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Chemical probing coupled to high throughput sequencing offers a high throughput and 

flexible approach to uncover many aspects of RNA structure relevant to its cellular function 

and interactions. Chemical probes work by covalently modifying RNAs preferentially in 

regions that are unconstrained – i.e. those that are flexible, unstructured, unpaired and 

unbound by other RNA/protein/ligand interactions. These covalent modifications can then 

be mapped by sequencing to obtain structural information across a complex pool of RNAs 

all at once. A wide range of inputs can be used in these experiments, ranging from in vitro 
purified RNAs to RNAs from whole cells and tissues. Following the probing reaction, RNAs 

are reverse transcribed into cDNAs, formatted into high throughput sequencing libraries, and 

sequenced to detect modifications either as truncated cDNA products (RT-stops) or 

modification-induced mutations (RT-mutations) (Strobel et al., 2018). The distribution of 

modifications across a molecule is then used to calculate a ‘reactivity’ value for each 

nucleotide in the RNA, with higher reactivities typically corresponding to more 

unconstrained positions (Strobel et al., 2018).

Chemical probing reactivities can be used to uncover many layers of RNA structure. Since 

the probing reaction is sensitive to the general structural environment of each nucleotide 

(McGinnis et al., 2012), reactivities reflect base-pairing interactions, complex tertiary 

interactions and other environmental effects such as ion-mediated interactions, 

proteins/RNA/ligand interactions, and the change of RNA flexibility with different 

temperatures. Moreover, different probes access different structural information (Strobel et 

al., 2018): some modify the backbone of the RNA, while others preferentially modify 

specific bases (Ehresmann et al.). The choice of probe is an important consideration in the 

design of a chemical probing experiment (Strobel et al., 2018). For example, probes with 

short-half lives are advantageous for experiments that require rapid sample handling to 

capture out of equilibrium structures that may be present when RNAs are folded 
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contranscriptionally (Watters et al., 2016), while probes with long half-lives are better suited 

to probing RNA structures inside cells (Spitale et al., 2015).

Chemical probing can be used to address many biological questions about RNA function, 

and give insights into the structural mechanisms behind these functions. For example, a 

protein-RNA binding interaction can be characterized by performing parallel probing 

experiments on purified RNA alone and RNA folded in the presence of the RNA-binding 

protein (RBP). By looking for changes in reactivities between the two conditions, RBP 

binding sites can be uncovered as well as other structural changes that result from the RBP-

RNA interaction (Smola et al., 2015). Similar comparisons can reveal where ligands bind 

RNAs (Stoddard et al., 2008), how RNA folds change in the complex cellular environment 

(Spitale et al., 2015), how RNA folds change during transcription (Watters et al., 2016), and 

many others.

Chemical probing data can also be leveraged alongside computational methods to yield 

higher-resolution RNA structural models. Single-structure methods can use generated or 

existing databases of reactivity information (Yesselman et al. 2017) to increase the accuracy 

of 2- or 3-dimensional structural models of the RNA (Lorenz et al., 2016). However, RNAs 

often fold into an ensemble of different structures in solution which are captured at a 

population level by the bulk nature of chemical probing experiments. Multistate methods 

have been recently developed to extract this population-level information from probing data 

to predict the ensemble of distinct folds of an RNA molecule, as well as their relative 

distributions within the population (Li and Aviran, 2018). Beyond analysis of individual 

RNAs, comparative methods have been developed to ask questions about the conservation of 

structural elements between different sequences, and genome-wide tools are useful for 

linking reactivity patterns to genomic elements (Spitale et al., 2015, Mustoe et al., 2018, 

Strobel et al., 2018).

High throughput chemical probing offers a powerful and growing suite of experiments to 

uncover the RNA structure-function relationship. However, there are several limitations to 

keep in mind when designing these experiments. In some cases, it can be difficult to 

unambiguously assign structural changes from reactivity changes, as many different changes 

in structural context can lead to the same observed change in reactivity. Second, low 

amounts of input RNA can result in low signal and inaccurate reactivity estimates; in these 

cases, increasing the amount of starting material and/or increasing sequencing depth is 

necessary. Third, different steps in probing experiments can introduce bias into the data 

(Strobel et al., 2018). Protocols are being continuously developed to remove these biases, 

but careful processing of samples is important for producing high-quality libraries for 

sequencing. Other best practices include general considerations of sequencing depth. 

Genome-wide probing (Mustoe et al., 2018), cotranscriptional probing (Watters et al., 2016), 

and studies of long RNAs require increased sequencing depth compared to single-length 

experiments to produce robust reactivity estimates. Additionally, the use of multiple probes 

to study to same RNA is often advantageous to leverage the complementary information 

offered by different probes.
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Chemical probing of RNA structure continues to increase in power and resolution. There are 

also exciting opportunities to continue to merge these techniques with other high-throughput 

methods such as CLIP, ribosome profiling and others to study the structural basis of RNA-

protein interactions, the impact of RNA structure on translation and many other features of 

the RNA structure-function relationship. Overall, we anticipate these techniques will help 

uncover new RNA functional roles and the structural aspects of their mechanisms across the 

cell.
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