this approach. Metrics were computed from the transferred
landmarks of a best-matching atlas member (different for each bone), identified based on a mutual information
criterion. Leave-one-out validation of the algorithm was performed on 24 scans of the knee obtained using
extremity cone-beam computed tomography. Intraclass correlation (ICC) between the algorithm and the expert
who generated atlas landmarks was above 0.95 for all metrics. This compares favorably to inter-reader ICC,
which varied from 0.19 to 0.95, depending on the metric. Absolute agreement with the expert was also good, with
median errors below 0.25 deg for measurements of tibial slope and static alignment, and below 0.2 mm for
tibial tuberosity-trochlear groove distance and medial tibial depth. The automatic approach is anticipated to
improve measurement workflow and mitigate the effects of operator experience and training on reliability of
the metrics. © 2019 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JM1.6.2.026002]
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1 Introduction

Orthopedic diagnosis and surgical planning rely on a variety of
anatomical measurements obtained from imaging data.! In the
knee, various metrics of tibial slope (TS) are used in osteoto-
mies, ligament repair, and arthroplasty.'™ Assessment and cor-
rection of patellar instability involve measurements of trochlear
groove and position of the patella relative to other bones.'**
Anatomical metrics might also provide risk stratification in ante-
rior cruciate ligament injury.*’” However, the repeatability
and reliability of anatomical measurements are often challenged
by factors associated with operator training and measurement
techniques,'*'? diminishing their potential as quantitative
biomarkers.>® The need to mitigate the effects of operator and
technique variability stimulates the development of semi-auto-
mated and fully automated measurement algorithms,!%!1:13:14
The anatomical metrics of the knee are conventionally
defined as distances and angles between landmarks associated
with distinct morphological features. The measurements had
been typically performed using two-dimensional (2-D) radio-
graphs, but recent years have seen an increasing shift toward
computed tomography (CT) and magnetic resonance imaging
(MRI).%%!° The use of tomographic modalities mitigates errors
due to anatomic superposition and patient positioning, but
places additional burden on the reader, who now needs to inter-
rogate complex volumetric datasets. This further underscores
the need for automated measurement algorithms. Our approach
achieves this goal for cone-beam computed tomography (CBCT)
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of the knee by automating the identification of anatomical land-
marks. The metrics are then computed using their traditional
definitions, enabling interpretation consistent with current clini-
cal practice. (An alternative approach, not considered here,
could involve redefinition of anatomical measurements using
features more readily tractable by image analysis than morpho-
logical landmarks.'%)

The anatomical measurements considered in this work are
based on landmarks placed on bone surfaces. Several categories
of algorithms for automatic localization of skeletal landmarks
have been proposed. One general approach involves detection
of geometric features, typically associated with local curva-
ture, that match the shape properties of the landmark.'!6
Alternatively, machine learning algorithms can be used to
detect landmarks based on distinctive image features identified
through training on annotated data.'”'® Our proposed algorithm
also uses a set of annotated datasets (atlases), but belongs to
a family of methods that utilize image registration to transfer
expert landmarks from the atlases to the new image. To simplify
the registration step in such algorithms, the atlas volumes are
typically first segmented to yield a set of bone surface meshes.
Ehrhardt et al.'” and Phan et al.”° proposed methods that use only
one atlas image combined with multistage local registrations con-
ducted separately in regions surrounding each landmark.
For cases where multiple atlases are available, registration and
transfer of landmarks are achieved with active shape models'"*!
or by using individual registrations of each atlas followed by
a voting stage to select the best-matching registered atlas for
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landmark transfer.?> Our approach, first proposed in Ref. 14,
also involves using multiple atlases that are individually regis-
tered to the new subject. In a crucial contrast to Ref. 22, we do
not require a prior surface segmentation of the subject volume.
Instead, we have developed a multistage volume-to-volume and
mesh-to-volume registration framework to transfer the land-
marks from the atlases to the new volume. The time-consuming
segmentation is thus only required to generate the atlases, which
are then directly applied to the new image dataset without any
additional preprocessing.

The paper presents the details of the multistage registration
and landmark identification framework. The algorithm is evalu-
ated against expert users in seven metrics of the tibio-femoral
and patello-femoral alignment that utilize 27 distinct anatomical
landmarks. Compared to our initial conference report,'* we have
expanded the number of metrics considered in the study, imple-
mented numerous refinements to the algorithm, and conducted a
more thorough validation in leave-one-out experiments. Among
the most significant enhancements to the workflow is improved
surface-to-volume registration utilizing gradient vector flow
(GVF) of the target volume.

The proposed algorithm is applied to data of 24 subject
volunteers acquired with a specialized extremity CBCT
scanner.” Extremity CBCT systems provide the unique capabil-
ity for weight-bearing three-dimensional (3-D) imaging of the
knee*'>?* and foot.'>**? Development of diagnostic applica-
tions of this new modality will benefit from improvements in
the workflow, repeatability, and reliability of anatomical mea-
surements that are anticipated with the automatic algorithm.

2 Materials and Methods

Development and validation of the proposed automated meas-
urement algorithm involve patient knee scans acquired on an
extremity CBCT scanner. Section 2.1 provides details on the
patient dataset. Expert readers obtained common anatomical
measurements of the knee in the reconstructed volumes; the ana-
tomical metrics are detailed in Sec. 2.2. Section 2.3 introduces
the automated algorithm, which relies on an atlas set generated
from the CBCT volumes and the expert landmarks. Validation
of the algorithm in leave-one-out experiments is described in
Sec. 2.4.

2.1 Patient Dataset and Manual Measurements of
Anatomical Metrics

Following Institutional Review Board approval, N = 24 healthy
male volunteers were imaged using a weight-bearing extremities
CBCT system.”? Age of the subjects ranged from 18 to 33
(mean 20.2) years. No patient had any previous injury of the
tibiofemoral or patellofemoral joint or any hardware present in
the knee region.

The CBCT scanner uses a flat-panel detector and a compact
fixed anode x-ray source. The design allows the patient to
straddle the gantry in a natural standing stance, with only one
extremity placed inside the imaging bore. Deformable cushions
are placed in the bore to minimize leg motion. The scans cover
a 20 x 20 x 20 cm? field of view (FOV) centered on the tibio-
femoral joint space of the dominant leg. A standard “standing
knee” clinical acquisition protocol is used, involving 90-kVp
tube voltage, 72-mAs total exposure, and ~12-mGy patient dose.
The reconstructed volumes consisted of 384 X 384 X 576 iso-
tropic voxels measuring 0.56 X 0.56 X 0.56 mm> each.
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The morphological metrics were first measured by three
experts using an in-house-developed software package, the
Joint Morphology Analysis Toolkit."* The software provided
multiplanar rendering of the reconstructed volume and imple-
mented a database of common anatomical metrics. The user
identified the appropriate anatomical landmarks in the volume
and the software computed the metrics (typically angle or dis-
tance) based on the landmarks. The three experts who performed
the measurements differed in the level of expertise and training.
“Reader 1” was a musculoskeletal radiology research fellow
with 4+ years of experience, “reader 2” was a biomechanics
researcher trained by reader 1, and “reader 3” was a sports
medicine fellowship-trained orthopedic surgeon with 7 years of
experience. The landmarks identified by reader 1 were used
in construction of the atlas set for the automated algorithm
(Sec. 2.3).

2.2 Anatomical Metrics of the Knee

Definitions of the anatomical measurements were based on
Refs. 1 and 2. The metrics and their associated landmarks are
described below and illustrated in Fig. 1:

e Medial tibial depth (MTD) was the distance between the
deepest point of the medial tibial plateau and a line con-
necting the peak anterior and posterior points of the pla-
teau in a sagittal plane that contained the deepest point.

e Medial and lateral tibial slopes (MTS and LTS, respec-
tively) measured the angle between a line connecting the
peak anterior and posterior points in the medial (lateral)
tibial plateau and the anatomical axis of the tibia. The
peak points for the measurements were located in the sag-
ittal midplane of the medial (lateral) aspect of the tibial
plateau. Anatomical axis was established as the line con-
necting the midpoints of two pairs of anterior—posterior
landmarks placed on the cortex of the tibial shaft.
Midsagittal plane of the tibia was used to select those
landmarks.

¢ Coronal Tibial Slope (CTS) was analogous to MTS and
LTS, but the measurement was performed in the midcoro-
nal plane of the tibial plateau. Peak medial and lateral
points on the plateau were used, together with the mid-
coronal anatomical axis of the tibia.

¢ SA was a measurement of the angle between the anatomi-
cal axes of tibia and femur in their midcoronal planes.

o Insall-Salvati ratio (ISR) was the ratio of the distance
between the inferior-most and superior-most poles of the
patella to the distance between the inferior-most pole of
the patella and the attachment point of the patellar tendon
on the tibial tuberosity. The landmarks were selected in
the midsagittal plane of the tibia.

o Tibial tuberosity trochlear groove distance (TTTG) was
the distance between the deepest point of the trochlea and
the tibial tuberosity, measured along the line connecting
the posterior-most points on the epicondyles. The meas-
urement was performed after projecting all landmarks
onto a common axial plane.

In total, 27 distinct landmarks were used. The peak points of
the medial tibial plateau were shared between MTD and MTS.
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Fig. 1 Schematic illustration of the anatomical metrics. MTD, MTS, LTS, and ISR are computed in
a sagittal plane and SA and CTS are obtained in a coronal plane. Landmarks for TTTG are selected in
axial and sagittal views and are then projected onto a common axial plane for the measurement.

In total, 27 distinct landmarks have been used.

The landmarks defining the midcoronal axis were shared
between CTS and SA and midsagittal axes of the tibia were
shared between MTS and LTS.

As indicated in the descriptions above and in Fig. 1, the users
did not interrogate the whole volume to place each landmark,
but rather used a small set of viewing planes, each shared by
a group of landmarks. The volumetric landmarks were then
perpendicularly projected onto a common reference plane (see
Fig. 1) to perform the measurement. The use of a reference plane
follows the methodology of Ref. 2 for translating definitions of
anatomical metrics from 2-D radiography to 3-D tomographic
datasets. Among the measurements described above, all except
for TTTG originate from radiography.

2.3 Algorithm for Automated Anatomical
Measurements

The general workflow of the algorithm is depicted in Fig. 2. The
proposed approach relies on an atlas set (Ag,,) built from patient
images that have been annotated by an expert with anatomical
landmarks. Each of the atlas members (4;, i = |Agy|) consists
of a normalized grayscale image (I,y,), the expert-selected
landmarks  (Lyope = {LTibia’ Ltemurs LPatella})a and manual
segmentations of each bone of the knee (volumetric masks
M. = {Mripia» MiemuMpaena } and tessellated bone surfaces
Sbone = {STibia» SFemur a0d Spyenta })- The algorithm utilizes a
series of image-based registrations and a final surface deforma-
tion step to transfer the landmarks L from the best-matching
atlas member to a newly acquired patient scan (Ipygen)- The
image-to-image (also denoted as volume-to-volume) registra-
tion steps involve the grayscale images of the atlas members,
whereas the surface-to-image (surface-to-volume) registrations
use the tessellated bone surfaces of the atlas set. First, each
I, is rigidly aligned with Ipyge, (Sec. 2.3.1). Next, the
individual bone volumes from the atlas are precisely registered
to the patient volume using a similarity transformation
(Sec. 2.3.2). The final surface deformation and landmark trans-
formation are only performed using the atlas members (different
member for each bone) that best match Ip,;.,, after the initial
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image-based registrations. Anatomical measurements on Ipggen
are then obtained using the transformed landmarks (Secs. 2.3.3
and 2.3.4).

The processing pipeline is explained in detail in the follow-
ing sections. The method is implemented in MATLAB (R2018a,
The Mathworks, Natick, Massachusetts) and C++. Global and
individual bone registrations are performed using the elastix
toolkit.*®

2.3.1 Global registration

The first step is a rigid registration of each of the atlas member
images to the patient image, yielding a set of transformations:
Tinitial  Latas P Ipatient (atlas member index i has been omitted
for brevity). This global registration of the two volumes achieves
an initial coarse alignment between corresponding bones in
I Patient and each I Atlas*

We used the mean squared difference as the registration
metric and adaptive gradient descent for optimization. Mean
squared difference was chosen because it provided a fast and
relatively simple metric that was sufficient for the initial coarse
volume-to-volume alignment. Since this step of the pipeline
involved global registration of the entire volume, rigid registra-
tion without scaling was used. Intersubject size differences
were better addressed at the level of individual bones (e.g., two
subjects might present similar-sized tibia, but different-sized
patellae) and thus adjustment of scale was deferred to the sub-
sequent stage, individual bone registration.

The patient volume was the moving image; the registration
metric was computed over a region given by a union of dilated
segmentations of the atlas member bone segmentations
[dilate (M rj;,) U dilate(Mgepy,) U dilate(Mpy,)]- The dilating
element was a sphere with a radius of two voxels. Both images
were 4X downsampled to decrease computation time. There
were only a few tunable parameters in the first stage of the
pipeline (size of the dilating element and downsampling factor
during registration); both were selected through manual exper-
imentation and visual inspection of the registration result using
a small set of test cases.
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Fig. 2 Flowchart illustrating the algorithmic pipeline. First, the patient image is rigidly registered to all
atlas member images. This yields a coarse initial alignment of the volumes to serve as an input to the
next step. The individual bones (tibia, femur, and patella) from all atlas members are then individually
registered to the patient image using a similarity transformation. Finally, a deformation is applied to the
(previously segmented) surfaces of the best-matching registered atlas bones and atlas landmarks are
transformed using the composite transformation from all registration steps. Metrics are computed from

the transformed landmarks.

Individual bone registration

intersubject differences in bone size become a potentially sig-
nificant source of mismatch at the individual bone level, justify-
ing the use of similarity transform in this stage of the pipeline.

of each bone in the atlas set. This step compensates for rotations, First, we separate the tibia, femur, and patella in each atlas
translations, and scaling differences that could not be addressed member by applying their respective segmentation masks
by the initial rigid global alignment. As mentioned in Sec. 2.3.1, (I pgtas OM e )- Next, the global transformation Ty is applied
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to the bone volumes. Finally, another registration is performed
to find a similarity transform between the transformed
bone volume and the patient image, denoted as Tpgu:
Tinicial (L agas O©Mpone) P Ipagiens- We  use covariance matrix
adaptation evolution strategy (CMA-ES) as the optimizer, with
mutual information (MI) as the registration metric. Gaussian
scale space multiresolution smoothing is applied (two resolu-
tions: ¢ = 2 and original).

The choice of MI was made based on the observation that
once the bones were separated by masking, their local density
distributions could provide additional information to improve
the alignment of the two volumes. MI was better suited at this
stage than in the previous global registration step, where similar
patterns of local density might be present in different bones,
misleading the registration. Initial experiments showed that
MI indeed improved the alignment in the individual bone regis-
tration stage compared to, e.g., the mean squared difference used
in the previous step.

Similar to Sec. 2.3.1, the tunable parameters of the CMA-ES
optimizer and the MI metric (chiefly the settings of the multi-
resolution smoothing) were established through simple manual
experimentation on a small set of test cases.

2.3.3 Atlas member selection

The proposed method uses a multimember atlas set to capture
anatomical variability of landmark locations. To obtain the ana-
tomical measurement for a new patient image, the data from all
atlas members need to be reduced to a single set of landmarks.

To this end, the atlas member with the highest value of MI
after the individual bone registration of Sec. 2.3.2 is identified
for each bone. In the remainder of the paper, this dataset is
referred to as the “best-matching” atlas member for a given bone
and target image. The best-matching atlas might be different for
each bone. Alternative approaches include multi-atlas methods
similar to those proposed for label transfer in segmentation,
such as those reported by Heckemann et al.>’” for brain MRI
segmentation, by Langerak et al.”® for label fusion with simul-
taneous performance estimation in prostate cancer images, and
others.?* Next steps of the pipeline (surface deformation and
landmark transformation) are only performed on the bone sur-
face Spone and landmark locations Ly, of the best-matching
atlas member for that bone.

2.3.4 Surface deformation and landmark transformation

To account for individual anatomical variations, the surface
meshes Sy, Of the best-matching atlas members (one for each
bone) are deformed to match the bone surfaces in the patient
image. Transformations T',a and Ty are first applied to the
best-matching Spo.. The GVF** of the patient image is then
used to guide the deformation of Tyone [Tinial (Spone)]- For each
mesh vertex, the local direction of GVF is searched over a dis-
tance of 4 mm to find a local maximum of the magnitude of
image gradient. The vertex is then displaced to that point and
the process is repeated until reaching a location where the
GVF changes its direction by >90 deg.

The proposed approach deforms the surface along the direc-
tion of GVF, instead of using the somewhat more common®
approach of deforming along surface normals. The latter method
is employed in the preliminary implementation of the automated
measurement algorithm,'* but was later found to lead to self-
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intersections and other degeneracies for certain topologies of
bone surface (in particular when concavities were present).

In the final step of the algorithm, the composite of T'yars
Tyone, and surface deformation is applied to the landmarks of
each bone (L) in the best-matching atlas member for that
bone. The anatomical metrics are computed for the transformed
landmarks following the definitions in Sec. 2.2. Analogously to
manual measurements, the automatically identified landmarks
are perpendicularly projected onto a common reference plane.
This approach does not imply that the measurements cannot
be performed directly in the 3-D space. Rather, it has been
chosen here for the purpose of consistency with expert reader
results and with conventional definitions of the metrics.

2.4 Evaluation of the Automated Algorithm

The automated algorithm was validated in a series of leave-one-
out experiments using 24 volunteer CBCT images of Sec. 2.1.
Each subject (s) was used as a test case once. For each s, we
built an atlas set A consisting of the remaining 23 subjects.
As explained previously, the atlas set included (i) CBCT images,
(i1) manual segmentations of bone surfaces, and (iii) landmarks
identified by expert reader 1. The automated algorithm using
A, was then applied to obtain landmarks and anatomical meas-
urement for test subject s. The procedure was repeated for all
subjects.

For each landmark and each metric, results were evaluated in
terms of landmark distance error (LDE) and absolute metric
error (AME)

-

Lexpert (8 (1a)

AME(S) = |maut0(S;As) - mexpert(s)|' (1b)

LDE(S) = ”lauto(S;As) -

In the above equations, la:to(s;As) and m(s; Ay) are, respec-
tively, the landmark location and anatomical metric value esti-
mated by the automated algorithm for subject s based on leave-
one-out atlas Ag. Expert reader landmark location and metric
value are denoted by Ioen(s) and mgypen(s); || -] is the
Euclidean norm; and | - | is the absolute value. LDE and AME
are computed against the expert Reader 1, who annotated
the atlases. The LDE is equivalent to target registration error
(TRE) at the location of the landmark. LDE, thus, measures both
the accuracy of the automated landmark identification and the
local error of the registration between subject s and the best-
matching atlas for this subject. Since the focus of this work is
not on registration in itself, but on landmark localization for
the purpose of anatomical measurement, the analysis below
is performed primarily in terms of the LDE of individual land-
marks. However, a global assessment of registration accuracy in
the areas used for anatomical measurement is also provided
in terms of the mean LDE of all landmarks on a given bone,
averaged across all leave-one-out experiments.

In the next section, the distribution of LDE and AME in
the 24 leave-one-out experiments is analyzed using descriptive
statistics (median and maximal error) and box plots.

In addition to AME, we used absolute agreement intraclass
correlation coefficients (ICCs) under a two-way mixed effects
model [ICC(A,1) in notation of McGraw*°] to assess the con-
sistency of anatomical measurements obtained by the automated
algorithm and the three human readers. The automatic metric
values in the calculation of ICCs were the same as in the error
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study above, i.e., the measurement for each subject s was com-
puted based on the corresponding leave-one-out atlas set Ag.

3 Results

The proposed algorithm has an average total computation time
of 2 min per image (384 x 384 X 576 voxels) using a GPU
implementation and an atlas set of 20 images. The test system
is equipped with an Intel Xeon CPU (E5-2620), 64 GB of RAM,
and two Nvidia GeForce GTX Titan X GPUs. Within this com-
putation time, the method produces landmark locations for all
seven metrics discussed in the paper. For comparison, manual
processing using software for computer-assisted measurements
described in Ref. 14 takes about 5 min for annotation of all
seven metrics (average time of two experts).

Figure 3 summarizes the LDE Eq. (1a) of the automatic algo-
rithm compared to a ground-truth reader 1, which is equivalent
to the TRE. Each bar graph shows the distribution of distance
errors of target landmarks for the 24 leave-one-out test images.
Median LDE remains below 5 mm (9 to 10 voxels) for all 17
landmarks shown in the plot. The highest value of the median
error is found for peak lateral and medial points of the tibial
plateau (TP8 and TP9, with median error of 4.9 and 4.5 mm,
respectively), located at steep crests of the articular surface.
Those landmarks are also the only ones for which maximum
LDE in the sample of 24 leave-one-out experiments (excluding
outliers) exceeded 10 mm. Other landmarks exhibiting relatively
broad distribution of LDE and relatively large maximal errors
(> ~7 mm) are also typically located on the sharp curvatures
of the tibial plateau (e.g., TP2, TP4, TPS, and TP6). In compari-
son, the errors for femoral and patellar landmarks are generally
smaller and less variable among study subjects, with median
LDE of ~2.5 mm or less and maximal LDE (excluding outliers)
of ~5 mm or less.

Figure 3 omits the anterior—posterior and medial-lateral cort-
ical landmarks used for estimating the tibial and femoral axes
(landmarks TA11-TA44 and FA11-FA22 in Fig. 1). These
points are excluded from error analysis because they are not
associated with any specific anatomical features. Rather, the
expert readers could set them anywhere along the shaft to yield
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Fig. 4 Distribution of LDEs across all target images is analyzed in the
leave-one-out experiments. Blue box-and-whiskers represent errors
for the default workflow of the algorithm, which uses registration
of the best-matching atlas member to propagate the landmarks.
Yellow box-and-whiskers show the distribution of the mean of the
landmark errors obtained by registering the target image to each of
the atlas members (no atlas selection step). The case of using the
worst-matching atlas for each target image is shown in green.

two pairs of landmarks on the opposing cortical boundaries of
the bone. The landmarks transferred by the algorithm from the
best-matching atlas might thus correspond to a different location
along the shaft than the expert landmarks in the test image.
In this case, LDE is not an appropriate metric and the perfor-
mance should be evaluated primarily in terms of anatomical
metrics that rely on tibial and femoral axes, in particular SA.
Average error of individual bones per atlas for all landmarks of
this bone is 4.2 mm for tibia, 2.9 mm for femur, and 2.2 mm for
patella.

Selection of best-matching atlas reduces the average error
by ~7 mm (see Fig. 4), compared to the average error of all
available atlas members. Figure 4 provides evidence that using
the best-matching atlas member in the final registration step is
indeed a reasonable strategy to ensure accurate landmark locali-
zation. Distributions of LDEs across all target images in the
study sample (all leave-one-out experiments) are shown as

Landmark Distance Error (LDE)
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Fig. 3 LDEs [Eq. (1a)] of the automatic algorithm compared to expert Reader 1. Each box plot shows the
distribution of LDE for a given landmark (see Fig. 1, for definitions) obtained in leave-one-out validation
on 24 CBCT test images. The boxes represent the interquartile range (IQR), the vertical line is the
median, the whiskers extend to the extreme data points within +1.5 IQR of the median, and the dots

are outliers.
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(b)

©

Fig. 5 Tibial surfaces of three example subjects showing the landmarks set by an expert (magenta)
compared to the result of the proposed method (yellow). (a) Subject with highest mean tibial LDE among
all leave-one-out experiments. (b) Subject with a mean tibial LDE that is close to the average tibial LDE
for the study sample. (c) Subject with the lowest mean tibial LDE achieved in the leave-one-out

experiments.

box-and-whisker plots for different methods of atlas member
selection and different landmarks. Results for the default
approach of employing the best-matching dataset are illustrated
in blue. The plots in yellow have been generated as follows:
for each target image, all atlas members are propagated through
the final surface-to-volume deformable registration step and are
used as the landmark localization template. The mean of the
LDEs of all those registrations is computed for each target image
and the distribution of the mean LDE across the target image set
is summarized in the box-and-whisker plots. These data can be
thought of as representing the average performance of an algo-
rithm that selects the atlas member at random. Finally, the dis-
tribution of errors when using the worst-matching atlas member
as the landmark localization template is shown in green. There
might be some target images for which better landmark accuracy
could be achieved by using a different template than the best-
matching dataset. However, the latter strategy appears to yield
LDEs at the lower end of those achievable using this atlas set,
since the LDEs obtained with the best-matching image are gen-
erally lower than the average LDE of all atlas members. The
median LDE is 4 to 12 mm smaller using the best-matching atlas
compared to the average LDE of all members, and 4 to 18 mm
smaller compared to using the worst-matching atlas.

The results above were primarily concerned with landmark
identification accuracy. To augment this analysis, the mean LDE
of all landmarks on a given bone provided insight into the global

2.00
1.75
1.50 +
1.25
1.00
0.75

0.50

Absolute metric error (AME) [°]

error of the final deformable registration between the best-
matching atlas member and the target image. The mean LDE
of all tibial landmarks (averaged over all leave-one-out experi-
ments) was 4.2 mm, femoral mean LDE was 2.9 mm, and
patellar mean LDE was 2.2 mm; the mean errors were again
computed excluding the tibial and femoral axes landmarks.
The relatively large mean LDE of the tibia was likely due to
the fairly complex shape of the tibial plateau that challenged
the final deformable surface-to-volume registration in the area
where the majority of tibial landmarks was located.

Figure 5 presents a visual assessment of landmark localiza-
tion accuracy on the tibial plateau. Three subjects are shown,
selected based on the mean LDE of all tibial landmarks dis-
cussed above. The case in Fig. 5(a) is a subject who exhibits
the highest mean tibial LDE (3.83 mm) among all leave-one out
experiments. The differences in the location of the automated
and expert landmarks (magenta and yellow spheres, respec-
tively) appear to be dominated by sliding along the edge of the
tibial plateau, reflecting perhaps a slight rotational mismatch
between the deformed atlas and the target image. Similar error
pattern is apparent in Fig. 5(b), which shows a subject who
achieved mean tibial LDE close to the average tibial LDE
of all leave-one-out experiments (2.69 mm). The subject in
Fig. 5(c) has the lowest tibial LDE across all analyzed cases
(0.9 mm), as confirmed by the substantial overlap of the auto-
mated and expert landmarks.
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Fig. 6 Distribution of errors [AME, Eq. (1b)] of automatic anatomical measurements compared to expert
reader 1. For each metric, the plots summarize data from 24 leave-one-out experiments (see Fig. 1, for
metric definitions). The same box plot conventions are used as in Fig. 3.
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Fig. 7 Linear regression (including 95% confidence intervals) and ICCs between the automatic method
and expert reader 1. Data points represent automatic and manual measurements of 24 test subjects.

Performance of the proposed algorithm in anatomical mea-
surements is summarized in Fig. 6 in terms of AME Eq. (1b),
and in Fig. 7 and in Table 1 in terms of ICC. Similar to Fig. 3, the
figures of merit in Figs. 6 and 7 are computed against reader 1.
The median AME is below 0.18 deg for tibial slopes and SA,
below 0.2 mm for distance-based metrics of TTTG and MTD,
and 0.028 for the relative distance metric of ISR. Excluding out-
liers, the maximal AME in the leave-one-out experiments never
exceeds 1 deg for SA and tibial slopes, 0.8 mm for TTTG and
MTD, and 0.11 for ISR. Anatomical metrics obtained with the
algorithm show generally better agreement with reader 1 than
the automatic landmarks on which they are based. The primary
reason for this discrepancy is that most of the measurements
have been performed in 2-D, after the landmarks has been pro-
jected onto a common plane. Consequently, landmark localiza-
tion errors in planes other than the measurement plane did not
affect the anatomical metric.

The AMEs are small compared to typical metric magnitudes,
as evidenced in scatter plots of automated measurements versus
reader 1 shown in Fig. 7. The data points in Fig. 7 are narrowly
distributed around the identity line, indicating good agreement
between the proposed algorithm and the expert. The resulting
ICC is good to excellent, with values above 0.95 for all metrics.

Table 1 extended the analysis to include comparisons with
experts other than Reader 1. The inter-reader ICC varied from
0.19 (for TTTG and reader 1 versus reader 2) to 0.95 (for TTTG
and reader 1 versus reader 3), with ICC of ~0.7 for the majority
of metrics and inter-reader correlations. The automatic approach
achieved better agreement with reader 1, who generated atlas
landmarks, than the agreement between that expert and other
readers. The reason was most likely in varying levels of expe-
rience among the readers and their differing interpretations of
landmark definitions. The ICC between the algorithm and
readers 2 and 3 was comparable to the ICC between reader 1
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and those experts, as expected from the good agreement
between the automatic approach and measurements of reader 1.

4 Discussion and Conclusion

We have presented and validated an algorithm for automatic
anatomical measurements in 3-D tomographic scans of the knee.
The proposed approach utilizes a set of atlas images annotated
with landmarks. A sequence of rigid image-to-image registra-
tions followed by a deformable surface-to-image registration
is used to transform the landmarks from the best-matching atlas
member (one for each bone) onto the target volume. The method
does not require a prior segmentation of the target image. The
metrics are then computed from the transformed landmarks
following their standard definitions.

The algorithm was validated in leave-one-out studies using
extremity CBCT scans of 24 volunteers. The automatic method
agreed well with an expert reader. The median errors across all
leave-one-out tests were <0.2 deg for angular measurements
and <0.2 mm for distance measurements. Excellent correlation
with the expert was achieved, with ICC of 0.95 or more for all
metrics. The errors and correlations stated here were computed
against the expert who generated atlas landmarks, but since the
leave-one-out paradigm was used, the measurements for each
test case were performed using a different atlas set built from
the remaining 23 cases. The results demonstrate that it is feasible
to use a modestly sized sample of previous measurements of
the expert to replicate (“predict”) their measurements on a new
subject.

The ICCs between the algorithm and the expert who anno-
tated the atlas set are generally better than ICCs between that
reader and other experts, indicating that training and experience
level have a measurable effect on inter-reader reliability of
the metrics. We note that the inter-reader correlations reported
here are consistent with previous studies of 3-D anatomical
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Table 1

ICCs of anatomical measurements obtained by expert readers and by the proposed automatic approach (auto). Not all measurements

have been performed by all readers. Reader 1 has generated anatomical landmarks for the atlases by using the automatic algorithm. The algorithm
has performed the measurements according to a leave-one-out paradigm, i.e., each test subject has been processed using an atlas set that

excluded that subject.

MTS LTS CTS TTTG
Auto Reader 1 Auto Reader 1 Auto Reader 1 Auto Reader 1
Auto — 0.99 — 0.97 — 0.99 — 0.99
Reader 1 0.99 — 0.97 — 0.99 — 0.99 —
Reader 2 0.91 0.91 0.71 0.75 0.95 0.94 0.38 0.19
Reader 3 0.71 0.72 0.63 0.66 0.70 0.67 0.95 0.95
SA ISR MTD
Auto Reader 1 Auto Reader 1 Auto Reader 1
Auto — 0.98 — 0.95 — 0.96
Reader 1 0.98 — 0.95 — 0.96 —
Reader 2 0.74 0.77 0.61 0.61 0.83 0.82

measurements.” The automatic method might be useful in
improving the reliability since it consistently applies the land-
mark localization methodology of a single expert (or a consen-
sus of multiple readers) who annotated the atlas set.

A similar approach for atlas-based landmark identification
has been proposed in Ref. 22. Our method is potentially advan-
tageous in that it does not require prior surface segmentation of
the target volume. Considering corresponding points on the tibia
(MPB in Ref. 22 corresponds to LM23, LPB<~LM?24, and
CMTP<LM25) and femur (LPC-LMO03, MPC-LMO04, and
AWL<LMOS), the average localization error in Ref. 22 is
4.36 mm for tibial landmarks and 5.39 mm for femoral land-
marks, compared to 3.88 and 2.9 mm with our approach. This
suggests that landmark localization accuracy of the two methods
is likely similar.

To our knowledge, the algorithm introduced in Ref. 22 is the
most closely related to the proposed method among recently
published work, both in terms of the multi-atlas methodology
and in the scope of the anatomical landmarks that have been
evaluated. As mentioned in Sec. 1, other atlas-based landmark
identification methods for musculoskeletal applications have
been published, either using a single atlas'®* or an active
shape model.'!*! References 20 and 21 have reported landmark
localization errors compared to expert readers for a variety of
femoral and hip locations. The tibia and patella have not been
considered in those studies. The average errors ranges from ~1.5
to ~4.5 mm (depending in the landmark) in Ref. 20, and from
~2.5 to ~6 mm in Ref. 21. Reference 11 had been concerned
with planar radiography. Overall, our method yields a LDE of
~2.5 mm to ~5 mm, which is comparable to the performance of
previously reported algorithms for musculoskeletal applications.
A direct comparison among various automated landmark iden-
tification approaches and anatomical measurements is best per-
formed using a common dataset of the same anatomical region.
While such an investigation is beyond the scope of this feasibil-
ity study, future collaboration and/or a challenge initiative could
facilitate the requisite algorithm implementation, training, and
optimization to ensure fair comparison.
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The localization accuracy might be improved by developing
new criteria to select the best-matching atlas members for the
final landmark transformation. Currently, we use mutual infor-
mation between the target image and the atlases, computed
separately for each bone after rigid registration of individual
bones (Sec. 2.3.3). One possible alternative could be to advance
all atlases to the deformable registration stage (Sec. 2.3.4) and
to transfer the landmarks of the atlas that require the least
amount of deformation to align with the target image. Another
strategy could involve combining the landmark information
from multiple deformably registered atlases using some form of
a voting scheme, similar to multi-atlas segmentation (MAS).*’
For example, each landmark could be transferred from the atlas
that has achieved the best match with the target image in the
vicinity of that landmark, or a weighted average of landmark
locations from multiple atlases could be used in a manner some-
what resembling locally weighted label propagation in MAS.*®
However, all these approaches would likely be challenged by
longer processing times, because deformable registration would
need to be performed for each bone in each atlas. This process-
ing overhead could be addressed by incorporating some of the
atlas ranking and selection methods developed in MAS.”’
Development of such atlas-matching criteria is an important
topic of future work. The current approach, based on choosing
the atlas with the lowest MI after initial rigid registration, has
been found to be sufficient to achieve submillimeter/subdegree
agreement for anatomical metrics considered in this feasibility
study.

Further enhancements of the proposed methodology could
involve alternative registration strategies. For example, the
surface-to-volume alignment in the final stage of the algorithm
could be replaced with a deformable volume-to-volume registra-
tion, such as a B-spline transformation®® or the Demons
algorithm.*® In initial tests with an unoptimized B-spline regis-
tration using elastix,” we found almost twofold increase in
processing time compared to our approach (~5 min per volume
pair using B-splines compared to ~2 min for the surface-to-
volume alignment). An optimized implementation might reduce
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this speed penalty, but it is likely that a volume-to-volume
deformable registration will still contend with somewhat higher
computational cost than a surface mesh method. Furthermore,
the current surface-based methodology has the advantage that
it can be naturally extended to support development of active
shape models (which typically rely on surface meshes). Such
models provide an attractive paradigm for combined segmenta-
tion, landmark identification, and population studies of bone
morphology.

Recognizing that other registration, atlas selection, and land-
mark training strategies might improve the performance of the
proposed methodology, the results achieved with the current
implementation, nonetheless, illustrate the feasibility of auto-
mated anatomical measurements in the 3-D images of the knee.
Optimization of the automatic pipeline using some of the
approaches outlined in the preceding paragraphs is the subject
of ongoing research.

A potential limitation of our study involves the relatively
homogeneous population of study volunteers in terms of age and
health status. In particular, no significant pathological deforma-
tions such as bone erosions are present in the sample. Such
unique morphological variants may challenge any atlas-based
approach, since they might not be captured in the atlas set.
Our method includes a deformable registration step to address
individual variability that is not adequately represented in the
training data. While this deformable alignment may not be able
to resolve particularly severe pathologies of the joint surface,
such as advanced erosions, it is likely that manual identification
of landmarks would be equally challenging in such cases.
Furthermore, the metrics considered in this work are primarily
concerned with joint alignment and are thus often performed
on patients who exhibit relatively normal joint surfaces, but
abnormal biomechanics. The study sample is thus reasonably
representative of populations (e.g., athletes or military person-
nel) whose diagnostic evaluation may involve anatomical
measurements.

Another potential limitation of this investigation involves the
definition of ground truth for landmark locations and anatomical
measurements. We have used the annotations of a single expert
reader to train the algorithm. Error analysis is also performed
with respect to individual readers. The study thereby includes
potential error or bias associated with a single expert in defining
landmark locations. An alternative approach could establish
consensus landmarks of a group of readers. This could be
achieved using a methodology similar to simultaneous truth and
performance level estimation (STAPLE*!), initially proposed for
performance evaluation of segmentation algorithms. An analo-
gous expectation-maximization framework could be developed
to estimate a probabilistic consensus of expert landmarks
accounting for relative performance the raters. Once such con-
sensus is formed for each of the atlas members, it could then be
propagated onto new images using our automated approach.
Since the STAPLE framework produces performance-level esti-
mates for each rater as part of the consensus estimation, it could
also be used to validate the algorithm. This could be done by
running the STAPLE-based algorithm on a rater group which
includes the output of the algorithm in addition to all experts.
Overall, generation of consensus-based ground truth for bony
landmarks of the knee represents a promising future extension
of the current investigation.

The proposed method can be generalized to other joints and
3-D imaging modalities. Another potential extension involves
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using an active shape model® instead of the current atlas set
comprising individual subject scans. Such an approach will
likely still require a final deformable registration step to achieve
a precise match with the target image but might be overall more
accurate when sufficiently large atlas set is used to build the
underlying statistical shape model. It is likely that such an atlas
set would need to be larger than the ~20 subjects used by our
method. We are currently investigating performance of an auto-
matic measurement algorithm for foot and ankle that combines
the landmark-transfer principle outlined in this paper with an
active shape model of the ankle complex.*?

In summary, we presented an atlas-based method for auto-
matic anatomical measurements in volumetric imaging datasets.
A feasibility study in extremity CBCT scans of the knee showed
that the algorithm correlated well with expert readers. The
improved workflow and consistency of measurements made
possible by the automated approach are likely to benefit devel-
opment and proliferation of quantitative diagnostic methodolo-
gies in orthopedics.
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