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Abstract

Late-life depression (LLD) is associated with cognitive impairments and reduced gray matter 

volume (GMV); however the mechanisms underlying this association are not well understood. The 

goal of this study was to characterize changes in depression severity, cognitive function, and brain 

structure associated with pharmacologic antidepressant treatment for LLD. We administered a 

detailed neurocognitive battery and conducted structural magnetic resonance imaging (MRI) on 26 

individuals with LLD, pre-/post- a 12-week treatment trial with venlafaxine. After calculating 

changes in cognitive performance, GMV, and depression severity, we calculated Pearson’s 

correlations, performed permutation testing, and false discovery rate correction. We found that loss 

of GMV over 12 weeks in the superior orbital frontal gyrus was associated with less improvement 

in depression severity and that increased GMV in the same was associated with greater 

improvement in depression severity. We detected no associations between changes in cognitive 

performance and improvements in either depressive symptoms or changes in GMV.
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Introduction

Late-life depression (LLD), defined as major depression in individuals over age 65, affects 

5–8% of adults 65 and older (Buchtemann et al., 2012; Panza et al., 2010), is associated with 

functional disability, medical and psychiatric hospitalizations followed by 

institutionalization, worsened medical comorbidities, and increases in all-cause mortality. 

LLD also doubles the risk of developing dementia (Diniz et al., 2013), and is linked with 

cerebral dysfunction in several frontal and limbic regions (Alvarez and Emory, 2006; 

Bouckaert et al., 2016; Drevets, 2000; Mackin et al., 2014; Vasic et al., 2008), and 

investigation of these associations may lead to improved understanding and care. Previous 

work has indicated that greater cognitive performance correlates with lower depression 

severity, however this relationship is complex and indirect (Arvanitakis et al., 2016; Butters 

et al., 2011; Mulsant et al., 2006). Other evidence indicates an association between greater 

gray matter volume (GMV) and greater cognitive performance (Papenberg et al., 2016; 

Shimoda et al., 2015; Smagula et al., 2016).

Imaging techniques, including functional MRI (fMRI), have identified an association 

between depression severity in LLD and structural volumes as well as functional brain 

activation (Diniz et al., 2015; Khalaf et al., 2015). Some older adults treated for depression 

show better performance on cognitive measures, which in turn has been associated with 

greater gray matter volume (GMV) (Diniz et al., 2015; Manard et al., 2016). Voxel-based 

morphometry studies have consistently observed lower GMV in frontal and limbic regions 

associated with poorer performance on executive function tasks (Li et al., 2010; Rao et al., 

2007). Other studies have shown greater gray matter volume following successful 

electroconvulsive therapy (Bouckaert et al., 2016).

Another consistent finding is low hippocampal volumes in individuals with depression, 

which is supported by the glucocorticoid hypothesis in depression (Andreescu et al., 2008; 

Butters et al., 2008; Gerritsen et al., 2011; Hickie et al., 2005; Janssen et al., 2007; Lloyd et 

al., 2004; Sawyer et al., 2012). It states that depression is neurotoxic to the brain and 

memory capacity may be affected through an overactive hypothalamic-pituitary-adrenal 

(HPA) activation, which can lead to chronic glucocorticoid exposure (the hippocampus 

being acutely sensitive to this effect). It is thought that this effect is also more prevalent in 

late-onset depression compared to early onset depression (Andreescu et al., 2008; Hickie et 

al., 2005; Lloyd et al., 2004).

We aimed to investigate associations between intervention-related changes in GMV, 

depression severity, and cognition. Understanding these longitudinal relationships may 

provide additional insight into the neurophysiological processes underlying the relationship 

between depression treatment response variability and the risk of neurocognitive decline in 

late life.
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Methods

Study Design and Participants

All participants (N=26) were > 60 years old and met criteria for an episode of major 

depression that was diagnosed according to DSM-IV criteria and scored at least 15 on the 

Montgomery-Asberg Depression rating scale (MADRS) (Montgomery and Asberg, 1979). 

The methods of the study have been described previously (Karim et al., 2016). All 

participants had a 12-week, open-label trial of venlafaxine, with MRI scans prior to and after 

treatment. The University of Pittsburgh Institutional Review Board approved this study and 

all participants provided written informed consent prior to scanning. Years lived with 

depression was defined as current age minus age of first lifetime episode of major 

depression. Participants on antidepressant medication underwent a washout period of 2 

weeks prior to starting treatment (6 weeks if on fluoxetine).

Exclusion Criteria

Participants were excluded if they met any of the following criteria: history of mania or 

psychosis, alcohol or substance abuse within the last 3 months, dementia, stroke, 

neurodegenerative disease (e.g., Parkinson’s Disease, multiple sclerosis), or unstable 

medical conditions which could complicate treatment response (e.g., uncontrolled severe 

hypertension). Five MRI scans were performed following informed consent, however only 

two were used in this analysis: baseline and end of the trial (12 weeks). A total of 37 

participants signed consent but some were excluded due to venlafaxine side effects (N=2), 

non-adherence to protocol (N=1), an inaccurate diagnosis of major depressive disorder 

(N=1), or did not complete both scans and/or neurocognitive assessments (N=7). 

Participants (N=26) were classified as responders if they had a change in MADRS greater 

than or equal to 50 percent.

Dosage Information and Group Classification

Venlafaxine was started at 37.5mg and was titrated in 37.5mg increments every 3 days, to a 

target of 150mg/day. At approximately 6 weeks, non-responders had their dose increased in 

37.5–75mg increments to a target dose of 300mg/day.

Neurocognitive Assessments

Along with the Mini-Mental State Examination (MMSE), neurocognitive performance was 

assessed using the Repeatable Battery for the Assessment of Neuropsychological Status 

(RBANS)(Randolph et al., 1998) as well as selected subtests of the Delis-Kaplan Executive 

Function System (DKEFS) (Delis, 2001) at baseline and after 12 weeks of treatment with 

venlafaxine. Participants were excluded if they had an MMSE less < 25.

The RBANS measures performance and aptitude in attention, language, visuospatial 

functioning, and delayed memory. All raw scores are standardized to index scores based on 

age. The subtests from the RBANS included in this analysis were: (1) Coding task to 

measure sustained attention and information speed; (2) List and Story recall to measure 

delayed recall of verbal information; (3) Figure recall to measure delayed recall of 

visuospatial information.
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Three subtests were used from the D-KEFS to measure set shifting (Trail Making), response 

inhibition (Color-Word Interference test), and combined inhibition and set shifting (Color-

Word Interference test: inhibition component). Raw scores of this assessment were 

standardized based on their respective tests’ age-based norms.

MRI data acquisition

MRI data was collected (at baseline and 12 weeks) using a 3T Siemens Trio TIM scanner 

with a 12-channel head coil. An axial whole-brain high-resolution T1-weighted MPRAGE 

sequence was collected (repetition time=2300 ms, inversion time=900 ms, flip angle=9°) 

with a field of view 256×224 and 176 slices.

Region of Interest (ROI) selection

ROIs were selected due to evidence supporting associations between grey matter atrophy 

across all frontal regions and the limbic system as well as limbic system-associated regions 

(Vasic et al., 2008; Wu et al., 2006).

The Automated Anatomical Labeling (AAL) template was used to define twelve ROI’s: 

bilateral amygdala, hippocampus, parahippocampus, and inferior, middle, and superior 

frontal gyrus (each separated into operculum, triangular, and orbital aspects). These were 

based on previous findings from VBM and AAL studies that suggest a relationship between 

worse atrophy in frontal and limbic regions and greater depression severity (Amico et al., 

2011; Li et al., 2010; Rao et al., 2007).

Calculating ROI Volumes

We used the automated labeling pipeline (ALP), which has been described in detail (Wu et 

al., 2006). After the structural image was skull-stripped automatically with FSL’s Brain 

Extraction Tool using the default parameters, trained students in the lab manually corrected 

it in ITK-SNAP (Insight Toolkit (Yoo, 2004)). This method starts with a grid-based 

piecewise linear registration and then uses a demons (deformable image registration 

algorithm) registration algorithm as a fine-tuning procedure for a voxel-level spatial 

deformation (registration library in ITK (Yoo, 2004)). The fully deformable registration 

allows for a high degree of spatial deformation, which seems to give it a particular advantage 

over other standard registration packages.

Following this coregistration, we computed the size of each ROI and divided this by the total 

size of the brain (intracranial volume, ICV), which accounts for differences in total size. The 

brain was manually (by trained students in ITK-SNAP) skull-stripped (which generates a 

mask of gray/white matter and cerebrospinal fluid) and the total volume of this mask was the 

ICV. To measure changes in and associations between depression severity, GMV, and 

cognitive performance, we computed change scores by calculating percent change from 

baseline [(baseline - post treatment)/baseline*100]. Positive changes in MADRS and in 

cognition indicated improvement while in GMV positive change indicated increased 

volume. This was done for all seven cognitive variables, twelve ROI’s, and MADRS.
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Statistical Analysis

This was a hypothesis generating (exploratory) data analysis in which we measured changes 

in and associations between depression severity, GMV, and cognition. Descriptive statistics 

are presented in Table 1 (as median and interquartile range). To test differences between 

responders and non-responders Wilcoxon’s rank sum was used for continuous measures 

Fisher’s exact test for categorical or binary measures. Pearson’s correlation was used to test 

the association between our variables of interest (103 possible associations). Due to the 

small sample size, permutation testing (5000 iterations) was performed to generate a 

distribution for each association and to compute a p-value. To control for multiple 

comparisons we used false discovery rate (FDR) correction with α< 0.05 (Benjamini and 

Hochberg, 1995). Bootstrapping (5000 iterations) was used to estimate 95% confidence 

intervals, which were not corrected for multiple comparisons. We anticipated that many 

correlations would not survive FDR correction but wished to provide information about 

which larger associations could be of interest in more adequately powered studies.

Results

GMV Changes and Improvement in Depression Severity

After correcting for multiple comparisons (via FDR), only one association was significant. 

We found that a decrease of GMV (maximum decrease of 0.74cm3) in the superior orbital 

frontal gyrus (SFG Orbital, average volume of 8.1cm3 with [min, max]=[6.02cm3, 9.69cm3]) 

was associated with less improvement in depression severity r(25)=0.636, p<0.001 and a 

95% confidence interval (CIunc) equal to [0.35,0.80] (see Fig 1). Increased GMV (maximum 

increase of 0.63cm3) in this region was associated with high improvement in depression 

symptoms. Change in GMV was not associated with serum venla/desvenla (or dosage) or 

years lived with depression (age minus age of first depressive episode), however the changes 

in superior frontal gyrus (SFG) were associated with years lived with depression r(21)=

−0.52, p<0.05.

Effects Requiring Further Study

Considering the relevance of this dataset for informing future longitudinal research, and the 

small sample size we report the strength of these associations as measured by Pearson’s 

correlation even though they did not reach the statistical significance after controlling for 

multiple comparisons, in order to foster further testing in adequately powered studies. The 

correlation and respective 95% CIunc are presented for all the investigated regions. Only 

variables that had CIunc that did not include zero are reported.

Change in Amygdala GMV was associated with changes in depression severity r(25)=0.465 

[0.04,0.76], which seemed to also be associated with years lived with depression r(21)=

−0.51, p<0.05. Even after considering uncorrected associations, we found that changes in 

depression severity were not directly associated with changes in neurocognitive test 

performance. Change in inferior frontal gyrus (triangular) GMV was positively associated 

with improvement in figure recall (visuospatial and constructional competence) r(25)=0.366 

[0.01,0.64]. Middle frontal gyrus GMV was negatively associated with color-word 

interference test (inhibition) r(25)=0.442 [−0.74,−0.06], which was also associated with 
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years lived with depression r(21)=−0.45, p<0.05. Inferior frontal gyrus (orbital) GMV was 

negatively associated with improvement in difference in set-shifting (adjusted for motor 

speed) r(25)=0.421 [−0.76,−0.02].

Discussion

We found that the change in superior frontal gyrus GMV was positively associated with 

improvement in depression severity (as measured by MADRS). While all participants 

improved in MADRS, those who had the smallest improvement also had the greatest atrophy 

in this region. We did not detect a significant association between improvement in 

neurocognitive performance with either improvement in depressive symptoms or changes in 

GMV.

Previous studies have shown altered orbitofrontal frontal cortex connectivity in major 

depressive disorder (Tadayonnejad et al., 2014). Greater superior frontal volumes (Marano et 

al., 2015) as well as greater (Ballmaier et al., 2004; Lai et al., 2000) and lower (Lai et al., 

2000; Taylor et al., 2007) volumes in orbitofrontal regions have also been associated with 

late life depression. We also found that those with the largest improvement in depression 

severity had increased GMV in this region. This is consistent with previous studies that have 

found associations between depression severity and volumetric changes in superior orbital 

frontal areas (Hou et al., 2016). Lower GMV in this region may be interpreted as persistent 

phenomena where continued depressive symptoms slightly reduce GMV while improvement 

of those symptoms may increase those volumes, which may be more consistent with 

findings that the orbitofrontal regions have lower volumes in depressed individuals.

Some associations (while not surviving multiple comparisons correction) showed effects that 

require further study to determine their clinical significance. We found that the amygdala 

gray matter volume seemed to have a similar association with depression severity. 

Improvement in depression severity was not significantly associated with improvement in 

cognitive test performance, even after considering uncorrected associations. This is 

supported by previous findings that identify depression as not being directly related with 

cognitive performance (Gallassi et al., 2001; Lichtenberg et al., 1995). This is not surprising 

given our previous findings that cognitive impairment in LLD is trait-like and persists 

beyond the depressive episode (Koenig et al., 2015).

While cognitive scores were not directly associated with changes in depression severity, 

there were some associations with GMV. Specifically, we found that increased GMV in the 

inferior frontal gyrus (triangular) was associated with better performance on figure recall 

(visuospatial memory). Increased middle frontal gyrus GMV was associated with worse 

inhibition. A similar association was found between the inferior frontal gyrus (orbital) and 

difference in set shifting. These results require further confirmatory longitudinal studies.

Years lived with depression (age minus age of first depressive episode) was significantly 

associated with changes in amygdala volume, middle frontal gyrus (orbital), and superior 

frontal gyrus, but was not associated with change in SFG (orbital) GMV. This further 

supports the neurotoxic effects of depression on the development and plasticity of the brain, 
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where a greater number of years lived with depression seem to be a factor in determining 

changes in GMV. However, we found that SFG (orbital) volume changes were associated 

with changes in depression severity in the trial and not to years lived with depression 

(although SFG volume was associated with years lived with depression), which suggests that 

there exists some neurobiological mechanism that drives these changes. A possible 

mechanism is an increase in glial density in the OFC that may occur after successful 

pharmacotherapy, which continues on its intended track in those that experience a less 

successful treatment course. Past studies have indicated differences in glial density 

(Rajkowska et al., 1999) and it is possible that glial density increases following 

pharmacotherapy (though that is currently speculative). The OFC is a critical region that is 

involved in emotion regulation (Goldin et al., 2008) and structural changes in this region 

(either through aging related changes in volume or increased white matter lesions) may both 

predispose individuals to depression (low cognitive control of emotions) as well as affect 

their responsiveness to pharmacotherapy.

These data contribute to the growing body of research that supports the relationship between 

LLD severity, GMV atrophy, and cognitive impairments. Previous findings have established 

a relationship between depression severity and GMV across all cortices and limbic structures 

(Alvarez and Emory, 2006; Bouckaert et al., 2016; Drevets, 2000; Vasic et al., 2008). The 

literature has shown that while there is a slight improvement in cognition in late life 

coinciding with improvement in depression severity, although this relationship is more 

complex and is indirect (Arvanitakis et al., 2016; Butters et al., 2011; Mackin et al., 2014; 

Mulsant et al., 2006). However, there is evidence that directly correlates higher GMV and 

improved cognitive performance (Papenberg et al., 2016; Shimoda et al., 2015; Smagula et 

al., 2016) and our previous work suggests that depression is associated with accelerated 

molecular brain aging and persistent cognitive impairment (Diniz et al., 2017; Diniz et al., 

2015).

The current study is longitudinal and analyses are all bidirectional correlation analyses, thus 

causal relationships are not specifically tested. The present results should be viewed in light 

of several limitations. This study has a relatively small sample size (N=26), thus further 

investigation is required in a larger sample to determine the clinical significance of these 

associations. This study was conducted in a late-life sample and so these results cannot be 

generalized to mid-life depression. There is no control group, so we cannot compare these 

treatment-related changes in a clinical sample to a non-depressed group. Past studies have 

shown changes in GMV in the hippocampus following acute exercise interventions 

(Erickson et al., 2011), in the visual and frontal cortex following juggling (Draganski et al., 

2004) (even after only 7 days of training (Driemeyer et al., 2008)), and even in Heschl’s 

gyrus following musical training (Hyde et al., 2009), however it is possible that some of this 

variance is likely accounted for by artifact, motion across time, and even the toolbox used to 

analyze the data. While we have previously shown that reproducibility within repeated 

measures designs is higher (Tudorascu et al., 2016) and much of the variability between 

studies is likely due to different toolboxes (or different acquisitions), considering the large 

number of studies that report such changes, it is unlikely that all the variance is due solely to 

artifacts or motion and that there is an underlying neuroplastic mechanism in the brain that 

drives such changes.
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There are several such mechanisms that may increase GMV: tissue volume changes could be 

due to synaptic changes (though this may be an unlikely mechanism in late-life), glial 

changes (which are thought to be the most dominant mechanism), and/or increases in 

dendritic length. Each of these changes could increase or decrease observed GMV, however 

several other mechanisms involve changes in fluid volume, where past studies have shown 

changes in pulsatility and other tissue properties that may affect volume (Desmidt et al., 

2017).

Using pre- and post- treatment data, this project attempted to provide an integrated view of 

the relationships among changes in GMV, cognition, and depressive symptoms during open-

trial pharmacotherapy of older adults with major depression. Further understanding of these 

processes may provide additional insight into the risk for dementia posed by depression, the 

benefits of successful treatment with antidepressants for brain structure and function, and 

may elucidate cases in which depression is a prodromal expression of dementia, rather than 

a true risk factor.
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Figure 1. 
The association between changes in superior frontal gyrus (orbital) GMV and changes in 

MADRS (depression severity). Note that all participants improved (some less than others) – 

none worsened during treatment. Also, there are both increases and decreases in GMV. 

Responders are labeled in blue, while non-responders are labeled in red. Note: No tests 

comparing responders and non-responders were conducted.
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Table 1.

Descriptive statistics for this sample. Age, Education, and Years lived with depression are measured in years 

(W=Wilcoxon’s rank sum). Years lived with depression was defined as current age minus age of first lifetime 

episode of major depression. Median and interquartile range (IQR) is reported when Wilcoxon’s rank sum test 

is done. Frequencies are reported when using Fisher’s exact p. MMSE – Mini-mental state examination; 

MADRS – Montgomery-Asberg Depression Rating Scale, MMSE – Mini-mental state examination.

Responders [N=15] Non-Responders [N=11] W, Fisher’s Exact 
Test p-value

Age 65 (5) 67 (5) W=185 0.349

Sex (F) 13 8 Fisher’s exact p 0.62

Race (CC/AA) 11/4 11/0 Fisher’s exact p 0.113

Education 15 (3) 15 (2) W=200 0.916

Years lived with Depression 29 (20) [N=11] 33 (17) W=123 0.818

(Single/Recurrent) Depression 2/11 [N=13] 4/7 Fisher’s exact p 0.357

MMSE 29 (1) 28 (1) W=118 0.094

Baseline MADRS 26 (7) 29 (5) W=179 0.222

End of trial MADRS 7 (8) 16 (7) W=118 0.010*

End of trial Venla 144 (121) [N=11] 181 (110) [N=7] W=16 0.433

End of trial Desvenla 253 (118) [N=11] 405 (152) [N=7] W=10.5 0.133

Baseline Coding (Processing Speed) 10.3 (5.9) 8.7 (3.8) W=218 0.2832

Baseline List Recall (Delayed Verbal Memory) 10.0 (3.3) 11.4 (2.7) W=188 0.4589

Baseline Story Recall (Delayed Verbal Memory) 10.3 (5.2) 10.3 (2.9) W=190 0.5575

Baseline Figure Recall (Delayed Visuospatial 
Memory) 8.9 (5.1) 8.8 (3.0) W=205 0.7821

Baseline Trail Making (Set Shifting) 10 (4.5) 10.5 (1.5) W=187 0.4382

Baseline Color-Word Interference-Inhibition 
(Response Inhibition) 10.3 (5.0) 12.0 (4.5) W=185 0.367

Baseline Color-Word Interference-Inhibition/
Switching (Response Inhibition and Switching) 9.0 (4.5) 10.0 (1.5) W=191 0.5998
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