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Abstract

Background—Global dietary recommendations for and cardiovascular effects of linoleic acid,
the major dietary omega-6 fatty acid, and its major metabolite, arachidonic acid, remain
controversial. To address this uncertainty and inform international recommendations, we evaluated
how /n vivo circulating and tissue levels of linoleic acid (LA) and arachidonic acid (AA) relate to
incident cardiovascular disease (CVD) across multiple international studies.

Methods—We performed harmonized, de novo, individual-level analyses in a global consortium
of 30 prospective observational studies from 13 countries. Multivariable-adjusted associations of
circulating and adipose tissue LA and AA biomarkers with incident total CVD and subtypes
(coronary heart disease (CHD), ischemic stroke, cardiovascular mortality) were investigated
according to a prespecified analytical plan. Levels of LA and AA, measured as % of total fatty
acids, were evaluated linearly according to their interquintile range (i.e., the range between the
mid-point of the first and fifth quintiles), and categorically by quintiles. Study-specific results
were pooled using inverse-variance weighted meta-analysis. Heterogeneity was explored by age,
sex, race, diabetes, statin use, aspirin use, omega-3 levels, and fatty acid desaturase 1 genotype
(when available).

Results—In 30 prospective studies with medians of follow-up ranging 2.5 to 31.9 years, 15,198
incident cardiovascular events occurred among 68,659 participants. Higher levels of LA were
significantly associated with lower risks of total CVD, cardiovascular mortality, and ischemic
stroke, with hazard ratios per interquintile range of 0.93 (95% CI: 0.88-0.99), 0.78 (0.70-0.85),
and 0.88 (0.79-0.98), respectively, and nonsignificantly with lower CHD risk (0.94; 0.88-1.00).
Relationships were similar for LA evaluated across quintiles. AA levels were not associated with
higher risk of cardiovascular outcomes; comparing extreme quintiles, higher levels were
associated with lower risk of total CVD (0.92; 0.86-0.99). No consistent heterogeneity by
population subgroups was identified in the observed relationships.

Corresponding author: Matti Marklund; The George Institute for Global Health and the Faculty of Medicine, University of New
gouth Wales, Sydney, Australia; telephone: +1 202 718 34 43; mmarklund@georgeinstitute.org.au.

These authors contributed equally to this work
DISCLOSURES
Drs. Wu and Micha report research support from Unilever for this work. Dr. Mozaffarian reports research funding from the National
Institutes of Health and the Gates Foundation; personal fees from GOED, DSM, Nutrition Impact, Pollock Communications, Bunge,
Indigo Agriculture, Amarin, Acasti Pharma, and America’s Test Kitchen; scientific advisory board, Elysium Health (with stock
options), Omada Health, and DayTwo; and chapter royalties from UpToDate; all outside the submitted work. Dr. Psaty serves on the
DSMB of a clinical trial funded by the manufacturer (Zoll LifeCor) and on the Steering Committee of the Yale Open Data Access
Project funded by Johnson & Johnson. No other conflicts were reported.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Marklund et al. Page 2

Conclusions—In pooled global analyses, higher /in vivo circulating and tissue levels of LA and
possibly AA were associated with lower risk of major cardiovascular events. These results support
a favorable role for LA in CVD prevention.
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INTRODUCTION

Recommendations for dietary consumption omega-6 (n-6) polyunsaturated fatty acids
(PUFA) for cardiovascular disease (CVD) prevention remain controversial and inconsistent.
For example, the American Heart Association and the Academy of Nutrition and Dietetics
recommend 5-10%,1: 2 the United Nations Food and Agriculture Organization recommends
2.5-9%,3 while the French national guidelines recommend 4%.4 Pooled evidence from
clinical trials and cohort studies suggests a moderate benefit of consuming n-6 PUFA,
predominantly linoleic acid (LA, 18:2n-6), for coronary heart disease (CHD) risk, whether
replacing saturated fat or total carbohydrate.>~" In contrast, recent secondary analyses of
clinical trials of LA-rich corn oil (although not LA-rich soybean oil) conducted in the
1960s-1970s suggest a possible increased risk of overall and CHD mortality.8: 2 The
interpretation of these latter trials is hampered by their short duration,® 9 small numbers of
events,8 substantial drop-out,® and confounding by industrial trans-fats.8: © In addition, many
of the other prior trials are limited by lack of blinding or randomization, and major dietary
pattern shifts; and most are decades old, creating potentially low generalizability to
contemporary diets and clinical settings. Cohort studies are limited by the common reliance
on self-reported dietary habits, which can be influenced by memory errors and inaccurate
nutrient databases. Thus, for many scientists, clinicians, and policy makers, the role of LA in
CVD risk remains uncertain.

In addition, concerns have been raised that n-6 PUFA could actually increase CVD risk, due
to potential pro-inflammatory effects.®: 10 LA is a precursor of the n-6 PUFA arachidonic
acid (AA, 20:4n-6), which gives rise to a range of eicosanoids considered to be pro-
inflammatory and pro-thrombotic.19 11Vet, stable isotope studies suggest very limited
conversion of LA to AA in humans,12 and trials show limited effects of increasing dietary
LA on plasma and adipose tissue AA levels.12-14 These findings indicate the importance of
directly evaluating AA levels instead of inferring them from LA levels or intakes in relation
to CVD risk. As LA cannot be produced endogenously (making tissue levels reasonable
markers of intake), biomarker (circulating and adipose tissue) levels correlate with dietary
consumption.1® 16 Sych objective biomarkers allow evaluation of dietary exposure of LA
status independent of self-reported food habits and estimated nutrient composition of
different foods. Circulating and adipose biomarkers also allow direct evaluation of AA,
which is highly metabolically regulated and for which dietary estimates correlate poorly
with /n vivo levels.
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Yet, the relations between /n vivo levels of LA and AA and CHD risk have been evaluated in
relatively few studies, with different study designs, outcomes, exposures (e.g., lipid
compartment), covariates, and statistical methodology. Results from meta-analyses of
published studies using circulating or adipose tissue levels of n-6 PUFA have been
contradictory.1”- 18 Furthermore, associations between 77 vivon-6 PUFA levels and other
CVD outcomes including stroke, total CVD, and CVVD mortality have been studied less
frequently19-23 and remain uncertain.

To address these major gaps in knowledge, we conducted a pooled analysis of harmonized,
de novo, individual-level data across 30 cohort studies in the Fatty Acid and Outcome
Research Consortium (FORCE) to evaluate associations of LA and AA levels with incident
total CVD and subtypes (CHD, ischemic stroke, CVD mortality).

Data Availability

The institutional review board approvals and data sharing agreements for the participating
cohorts allowed us to share cohort results. Individual participant data are owned by
individual participating cohorts and are available to researchers consented from participating
cohorts. For further queries or requests, please contact force@tufts.edu. Further details are
available at the FORCE website: http://force.nutrition.tufts.edu/.

Study setting and population: FORCE Consortium

The study was conducted within FORCE (http://force.nutrition.tufts.edu), a consortium of
studies with circulating or adipose tissue fatty acid biomarker measurements and ascertained
chronic disease events.24 Studies were identified and invited to participate if assessing
biomarker (circulating or adipose tissue) levels of LA and AA, and incident CVD (or
subtypes thereof), based on previous FORCE projects,24 25 expert contacts, and online
searches. Studies with adult participants (=18 y) free of CVD (myocardial infarction, angina,
coronary revascularization, stroke) at the time of fatty acid sampling were invited.
Retrospective case-control studies were included in a sensitivity analysis if fatty acids were
assessed in adipose tissue, which have a long half-life of exposure.26 To minimize potential
reverse causation, the main analysis included only prospective studies. Of 38 studies invited
by September 2017, 31 participated (Table 1 and Supplemental Tables 1-2 in the online-only
Data Supplement), while 7 were ineligible, declined to participate, or failed to respond
(Supplemental Table 3 in the online-only Data Supplement). The study was approved by the
institutional review boards of the participating cohorts.

Fatty acid measurements

Studies measured fatty acids in differing compartments, including plasma phospholipids,
erythrocytes, plasma, serum, cholesterol esters, and adipose tissue. All fatty acid levels were
reported as percent of total fatty acids. Detailed information regarding fatty acid
measurements in each study is provided in the Supplemental Material.
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Outcome assessment

Covariates

In each cohort, study participants were excluded if they were children (age <18 years) or had
prevalent CVD at the time of fatty acid measurement. Among the remaining participants, we
evaluated incident CVVD (defined as incident CHD or stroke) and its subtypes including
CHD (fatal or nonfatal myocardial infarction, CHD death, or sudden cardiac death),
ischemic stroke (fatal or nonfatal ischemic stroke), and CVD mortality (the subset of fatal
events from these causes). Studies that did not separately assess ischemic stroke used total
stroke (n=>5 studies). Detailed information on outcomes in each study is provided in the
Supplemental Material.

To minimize potential confounding, prespecified and harmonized covariates were utilized
included age (years), sex (male/female), race (Caucasian/non-Caucasian, or study-specific),
field center if applicable (categories), body-mass index (BMI, kg/m?), education (less than
high school graduate, high school graduate, some college or vocational school, college
graduate), smoking (current, former, never; if history not assessed, then current/not current),
physical activity (quintiles of metabolic equivalents (METSs)/week), alcohol intake (none, 1-
6 drinks/week, 1-2 drinks/day, >2 drinks/day), prevalent diabetes mellitus (defined as
treatment with oral antihyperglycemic agents, insulin, or fasting plasma glucose >126 mg/
dL), treated hypertension (defined as hypertension drug use; or if unavailable, as diagnosed/
history of hypertension), treated hypercholesterolemia (defined as LDL-lowering drug use; if
unavailable, as diagnosed/history of hypercholesterolemia), regular aspirin use (defined as
>2 times/week), levels of a-linolenic acid (ALA; 18:3n-3), eicosapentaenoic acid (EPA;
20:5n-3), sum of transisomers of oleic acid (trans18:1), and sum of fransisomers of LA
(trans-18:2) (each expressed as % total FASs). If data did not allow such categorization,
study-specific categories were used. Imputation was allowed for linear covariates if
previously established in each cohort; missing indicator categories were utilized for missing
covariate data in categories.

Statistical analysis and pooling

All participating studies followed a prespecified, harmonized analysis protocol with
standardized exclusions, exposures, outcomes, covariates, and analytical methods. In each
study, de novo analyses of individual data were performed according to the protocol. Cox
and weighted Cox proportional hazards models were used to estimate hazard ratios in cohort
and nested unmatched case-cohort studies, respectively, with follow-up from the date of
blood or adipose tissue sampling to date of incident event, death, loss to follow-up, or end of
follow-up. In matched nested case-control studies, conditional logistic regression was used
to estimate odds-ratios for each outcome, considered to approximate hazard ratios. To assess
potential nonlinear associations, each cohort also evaluated study-specific quintiles as
indicator categories, with the lowest quintile as the reference. Studies assessing fatty acids in
multiple compartments conducted separate analyses in each compartment. To investigate
potential heterogeneity by other factors, associations in each study were also assessed in
prespecified strata by age, sex, race, ALA and EPA levels, prevalent diabetes, drug-treated
hypercholesterolemia, and regular aspirin use. Potential interactions by genotype were
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examined in the 14 studies with available data for rs174547 (single nucleotide
polymorphism in the gene for fatty acid desaturase 1, a major genetic determinant of
circulating LA and AA).2 Interaction terms were constructed as a cross-product of LA or
AA and rs174547 (as an additive effect: 0, 1, or 2 T-alleles) and included with the main
effects in the models. Robust variance was used in all analyses.

Results from each study were provided to the lead author in standardized electronic forms
and pooled using inverse-variance weighted meta-analysis. The results were pooled overall
and within each specific type of fatty acid compartment including phospholipids
(erythrocyte phospholipids or plasma phospholipids), total plasma, cholesterol esters, and
adipose tissue. To allow comparison and pooling of results across different compartments,
LA and AA concentrations were standardized to study-specific interquintile range defined as
the range between the midpoint of the first and fifth quintiles (i.e., range between 10" and
90t percentiles). Potential semi-parametric associations were assessed by meta-regression
with restricted cubic splines constructed from study-specific quintiles.28

Overall heterogeneity was assessed by the 12-statistic, with values of ~ 25%, 50%, and 75%,
considered to indicate low, medium, and high heterogeneity, respectively.2® Heterogeneity
between prespecified subgroups was explored by meta-analyzing study-specific effect
estimates from each stratum, with statistical differences between subgroups tested by meta-
regression. Potential interactions by desaturase genotype were examined by meta-analyzing
study-specific interaction terms. For each study, associations of n-6 PUFA with CVD per
genotype at rs174547 (i.e, CC, CT, or TT) were calculated from beta coefficients and the
variance-covariance matrix of the main and interaction terms.2# The genotype-specific
estimates were pooled using pooled using inverse-variance weighted meta-analysis. While
subgroups were prespecified, all heterogeneity analyses were considered exploratory and
Bonferroni-corrected for multiple comparisons (10 subgroups; corrected a.=0.005).

In sensitivity analyses, we evaluated compartment-specific associations using absolute
percent of total fatty acids as the unit of exposure, instead of study-specific interquintile
range. In other sensitivity analyses, we censored events at maximum 10 y of follow-up, to
minimize bias by changes in fatty acid levels over time; used alternative blood compartments
in the overall pooled analysis for studies having more than one measure; included one
retrospective study; and excluded studies assessing only fatal outcomes.

Meta-analyses were performed using Stata 13 (StataCorp, College Station, TX), with two-
tailed a=0.05 for the primary analyses.

RESULTS

The pooled analyses included 76,356 fatty acid measurements from 68,659 participants in
30 prospective studies from 13 countries (Table 1). The studies included 18 cohort and 12
nested case-control or case-cohort studies. Most studies assessed fatty acids in blood
compartments (plasma phospholipids, n=11 studies; erythrocyte phospholipids, total plasma,
or cholesterol esters, n=7 studies each), while adipose tissue was less commonly used (n=3
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studies). One retrospective case-control study measuring adipose tissue biomarkers was
included in a sensitivity analysis, but not in the primary analyses.

Across studies, mean age at baseline ranged from 49 to 77 years (Table 1 and Supplemental
Table 4). Overall proportions of women and men were comparable, although some studies
included one sex only (Table 1). Most participants were Caucasian, but several studies
included sizable numbers of African Americans, Asians, and Hispanics (Supplemental Table
5). In most studies, up to 30% of the participants smoked, and alcohol intake was generally
moderate (<1 drink/d). Education level, diabetes prevalence, and medication use varied
across studies. As would be expected, levels of fatty acids varied between different
compartments (Figure 1 and Supplemental Tables 4 and 6).

Median study follow-up durations ranged from 2.5 to 31.9 years. Among the 30 prospective
studies, 10,477 total incident CVD events, 4,508 CVD deaths, 11,857 incident CHD events,
and 3,705 incident ischemic strokes occurred (Supplemental Table 7).

Per interquintile range, higher LA levels were associated with 7% (95%CI: 1-12%), 22%
(15-30%), and 12% (2-21%) lower incidence of total CVD, CVD mortality, and ischemic
stroke, respectively (Figures 2-3, Table 2). LA levels were also nonsignificantly (£=0.065)
associated with lower incidence of total CHD. Overall heterogeneity was moderate (12=28-
63%). Associations of LA with total CVD, total CHD, and CVVD mortality varied by
compartment (P-interaction<0.031), with generally less prominent inverse associations in
studies utilizing phospholipids (Figures 2-3).

Compared to the lowest quintile, participants in the highest quintile of LA levels experienced
lower risk of CVD mortality (HR=0.77; 95% CI, 0.69-0.86), with nonsignificant trends
toward lower risk of total CVD (0.94; 0.87-1.01), CHD (0.92; 0.85-1.00), and ischemic
stroke (0.90; 0.79-1.02) (Supplemental Table 8). There was no significant evidence of non-
linear associations between LA and each outcome (~-nonlinearity>0.05 each).

AA levels evaluated linearly were not significantly associated with CVD events, with a
hazard ratio of 0.95 (0.90-1.01) for total CVD (Table 2, Figures 4-5). When different lipid
compartments were assessed, AA levels in total plasma, but not other compartments, were
associated with lower risk of total CVD (HR=0.81 (0.70-0.94) (Table 2, Figure 4). Overall
heterogeneity was low to moderate (12<54%). When AA levels were evaluated in quintiles
(Supplemental Table 9), participants in the highest quintile, compared to the lowest,
experienced significantly lower incidence of total CVD (0.92; 0.86-0.99). There was
evidence for a borderline nonlinear association (A-nonlinearity=0.039) between total plasma
AA and ischemic stroke (Supplemental Figure 1).

Associations of LA and AA with CVD outcomes did not significantly differ according to
subgroups defined by age, sex, race, n-3 PUFA levels, diabetes status, statin use, aspirin use,
or baseline year of fatty acid measurement (Supplemental Table 10). In 14 studies with
genotype data (Supplemental Table 11), a significant interaction (P-interaction=0.002) was
observed between LA and rs174547 genotype in relation to risk of ischemic stroke
(Supplemental Table 12), with inverse associations appearing stronger in carriers of the
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major T-allele. The associations of AA with cardiovascular outcomes did not significantly
vary by rs174547 genotype.

In sensitivity analyses, results of compartment-specific analysis that utilized units of percent
of total fatty acids, rather than study-specific interquintile ranges, were not appreciably
different from the main findings (Supplemental Table 13). Results were also similar across
all other sensitivity analyses (Supplemental Table 14).

DISCUSSION

In this harmonized, individual-level pooled analysis across 30 prospective studies from 13
countries, higher /n vivo levels of the n-6 PUFA LA were associated with lower risk of CVD
events, in particular CVD mortality and stroke. AA levels were not associated with higher
risk, and were associated with lower CVD risk in some analyses. To our knowledge, this is
the largest pooled analysis of fatty acid levels and CVD endpoints, including almost 70,000
individuals and 10,000 total CVD events.

Our findings provide evidence to help inform currently inconsistent global dietary
recommendations on n-6 PUFA consumption. LA, an essential fatty acid not synthesized by
humans, is the main dietary PUFA, comprising about 85-90% of the total. While circulating
and adipose tissue LA levels can be influenced by metabolism,27: 30 they are established and
useful markers of diet as they increase in a dose-response manner in response to dietary LA
in controlled feeding trials!® 26. 30 and consistently correlate with self-reported dietary
estimates in large cohort studies, 2% including a considerable number of studies participating
in the current analysis (Supplemental Table 15). Several lines of evidence support
mechanisms by which dietary LA may reduce CVD. In randomized controlled feeding trials,
dietary PUFA (primarily LA) as a replacement for either carbohydrates or saturated fat
lowers low density lipoprotein (LDL)-cholesterol, triglycerides, and ApoB levels, and raises
high density lipoprotein (HDL)-cholesterol;14 31 and also lowers hemoglobin Alc and
insulin resistance and potentially augments insulin production.32 Other potential
cardiometabolic benefits of dietary LA may include favorable effects on inflammation,
blood pressure,33 and body composition, including prevention and reduction of visceral and
liver fat.14 34 In a pooled analyses of prospective cohort studies, self-reported estimates of
LA consumption are associated with lower CHD risk. Similarly, in meta-analyses of older,
limited clinical trials, increased consumption of LA-rich vegetable oils, especially soybean
oil, reduces the risk of CHD.® Our findings evaluating /7 vivo levels of LA status across
multiple global studies add strong support for cardiovascular benefits of LA.

While AA has long been considered an archetypical pro-inflammatory and pro-thrombotic
fatty acid, growing evidence suggests its effects may be more complex.3® In the present
investigation, AA levels were not associated with higher risk of CVD, and indeed in some
analyses were associated with lower risk. These results do not provide support for adverse
cardiovascular effects of AA. While AA is the precursor to potentially pro-inflammatory
leukotrienes, it is also the main precursor to key anti-inflammatory metabolites, such as
epoxyeicosatrienoic acids and prostaglandin E, as well as other mediators that actively
resolve inflammation, such as lipoxin A4 3® It also gives rise to prostacyclin, a potent anti-
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aggregatory and vasodilatory molecule.36 These complex biologic effects preclude simplistic
inference on health effects of AA metabolites and further support the importance of empiric
assessment of relationships with clinical events, such as in our investigation.

Overall, our findings provide little support for the hypothesis that LA or AA, the major n-6
PUFA, may increase CVD risk. We also identified little evidence for any interaction between
n-6 and n-3 PUFA levels, consistent with prior reviews of dietary data.l n-6 PUFA may also
have additional metabolic benefits. For example, a recent pooled analysis from FORCE
identified a strong inverse association of circulating and adipose tissue LA levels and
incidence of type 2 diabetes, with no significant associations for AA.25 Taken together with
results of randomized controlled feeding trials of blood lipids, glucose-insulin homeostasis,
and other metabolic risk factors; prospective cohort studies of self-reported consumption;
and (older, methodologically limited) clinical trials of LA-rich plant oils, our novel findings
do not support recommendations of somel0 to reduce n-6 PUFA consumption or reduce the
n-6:n-3 ratio (as opposed to increasing n-3 intake). Rather, the findings from the present
study, together with the prior research summarized above, support independent
cardioprotective benefits of LA.

Our results provide important evidence that helps inform clinical and population
recommendations. Dietary guidelines from several organizations, including the American
Heart Association, recommend increased consumption of n-6 PUFA to prevent CVD.’
However, some researchers® 10. 37 and other national guidelines* currently recommend
avoidance of n-6 PUFA and reductions from current intake levels. Furthermore, current
trends in oil production are leading to increased use of high-oleic, LA-depleted seed oils,38
which can increase the risk of insufficient PUFA consumption in population subgroups. Our
findings, combined with prior evidence from metabolic feeding trials, supports
cardiovascular benefits of LA and a need to harmonize international guidelines and priorities
for oilseed production and use.

A unique strength of our investigation was the ability to assess associations across distinct
lipid compartments across which LA (AA) levels intercorrelate to varying degrees (e.g.,
r=0.4-0.9),26. 39, 40 gyggesting that each compartment reflects partly differing metabolic and
physiologic influences. Yet, our findings were generally concordant across compartments,
providing support for common or similar biologic effects of these n-6 fatty acids across
these compartments.

The inverse association of LA levels with ischemic stroke was more pronounced in T-allele
carriers of rs174547, a polymorphism in FADSI associated with higher fatty acid desaturase
activities?” 41 and FADSI expression.2 Although located in FADSZ, rs174547 is also in
strong linkage disequilibrium with polymorphisms in FADSZ2 (encoding the LA-desaturating
FADS?) and has emerged as the main genetic determinant of circulating LA and AA in a
recent genome-wide association study.2” The T-allele has been linked to several metabolic
traits including higher cholesterol (total, LDL, and HDL)*3 and fasting glucose®, but also
lower triglycerides*3 and heart rate.*> The pleiotropy of the FADS cluster and the specificity
for ischemic stroke rather than all CVVD endpoints complicates the interpretation of the
observed gene-LA interaction, which should therefore be viewed cautiously. Yet, one could
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also speculate that carriers of the major T-allele derive greater benefits from the established
LDL-lowering effects of dietary LA and thus have accentuated health benefits —a ripe area
for further investigation.

Few prior meta-analyses of LA and AA levels in CVVD have been performed. In one analysis
of 10 published studies with 28,000 participants and 3,800 events, LA was not significantly
associated with coronary events, while AA was associated with a 17% reduction in risk.18 In
a meta-analysis of published studies acute myocardial infarction and coronary syndromes
including many retrospective case-control studies, circulating and adipose tissue LA levels
were inversely associated with the risk of CHD events, while overall associations for AA
were null.1” Our investigation considerably extends these prior results by focusing on
prospective studies, performing new individual-level study-specific analyses using a
standardized and harmonized analysis protocol, including a much larger number of
participants and events, and evaluating several major CVD outcomes. Importantly, our
consortium also greatly minimizes publication bias by incorporating new (unpublished)
findings from all available studies, rather than pooling only prior published results.

Other strengths include use of /n vivon-6 PUFA levels, which complement self-reported
dietary estimates, reduce errors from memory, and allow assessment of biologically relevant
in vivo levels-especially important for AA. Outcomes in nearly all studies were defined by
centralized adjudication processes or validated registries rather than from self-report alone,
reducing the potential for missed or misclassified endpoints. Inclusion of cohorts from 13
countries across several continents enhances generalizability. The large numbers of
participants and events allowed us to explore several potential effect modifiers and the shape
of the associations.

Potential limitations deserve attention. For certain compartments, such as adipose tissue, few
studies were available. Most individuals were of European descent, lowering statistical
power for evaluating other races/ethnicities. Despite extensive efforts to harmonize study-
specific methods, some dissimilarities remained between cohorts in outcome definitions (see
Expanded Methods in the Supplemental Material) and covariate categorization
(Supplemental Table 5). Although such variety and unmeasured background population
characteristics may increase generalizability, these may also have contributed to the
moderate between-study heterogeneity observed for some exposure-outcome relationships.
Fatty acids were measured once at baseline, and changes over time could lead to
misclassification, which would attenuate the associations. However, reasonable temporal
reproducibility has been reported for LA and AA concentrations over time.*6 Since few
studies evaluated multiple compartments, and because cholesterol esters were only assessed
by studies from Northern Europe, we were hampered in drawing any conclusions of true
predictive differences between lipid fractions. Although fatty acid analytical methods were
not standardized across studies, the use of a quintile-based statistical approach minimizes
this concern. We did not adjust for non-fatty acid dietary factors, but pooling results across
multiple cohorts with different population characteristics increases the validity of the
findings. While all studies consistently adjusted for other major CVD risk factors, we cannot
exclude residual confounding due to unmeasured or imprecisely measured covariates.
However, the concordance of the present observed associations with other lines of evidence
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on cardiovascular benefits of LAL 5 6. 32 provide biologic plausibility for our findings. We
did not evaluate the associations after exclusion of early cases. However, such sensitivity did
not produce results substantially different from the main findings in our previous pooling
projects?4 25 and in cohort-specific analyses,23 suggesting that the observed associations are
not likely due to reverse causation.

In summary, based on pooled individual-level analyses of prospective studies, circulating
and adipose tissue biomarker concentrations of LA were inversely associated with CVD
while AA was not associated with higher CVD risk. Together with prior research, these
results support CVD benefits of LA.
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Clinical perspective
What is new?

. We conducted the hitherto largest pooled individual-level analysis using
circulating and adipose tissue levels of linoleic acid and arachidonic acid to
examine the link between omega-6 fatty acids and cardiovascular outcomes in
various populations.

. Our approach increases statistical power and generalizability compared to
individual studies; lowers the risk of publication bias and heterogeneity
compared to meta-analyses of existing literature; and allows evaluation of the
associations in key population subgroups.

. Strikingly, higher level of linoleic acid was associated with lower risks of total
cardiovascular disease, ischemic stroke, and cardiovascular mortality, while
arachidonic acid was not associated with cardiovascular risk.

What are the clinical implications?

. Our findings support potential benefits of the main dietary omega-6 fatty acid,
i.e., linoleic acid, for cardiovascular disease prevention.

. Furthermore, our results do not support any theorized cardiovascular harms of
omega-6 fatty acids.

. Our findings provide evidence to help inform currently inconsistent global
dietary recommendations on omega-6 consumption.
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Figure 1. Concentration of A) linoleic acid (LA; 18:2n6) and B) arachidonic acid (AA; 20:4n6)
across different biomarker compartments measured in the 31 contributing studies.

Concentrations of arachidonic acid and linoleic acid concentrations are expressed as % of
total fatty acids (FA), and indicated as median (circles) and interquintile range (lines;
defined as the range between the midpoint of the bottom quintile [10t" percentile] and the
top quintile [90' percentile]), respectively. For MPCDRF and the MORGEN, values are
only shown for controls.*Total number of individual FA measured in the biomarker
compartment. TNot reported.
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Figure 2. Associations of linoleic acid (LA; 18:2n6) with total CVD (A) and CVD mortality (B) in
pooled analysis of 30 prospective studies.

Study-specific estimates for hazard ratio (HR) per interquintile range (i.e., range between the
midpoint of the bottom quintile [10t" percentile] and the top quintile [90™" percentile]) of
biomarker linoleic acid were pooled based on the following order: 1) adipose tissue, 2)
erythrocyte phospholipid, 3) plasma phospholipid 4) cholesterol ester, and 5) total plasma.
Study weights are indicated (grey squares) by individual biomarker compartment and
overall. Study-specific analyses were conducted using models that included the following
covariates: age (years), sex (male/female), race (Caucasian/non-Caucasian, or study-
specific), field center if applicable (categories), body-mass index (BMI, kg/m?), education
(less than high school graduate, high school graduate, some college or vocational school,
college graduate), smoking (current, former, never; if history not assessed, then current/not
current), physical activity (quintiles of metabolic equivalents (METs)/week), alcohol intake
(none, 1-6 drinks/week, 1-2 drinks/day, >2 drinks/day), prevalent diabetes mellitus (defined
as treatment with oral antihyperglycemic agents, insulin, or fasting plasma glucose >126 mg/
dL), treated hypertension (defined as hypertension drug use; or if unavailable, as diagnosed/
history of hypertension), treated hypercholesterolemia (defined as LDL-lowering drug use; if
unavailable, as diagnosed/history of hypercholesterolemia), regular aspirin use (defined as
>2 times/week), levels of a-linolenic acid (ALA; 18:3n-3), eicosapentaenoic acid (EPA,
20:5n-3), sum of transisomers of oleic acid (trans18:1), and sum of #ransisomers of LA
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(trans-18:2) (each expressed as % total FAs). If data did not allow such categorization,
study-specific categories were used. See Table 1 footnote for abbreviations of cohorts.
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Figure 3. Associations of linoleic acid (LA; 18:2n6) with total CHD (A) and ischemic stroke (B) in
pooled analysis of 30 prospective studies.

Study-specific estimates for hazard ratio (HR) per interquintile range (i.e., range between the
midpoint of the bottom quintile [10t" percentile] and the top quintile [90t" percentile]) of
biomarker linoleic acid were pooled based on the following order: 1) adipose tissue, 2)
erythrocyte phospholipid, 3) plasma phospholipid 4) cholesterol ester, and 5) total plasma.
Study weights are indicated (grey squares) by individual biomarker compartment and
overall. Study-specific analyses were conducted using models that included the following
covariates: age (years), sex (male/female), race (Caucasian/non-Caucasian, or study-
specific), field center if applicable (categories), body-mass index (BMI, kg/m?), education
(less than high school graduate, high school graduate, some college or vocational school,
college graduate), smoking (current, former, never; if history not assessed, then current/not
current), physical activity (quintiles of metabolic equivalents (METs)/week), alcohol intake
(none, 1-6 drinks/week, 1-2 drinks/day, >2 drinks/day), prevalent diabetes mellitus (defined
as treatment with oral antihyperglycemic agents, insulin, or fasting plasma glucose >126 mg/
dL), treated hypertension (defined as hypertension drug use; or if unavailable, as diagnosed/
history of hypertension), treated hypercholesterolemia (defined as LDL-lowering drug use; if
unavailable, as diagnosed/history of hypercholesterolemia), regular aspirin use (defined as
>2 times/week), levels of a-linolenic acid (ALA; 18:3n-3), eicosapentaenoic acid (EPA,
20:5n-3), sum of transisomers of oleic acid (trans18:1), and sum of #ransisomers of LA
(trans-18:2) (each expressed as % total FASs). If data did not allow such categorization,
study-specific categories were used. See Table 1 footnote for abbreviations of cohorts.

Circulation. Author manuscript; available in PMC 2020 May 21.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnue Joyiny

Marklund et al. Page 23

Cohorl Cases HR (95% CIy Cohor Cases HR (95% CI)
Phospholipid Phes
AGES-Reykjavik 369 —~—1— 0.86 (0.55, 1.34 hesphobpid
P - —B 096 (0.80. 1 20; AGES-Reykavik 162 —_— 0.86 (0.55, 1.34)
CHS 1299 — 1.04 (0.87, 1.23) ARIC 289 —_— 0.75(0.53, 1.07)
EPIC-Norfolk 1526 —— 0.52 (0.78, 1.08) CcHS 812 . 1.13(0.91, 1.40)
EPIC-Polsdam 50 —_— 096(053.1.74) .
s o Ry Igmc Norfolk 9&;1 —— 0,94 (0,76, 1.15)
HOFS 564 P~ " 1.00 (0.68. 1.47) }ES\_ 3 0.93 (0,30, 2.84)
Mecs 282 —— 077 (0.85. 1.07) MECS 262 — g 0.77 (0.55, 1.07)
MESA 202 —_— 0.85 (0.50, 1.44) MESA 208 _— 0.75 (0,45, 1.28)
METSIM 25 0.97 (0.30. 3.1} 3 , 143 {0,
N oe2 — ose (047 11 w5 p—ra—— 1o
WHMS 795 & 1,01 (0.79, 1.30) Subltotal (ksquared = 0.0%, p = 0.501) <> 0.93 (0,83, 1.05)
Sublotal (ksquared = 0.0%, p = 0,885} 0,95 (0.87, 1.02)
5 ﬁ Total plasma
fotal plasma —_—
ac P 8 —_ 097(058.181) é?:oc §06 — ? §f Eg'gﬁ' 2 g:
ccee 421 —_— 0.96 (0.68, 1.35) 4 o5 i &8 1.
pe ) asy — i 084058 121} HS 98 —_— 095(048,187)
HS 222 _— 1.05 (0.69, 1.58) KIHD 267 — 0.65(0.44, 0.96)
KIHD 562 —— 0.82 (0.63. 1.08) Subtotal (-squared = 63.5%, p = 0.042) _ 0.85 (0,66, 1.09)
NS 905 —_— 0.50 (0.35, 0.71)
Sublotal (-squared = 50.5%, p = 0.073) - 0.81 (0.70, 0.94) Chokesterol ester
Chioisslirol stie 60Y0 69 —_— 058(050,150)
govo R gy JE— 1.13(0.85. 1.50) PRUS 6 1.45(0.19, 10.90)
METSH % 090(0.33, 2.50) ULSAMS0 398 — 0.99(0.74, 1.31)
1 —_— 1,01 (060, 1. X =0.0% p=
e o it iyl 22; Sublotal (-squared = 0.0%, p= 0.931) -C_T‘}- 0.99(0.76, 1.29)
Subdotal (l-squared = 0.0%, p = 0,500} '?‘ 1.03 (0.88, 1.20) Adipose tissue
Adipose lissue SHHEC 308 —_— 1.03 (0.84, 1.26)
sHEC ;155;7 —_— ggﬁggg_:.;g; ULSAM-70 10 —_— 0.96 (0.57, 1.60)
Sublotal (I-squared = 0.0%, p = 0,456} =3 098 (0,87, 1.10) Uil ihoquaned = 0.0%, p=10.502) = 1021044, 1.23)
Cveral Overall
ac 8 —_——— 0.97 (0.58, 1.61) c 8 —_— 0.25{0.08, 0.93)
ioﬁ\é% — gg; —_—— é;g g.gg. :ﬁ: BOYO 2] —_——  0.58(0.50,1.90)
| il R 5 SES-| —
AcES Ak 369 Dsslose. 1.4} AGES-Reykjavik 162 R 0.86 (0.5, 1.34)
i - o 0.9€ 0.6 120) ARIC 280 _— 0.75 (0.53, 1.07)
CHS 1299 — 1.04 (087, 1.23) CC(_)C 306 —_——  1.21(081,1.82)
EPIC-Norfolk 1526 — 0.52 (0.78, 1.08) CHS 832 ——— 1.13{0.91, 1.40)
EPC-Polsdam 50 _ g g g gg ] ;-:; EPIC-Norfolk 951 —_— 0,94 (0,76, 1.15)
—— . B, 1
HPFS 564 R S— 1.00 (0,63, 1.47) o - P— E— 1 YT
HS 222 —_— 1.05(0.69, 1.58) 82046, 2.00)
KIHD 562 —_— 0.82 (0.63, 1.08) KIHD 67 = 0.65 (0.4, 0.98)
MECS 282 ——— 0.77 (0.55, 1.07) MCCS 282 —_— 0.77{0.55, 1.07)
MESA 202 e g.g{; g.gg. ;ff; MESA 208 —_— 0.75 (0.45, 1.28)
MET SIM . 3 PMUS [ 0.43(0.04, 4.29)
MHS BE2 —— 068 (0.47,1.01)
PVLS g9 = > 1.11(0.56, 215} SHHEC : 308 ——— 1.03 (0.84, 1.26)
SHEC 157 iy 0.99 (088, 1.12) ULSANM-50 285 ———— 0,89 (0,64, 1.24)
LLSAN-50 611 — 0.8 (0.70,1.13) ULSAM-70 10 0.96 (0.57, 1.60)
uﬁm;.?o ?35 —_— t‘:.g? g Eg_ : gg; WHIMS 290 —_— 1.08 (0.69, 1.70)
WHBA 795 —— | .79, 1. 2 - - o =
Sublotal (-squared = 0.0%, p = 0.961) < 095 (0,90, 1.01) SUbloll (hscpuaned = B.2%: p =72} < 0:84{0.88,1.02)
T L 1 L] T T T T
25 5 1 15 2 25 5 1 15 2

Figure 4. Associations of arachidonic acid (AA; 20:4n6) with total CVD (A) and CVD mortality
(B) in pooled analysis of 30 prospective studies.

Study-specific estimates for hazard ratio (HR) per interquintile range (i.e., range between the
midpoint of the bottom quintile [10t" percentile] and the top quintile [90™ percentile]) of
biomarker linoleic acid were pooled based on the following order: 1) adipose tissue, 2)
erythrocyte phospholipid, 3) plasma phospholipid 4) cholesterol ester, and 5) total plasma.
Study weights are indicated (grey squares) by individual biomarker compartment and
overall. Study-specific analyses were conducted using models that included the following
covariates: age (years), sex (male/female), race (Caucasian/non-Caucasian, or study-
specific), field center if applicable (categories), body-mass index (BMI, kg/m?), education
(less than high school graduate, high school graduate, some college or vocational school,
college graduate), smoking (current, former, never; if history not assessed, then current/not
current), physical activity (quintiles of metabolic equivalents (METs)/week), alcohol intake
(none, 1-6 drinks/week, 1-2 drinks/day, >2 drinks/day), prevalent diabetes mellitus (defined
as treatment with oral antihyperglycemic agents, insulin, or fasting plasma glucose >126 mg/
dL), treated hypertension (defined as hypertension drug use; or if unavailable, as diagnosed/
history of hypertension), treated hypercholesterolemia (defined as LDL-lowering drug use; if
unavailable, as diagnosed/history of hypercholesterolemia), regular aspirin use (defined as
>2 times/week), levels of a-linolenic acid (ALA; 18:3n-3), eicosapentaenoic acid (EPA,
20:5n-3), sum of fransisomers of oleic acid (trans18:1), and sum of #ransisomers of LA
(trans-18:2) (each expressed as % total FASs). If data did not allow such categorization,
study-specific categories were used. See Table 1 footnote for abbreviations of cohorts.
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Figure 5. Associations of arachidonic acid (AA; 20:4n6) with total CHD (A) and ischemic stroke
(B) in pooled analysis of 30 prospective studies.

Study-specific estimates for hazard ratio (HR) per interquintile range (i.e., range between the
midpoint of the bottom quintile [10t" percentile] and the top quintile [90™ percentile]) of
biomarker linoleic acid were pooled based on the following order: 1) adipose tissue, 2)
erythrocyte phospholipid, 3) plasma phospholipid 4) cholesterol ester, and 5) total plasma.
Study weights are indicated (grey squares) by individual biomarker compartment and
overall. Study-specific analyses were conducted using models that included the following
covariates: age (linear), sex (male/female), race (binary: Caucasian/non-Caucasian, or study-
specific), field or clinical center if applicable (study-specific categories), body-mass index
(BM, linear), education (less than high school graduate, high school graduate, some college
or vocational school, college graduate), smoking (current, former, or never; if former not
assessed, then current or not current), physical activity (quintiles of metabolic equivalents
(METS) per week; or if METs unavailable, quintiles of study-specific definitions of physical
or leisure activity), alcohol intake (none, 1-6 drinks/week, 1-2 drink/day, >2 drink/day [14 g
alcohol=1 standard drink]), diabetes mellitus (yes or no; defined as treatment with oral
hypoglycemic agents, insulin, or fasting plasma glucose >126 mg/dL), treated hypertension
(yes or no; defined as hypertension drug use; or if unavailable, as diagnosed/history of
hypertension according to study-specific definitions), treated hypercholesterolemia (yes or
no; defined as lipid-lowering drug use; if unavailable, as diagnosed/history of
hypercholesterolemia according to study-specific definitions), regular aspirin use (yes or
no), biomarker concentrations of a-linolenic acid (ALA; 18:3n-3), eicosapentaenoic acid
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(EPA; 20:5n-3), sum of trans-18:1 fatty acids, and sum of trans-18:2 fatty acids (all linear;
expressed as % total fatty acids). If data did not allow such categorization, study-specific
categories were used. See Table 1 footnote for abbreviations of cohorts.
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Page 28

Risk of incident CVD according to objective biomarker levels of linoleic acid (18:2n6) and arachidonic acid
(20:4n6) in 30 pooled prospective cohort studies

Multivariable-adjusted hazard ratio (95% CI)

per interquintile range

Outcome Biomarker Studies (n)  Cases (n) Linoleic acid Arachidonic acid
Total CVD Phospholipid 14 6853 1.00 (0.92-1.09) 0.95 (0.87-1.03)
Total plasma 6 2742 0.90 (0.78-1.03) 0.81 (0.70-0.94)

Cholesterol esters 4 1300 0.74 (0.63-0.88) 1.03 (0.88-1.20)

Adipose tissue 2 1412 0.87 (0.75-1.01) 0.98 (0.87-1.10)

Overall’t 21 10 477 0.93 (0.88-0.99) 0.95 (0.90-1.01)

CVD mortality ~ Phospholipid 9 3057 0.89 (0.79-1.00) 0.93 (0.83-1.05)
Total plasma 4 679 0.66 (0.50-0.86) 0.85 (0.66-1.09)

Cholesterol esters 3 473 0.56 (0.43-0.73) 0.99 (0.76-1.29)

Adipose tissue 2 418 0.60 (0.44-0.82) 1.02 (0.84-1.23)

Overall’f 17 4508 0.78 (0.70-0.85) 0.94 (0.86-1.02)

Total CHD Phospholipid 14 6075 1.01 (0.93-1.10) 0.96 (0.90-1.03)
Total plasma 7 2430 0.86 (0.74-1.00) 0.86 (0.74-1.01)

Cholesterol esters 5 1178 0.78 (0.65-0.94) 1.02 (0.85-1.23)

Adipose tissue 3§ 3255 0.88 (0.74-1.03) 1.10 (0.98-1.23)

Overall’f 26§ 11 857 0.94 (0.88-1.00) 0.99 (0.94-1.04)

Ischemic stroke  Phospholipid 12 2327 0.95 (0.82-1.10) 0.98 (0.85-1.13)
Total plasma 6 1105 0.84 (0.66-1.06) 0.93 (0.73-1.18)

Cholesterol esters 4 598 0.67 (0.51-0.88) 1.13 (0.89-1.43)

Adipose tissue 2 405 0.87 (0.65-1.15) 0.91 (0.74-1.11)

ka 21 3705 0.88 (0.79-0.98) 0.99 (0.90-1.10)

Overall

*
AA, arachidonic acid; CHD, coronary heart disease; CI, confidence interval; CVD, cardiovascular disease; LA, linoleic acid.

fBased on harmonized, de novo individual-level analyses in each cohort, pooled using inverse-variance weighted meta-analysis. Risk was assessed
according to the interquintile range (i.e., range between the midpoint of the bottom quintile [10th percentile] and the top quintile [90th percentile])
of each fatty acid, corresponding to the difference between the midpoint of the first and fifth quintiless. Study-specific analyses were adjusted for
age (years), sex (male/female), race (Caucasian/non-Caucasian, or study-specific), field or clinical center if applicable (study-specific categories),
body-mass index (BMI, kg/m2), education (less than high school graduate, high school graduate, some college or vocational school, college

graduate), smoking (current, former, or never; if former not assessed, then current or not current), physical activity (quintiles of metabolic
equivalents (METSs) per week; or if METs unavailable, quintiles of study-specific definitions of physical or leisure activity), alcohol intake (none,
1-6 drinks/week, 1-2 drink/day, >2 drink/day [14 g alcohol=1 standard drink]), diabetes mellitus (yes/no; defined as treatment with oral
hypoglycemic agents, insulin, or fasting plasma glucose >126 mg/dL), treated hypertension (yes/no; defined as hypertension drug use; or if
unavailable, as diagnosed/history of hypertension according to study-specific definitions), treated hypercholesterolemia (yes or no; defined as lipid-
lowering drug use; if unavailable, as diagnosed/history of hypercholesterolemia according to study-specific definitions), regular aspirin use (yes/
no), biomarker concentrations of a-linolenic acid (ALA; 18:3n-3), eicosapentaenoic acid (EPA; 20:5n-3), sum of trans-18:1 fatty acids, and sum of
trans-18:2 fatty acids (each expressed as % total fatty acids).

'tFor studies that assessed LA and AA levels in more than one biomarker compartment, the primary compartment for that study was pre-selected

for pooled analyses based on the following order: 1) adipose tissue, 2) erythrocyte phospholipid, 3) plasma phospholipid 4) cholesterol ester, and 5)
total plasma.
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§Because the Diet, Cancer and Health study assessed associations of AA, but not LA, with total CHD (n cases=2138), a total of, 2 studies (n cases=
1117) evaluated adipose tissue LA and 25 studies (n cases=9719) assessed any biomarker level of LA in relation to total CHD.
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