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Abstract

Monitoring the effects of water availability on vegetation globally using satellites is important for 

applications such as drought early warning, precision agriculture, and food security as well as for 

more broadly understanding relationships between water and carbon cycles. In this global study, 

we examine how quickly several satellite-based indicators, assumed to have relationships with 

water availability, respond, on timescales of days to weeks, in comparison with variations in root-

zone soil moisture (RZM) that extends to about 1 m depth. The satellite indicators considered are 

the normalized difference vegetation and infrared indices (NDVI and NDII, respectively) derived 

from reflectances obtained with moderately wide (20–40 nm) spectral bands in the visible and 

near-infrared (NIR) and evapotranspiration (ET) estimated from thermal infrared observations and 

normalized by a reference ET. NDVI is primarily sensitive to chlorophyll contributions and 

vegetation structure while NDII may contain additional information on water content in leaves and 

canopy. ET includes both the loss of root zone soil water through transpiration (modulated by 

stomatal conductance) as well as evaporation from bare soil. We find that variations of these 

satellite-based drought indicators on time scales of days to weeks have significant correlations 

with those of RZM in the same water-limited geographical locations that are dominated by 

grasslands, shrublands, and savannas whose root systems are generally contained within the 1 m 

RZM layer. Normalized ET interannual variations show generally a faster response to water 

deficits and enhancements as compared with those of NDVI and NDII, particularly in sparsely 

vegetated regions.
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1. Introduction

Drought monitoring is defined as tracking the severity, spatial extent, and impacts of 

drought. Use of that information to elicit an appropriate timely response is called early 

warning (Hayes et al., 2012). Drought monitoring and early warning are important 

components of proactive, risk-based strategies that are being developed to reduce the impact 

of droughts worldwide (Hayes et al., 2012). Early detection of water stress effects on 

vegetation is critical for decision making and drought preparedness in agricultural, 

ecological, and meteorological communities (e.g., AghaKouchak et al., 2015). A recent 

survey of stakeholders in the US noted potential benefits of having advanced notice (on the 

order of weeks) of worsening conditions that occur during the transition from 

meteorological drought (i.e., dry conditions and reduced precipitation) to agricultural 

drought (i.e., decreased soil moisture and impacts on vegetation) (Otkin et al., 2015). Such 

early warning could afford 1) ranchers the opportunity to move livestock to less susceptible 

pastures or to purchase supplemental feed; 2) farmers advanced notice to influence their 

marketing decisions or help them determine whether a cover crop might be beneficial to 

plant after harvest; and 3) government agencies the ability to best allocate equipment and 

personnel resources for mitigation, such as emergency haying (Otkin et al., 2015). In other 

regions of the world, such as sub- Saharan Africa, drought early warning systems have been 

shown to significantly increase food security and dietary diversity and may also be used to 

integrate pasture conservation (Akwango et al., 2017).

A drought indicator (DI) is a variable used to describe the physical characteristics of drought 

severity, spatial extent, and duration that along with specific trigger values may activate a 

drought response (Steinemann and Cavalcanti, 2006). Drought indicators may be related to 

hydrology (e.g., precipitation, soil moisture, snowpack), vegetation status (e.g., type, age, 

growth stage, and vigor including chlorophyll content and leaf area index that are related to 

vegetation indices), or both (e.g., evapotranspiration or ET). Satellite-based DIs have several 

advantages for drought monitoring and early warning, including global repeat coverage of 

spatially continuous and consistent spectral measurements and timely data distribution.

Satellite-derived reflectance-based vegetation indices (VI) and other parameters have been 

used for vegetation health and drought monitoring including drought assessment and 

drought early warning, particularly in savannas and ecosystems in semiarid regions (see e.g., 

the review of AghaKouchak et al., 2015, and references therein). NDVI has also been used 

to benchmark modern land-surface models for quantitative prediction of vegetation health 

(Crow et al., 2012). However, there remain several challenges in using satellite data for 

drought monitoring and early warning (WMO, 2006). For instance, satellite-derived DIs are 

sometimes inadequate for detecting early onset and end of drought and should be integrated 

with other climate, water, and soil parameters to fully characterize drought impacts and 

extents.

The use of satellite data for drought monitoring began in the 1980s with the launch of the 

Advanced Very High Resolution Radiometer (AVHRR) instruments on a series of 

operational meteorological satellites. The AVHRR contains two spectral bands that can be 
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used to compute the normalized difference vegetation index (NDVI) (Tucker, 1979). The 

NDVI has been utilized in numerous studies involving drought early warning, agricultural 

monitoring, and other applications (see e.g., the review of Anyamba and Tucker, 2012, and 

references therein). This includes its use in the US Drought Monitor (USDM) (Svoboda et 

al., 2002) in the form of a vegetation health index that is based on anomalies (or deviations 

from climatological mean values) of NDVI (Kogan, 1995).

Many studies have also examined relationships among satellite-derived vegetation indices 

and variables related to water availability such as precipitation and soil moisture, sometimes 

in addition to other climate parameters (see e.g., Wang et al., 2007; Méndez-Barroso et al., 

2009; Schnur et al., 2010; Karnieli et al., 2010; Swain et al., 2013; Zeng et al., 2013; Jamali 

et al., 2011; De Keersmaecker et al., 2015; AghaKouchak et al., 2015; Seddon et al., 2016, 

and references within). The timescales used in these studies have generally been monthly to 

yearly and the spatial extents have ranged from site level to global. Previous examinations of 

the time differences (e.g., leads or lags) between the expression of NDVI and responses of 

climate variables, such as temperature and water availability, have ranged from weeks to 

years (e.g., Braswell et al., 1997; Ahmed et al., 2017). The lags are sometimes computed 

using the native NDVI values (e.g., Owe et al., 1993) or their anomalies (i.e., first removing 

the average seasonal cycle) (e.g., Huber et al., 2011) depending on the particular application.

Evapotranspiration (ET) and, along with it, the ET-driven evaporative stress index (ESI) 

(Anderson et al., 2007, 2011a, 2013) are more recent satellite-derived data sets that can be 

used for early detection of water stress effects on vegetation as well as drought assessment 

(e.g., Courault et al., 2005; Anderson et al., 2007; Kalma et al., 2008; Yao et al., 2010; 

Mueller et al., 2011; Jiménez et al., 2011; Anderson et al., 2011a, 2013; Fisher et al., 2017; 

Vicente-Serrano et al., in press). ET includes both the loss of root zone soil water through 

transpiration (modulated by stomatal conductance) as well as evaporation from bare soil. 

This contrasts with NDVI and similar indices that are sensitive to structural parameters such 

as leaf area index (LAI) and/or to canopy chemical constituents such as relative chlorophyll 

content. Consequently, vegetation indices may have a delayed response or lower sensitivity 

to various forms of stress as compared with ET. ESI, defined as standardized anomalies in a 

normalized ET parameter, as well as the related rapid change index (RCI), derived from the 

accumulated magnitude of moisture stress changes occurring over multiple weeks, have 

been used to identify areas with increases in moisture stress that may precede rapid drought 

development or so-called flash droughts (Otkin et al., 2013, 2014). These products are used 

by a number of national and regional drought stakeholders including the USDM.

Many of the studies on the use of satellite-driven ET data sets for early drought detection 

and impacts such as on crop yields and terrestrial water budgets have focused regionally on 

the United States (e.g., Mishra et al., 2013; Otkin et al., 2013, 2014; Mladenova et al., 2017; 

Carter et al., 2018) and other individual countries (Anderson et al., 2016). Here, we expand 

on this work by comparing anomalies (or interannual variations) at the global scale of 1) a 

newly developed weekly normalized ET product from the Atmosphere-Land Exchange 

Inverse (ALEXI) approach that is driven by satellite and meteorological data (Hain and 

Anderson, 2017); 2) NDVI and NDII derived from MODIS reflectances; and 3) water 

availability as expressed by “root-zone ”(soil) moisture (RZM) in the top 1 m layer. Our 

Joiner et al. Page 3

Remote Sens Environ. Author manuscript; available in PMC 2019 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



focus is on the time leads/lags between short-term variations (i.e., daily to weekly 

timescales) in the RZM and satellite-based DIs that occur in water limited regions during the 

transition between meteorological and agricultural drought as depicted in the conceptual 

diagram in Fig. 1. Previous research with space-based observations has rarely focused on 

this short timescale. We conduct these comparisons using weekly averages at the native 

spatial resolution of a reanalysis RZM data set (0.5° latitude × 0.625° longitude), produced 

with a data assimilation system running with an unchanging model and analysis system 

using historical data streams; this is the lowest spatial resolution of the data sets used here. 

In combination, the prognostic model-based RZM data and diagnostic satellite-based ET 

estimates from ALEXI provide independent yet complementary assessments of the land-

surface moisture status.

One goal of this study is to use the new ALEXI-based ET data set (Hain and Anderson, 

2017) to investigate whether it is possible to identify regions across the globe where 

normalized ET shows consistently faster short-term responses (on timescales of days to 

weeks) to anomalies in water availability as compared with NDVI or NDII. Another goal is 

to estimate the lead/lag times of these DIs with respect to each other and RZM over short 

timescales to determine how useful satellite-driven global ET-based data sets may be for the 

above-mentioned stakeholder needs.

2. Materials and methods

This section describes the data sets used in this study and how the interannual variability and 

time lags are computed. Additional details regarding the calculation of temporal lags and 

their associated uncertainties are provided in Appendix A.

2.1. Satellite drought indicator (DI) data sets

2.1.1. ALEXI-based ET estimates—With surface energy balance methods, estimates 

of ET are based on the thermal response of land surfaces containing vegetation as measured 

by thermal infrared (TIR) satellite retrievals of land-surface temperatures (Anderson et al., 

2011b). The ALEXI method is a comprehensive set of algorithms to diagnose the surface 

energy balance with the aim of retrieving ET (Anderson et al., 1997, 2007; Mecikalski et al., 

1999). ALEXI is based on the two-source energy balance (TSEB) approach (Kustas and 

Norman, 1999; Norman et al., 1995) in which the partitioning of turbulent fluxes is 

evaluated for the soil and the canopy (denoted with subscripts s and c, respectively). This is 

accomplished by 1) parameterizing the divergence of net radiation (Rnet) between canopy 

and soil surface and 2) attributing the observed composite surface radiometric temperature 

(Trad) into soil and canopy temperatures, Ts and Tc (note: uppercase T denotes temperature), 

respectively, based on the fraction of area covered with vegetation that is parameterized 

using LAI.

An initial guess for the canopy transpiration rate is based on the assumption that the green 

part of the canopy transpires at its potential maximum rate as estimated with a modified 

Priestley and Taylor (1972) approximation. The sensible heat flux for the two source 

components is then calculated in a set of equations that accounts for their different resistance 

to heat transfer and that satisfy the observation-based Ts and Tc and air temperature Ta 
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(Norman et al., 1995). The final estimate of ET is determined in an iterative procedure in 

which soil evaporation is forced to be non-negative. ALEXI couples TSEB with an 

atmospheric boundary layer model to relate the morning rise in Trad to the growth of the 

overlying planetary boundary layer and simulate an internally consistent Ta. This removes 

the need for Ta as an input data set and limits the sensitivity of the method to biases in 

instantaneous satellite-based temperature estimates, while allowing for regional and global 

implementations of the model (Anderson et al., 1997). Note that ALEXI does not make use 

of a soil moisture estimate.

The ALEXI model is run on the 0.05° (~5 km) Climate Modeling Grid (CMG) and provides 

the physical foundation to the ALEXI/DisALEXI modeling system that has been applied to 

many satellitebased thermal infrared (TIR) data streams from 30 m to 10 km (Anderson et 

al., 2011b). The data set used here is based on a recently developed global methodology to 

use twice-daily observations of land surface temperature from the US National Aeronautics 

and Space Administration (NASA) MODerate-resolution Imaging Spectroradiometer 

(MODIS) within the ALEXI framework (Hain and Anderson, 2017).

The data sources for this version of ALEXI are listed in Table 1. They include the two Terra 

and Aqua MODIS sensors, the NASA Clouds and the Earth’s Radiant Energy System 

(CERES), and the National Centers for Environmental Prediction (NCEP) Climate Forecast 

System Reanalysis (CFSR). The continuous 7-day totals are achieved by temporal 

interpolation of ALEXI ET retrievals on days with clear sky conditions by conserving the 

ratio of ET to daily insolation flux. The use of 7-day averages allows for filling in of most 

gaps in satellite coverage caused by incomplete coverage and cloud contamination. Our 

analysis method can determine leads and lags among different drought indicators at a 

timescale even finer than 7 days through the use of linear interpolation within the 7-day 

averages (see Appendix A).

In order to remove inter-annual variation in available energy and to better focus on the 

drought signal, ET can be normalized by the potential ET (PET) (Anderson et al., 2007, 

2011b). PET (or reference ET) was computed from the general form of the Penman-

Monteith equation for a well defined reference surface (Allen et al., 1998). All necessary 

inputs needed for the computation of PET were taken from the same CFSR data set used in 

ALEXI. The fraction of potential ET (FPET) is then simply defined as FPET = ET/PET. 

Normalization by PET also serves to approximately rescale values between zero and one. 

Values above one do occur and may reflect local biases in PET or localized anomalous ET 

behavior.

The FPET data set, with native spatial resolution of FPET (0.05°), was aggregated to match 

that of the Modern-Era Retrospective analysis for Research and Applications 2 (MERRA-2) 

reanalysis data set described below. While this reduces spatial detail, multi-scale analyses of 

FPET suggest the generalized signals are not significantly impacted by aggregation (Yang et 

al., 2018).

2.1.2. Vegetation Indices—The satellite-derived vegetation indices examined are the 

NDVI and the normalized difference infrared index (NDII) that has been used to estimate 
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equivalent water thickness of leaves and canopy (Yilmaz et al., 2008). We compute NDVI 

and NDII using atmospherically-corrected nadir BRDF-Adjusted Reflectance (NBAR) from 

the collection 6 Terra and Aqua MODIS MCD43D daily data set (Schaaf et al., 2002; Lucht 

et al., 2000; Schaaf, 2015). Our analysis spans the years 2003–2016 when both Terra and 

Aqua MODIS data are available. The native resolution of the MCD43D gridded data set is 

0.0083°× 0.0083°. The nadir surface reflectance of each gridbox is derived using data 

acquired over a 16-day period at multiple angles for clear skies. A daily product is provided 

that weights the data according to quality and other factors. The daily reflectances are then 

averaged over the same spatial resolution as the MERRA-2 data set, as was done for ET and 

aggregated to the 7-day temporal resolution of the FPET data set. Using the averaged 

reflectances ρ from bands 1 (620–670 nm), 2 (841−876 nm), and 6 (1628–1652 nm), we 

compute NDVI = (ρ2 − ρ1)/(ρ2 + ρ1) and NDII = (ρ2 − ρ6)/(ρ2 + ρ6).

2.2. Soil moisture

We use fractional root-zone soil moisture (RZM), a dimensionless quantity, from the 

MERRA-2 reanalysis data product (Global Modeling and Assimilation Office (GMAO), 

2015; Reichle et al., 2017a,b). The reanalysis process uses a numerical (weather) prediction 

model together with an analysis system to combine many different satellite-, ground-, and 

aircraft-based observations in a physically consistent way. The end product consists of 

gridded data sets of many variables. These include some two dimensional fields (i.e., latitude 

by longitude), like RZM, that are not directly observed. The choice of a model-based RZM 

for this study is driven by the fact that for the time periods considered here, only models can 

provide globally comprehensive RZM; there is no satellite data set that can remotely sense 

as deeply into the soil and in situ soil moisture measurements are sparse in coverage. The 

MERRA-2 RZM represents the moisture in the 0−1 m soil layer, independent of the actual 

vertical distribution of the plant roots.

In the course of the MERRA-2 integration, the component land model responds to 

observations-based meteorological forcing including gauge-based precipitation from the US 

National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center 

(CPC), and it generates estimates of numerous land states, including the RZM values used 

here. Reichle et al. (2017b) provide a detailed comparison of RZM with over 200 in situ 
measurement sites from several networks worldwide. The MERRA-2 results were 

significantly improved as compared with the predecessor MERRA system and generally 

better than the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-

Interim/Land reanalysis data set. The quality of the analyzed RZM depends strongly on the 

availability of gauge observations for the land surface precipitation forcing (Reichle et al., 

2017a, see their Fig. 8).

We use the MERRA-2 data at their native spatial resolution of 0.5° latitude by 0.625° 

longitude. We refer to each element of the MERRA-2 two dimensional surface RZM field 

(at a single time step) as a gridbox. We evaluate all satellite-based DIs at the MERRA-2 

gridboxes. The MERRA-2 RZM data set is the coarsest of the data sets considered here; 

therefore the spatial resolution of our study is driven by the MERRA-2 spatial resolution. 

The hourly MERRA-2 data were aggregated to the 7-day resolution of the FPET data set.
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2.3. Calculation of interannual variations (IAV)

Interannual variations (IAV, also called anomalies) for satellite-based DIs and RZM at time t 
(note that lowercase t denotes time) in a given gridbox are normalized according to the min-

max method, i.e.,

DI′t = DIt − DIt / max DI − min DI , (1)

Where denotes that it is an IAV, is the climatological mean computed by averaging over the 

14 years of data at the 7-day time period corresponding to t, and min(DI) and max(DI) and 

and refer to the average minimum and maximum climatological values, respectively, for a 

given gridbox. The min-max normalization does not affect the computed correlations or time 

lags; it expresses the IAV in terms of a fraction of the climatological range of values. For 

example, if the range of observed values of NDVI for a given gridbox is 0.5, then a positive 

anomaly of 0.25 will produce a (normalized) IAV of 0.25/0.5 = 0.5. The min-max 

normalization provides an alternative way to compare IAV values for various types of 

measurements that have different measurement/modeling errors as compared with the more 

commonly used standardized IAV or z-score in which native IAV values are divided by the 

standard deviation (Raschka, 2014). With z-scores, the standardized IAV would be 

effectively decreased for noisy measurements. Instead, for convenience we normalize the 

size of the IAV with respect to the range of observed values. This is also preferable to 

analyzing the IAV in native units which would tend to put less weight on smaller values that 

occur in regions with smaller ranges of observed values. Here, negative or decreasing IAV 

values of DIs tend to be associated with the effects of water or other types of stress. In other 

words, negative values are obtained when the indicator is lower than its mean value at a 

particular time of year, and decreasing IAV values mean that the DI values are decreasing 

with respect to their normal or mean values over time. To reduce the effects of random noise 

that impacts our analysis, we apply a six point boxcar smoothing filter to the IAV time 

series.

2.4. Calculation of time lags

To compute the lag (Δt) between two different DI′, DI′1 and DI′2, (for a given gridbox) we 

model DI′1,t as the sum of a time shifted and scaled function of DI’2,t and a residual term ϵ, 
i.e..,

DI1, t′ = A DI2, t − Δt′ + ϵ , (2)

where Δt is the lag (in 7-day samples) of DI′2 with respect to DI1. We solve for values of a 

scaling factor A, and offset ϵ, and Δt using a standard unconstrained non-linear (iterative) 

least-squares fitting approach (see Appendix A for details).

We restrict our analysis to regions with a substantial fraction of chlorophyll containing 

vegetation by using data only from 7-day time periods with a climatological mean NDVI > 
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0.15. We also remove time periods for which reanalysis surface temperature averages were ≤ 

0°C. Finally, we only use gridboxes with ≥70 data points over the 14-year period.

When displaying correlations and leads/lags between the various DI’s, we focus on 

gridboxes having significant correlations after applying the fitting procedure (p-value < 

0.00001). The choice of a higher p-value threshold, as may be expected, yields a number of 

gridboxes, that while meeting the p-value criteria, appear isolated and display relatively low 

correlations or precision. The choice of a very small p-value threshold eliminates most of 

these apparently spurious gridboxes while retaining those with higher correlations in the 

expected sensitive regions.

2.5. Processing and sampling of the satellite and soil moisture fields

The satellite and soil moisture data sets are each averaged temporally and/or spatially in 

such a way as to put them all on similar scales. Fig. 2 shows an example of the data sets at 

different stages of processing at one location that will be used later (see Fig. 5, the “x” 

within box 1 for the mapped location). In this figure, the time series of NDVI′, FPET′, and 

RZM′ are shown first at the native spatial resolution at the point closest to the listed latitude 

and longitude at the native 7-day temporal resolution of the FPET data set (denoted with 

“−0 ”), then aggregated to the native 0.5°× 0.625° spatial resolution of the RZM data 

set(denoted with “−1 ”), and finally with temporal smoothing applied (denoted with “−2 ”). 

It is apparent that both FPET′ and RZM′ contain higher frequency structure as compared 

with NDVI′. The spatial averaging applied to NDVI′ and FPET′ does not appear to 

substantially alter the IAV values at this predominantly grassland location. The temporal 

smoothing, as expected, removes the high frequency structures in FPET′ and RZM′ which 

makes drought signals (prolonged negative anomalies), such as the Texas drought of 2011, 

more obvious and more similar to NDVI′.

It should be noted that there are sampling differences between the analyzed soil moisture 

and satellite data products considered here. These differences in sampling may lead to both 

random and systematic differences among the various data sets and can contribute to 

uncertainties in our analyses. For example, MERRA-2 data are averaged over all-sky 

conditions. In contrast, vegetation indices are averaged only over clear days. The FPET data 

are time composites of clear-sky values, to focus the signal on soil moisture controls of ET 

rather than insolation controls.

There are also time of day sampling differences. MERRA-2 data are averaged over all hours 

of the day and night. FPET is representative of mid-day conditions. The vegetation indices 

use both late morning and early afternoon data.

3. Results and discussion

Fig. 3 shows maps of mean FPET, NDVI, NDII, and RZM (left column, a–d) and 

corresponding standard deviations of the IAV (right column, e–h) computed over the active 

growing season. All DIs show similar spatial patterns of means with generally higher values 

in forested regions such as the eastern US and northern Eurasia and lower values in semi-

arid areas such as the western US, central and western Australia, northeast Brazil, southeast 
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Argentina, and southern Africa as well as the horn of Africa and the Sahel. FPET is 

relatively lower in tropical rainforest regions (Amazon, tropical Africa, Indonesia) than other 

variables owing to few clear-sky samples during rainy season when all-sky FPET is high. 

The NDVI and NDII patterns for their mean values are the most similar to each other, of the 

four shown.

The standard deviations of the IAV show areas where there are significant IAV values and 

also may give some indication of measurement noise and other errors. There are similar 

spatial patterns in the standard deviations of all DI′, with high values in semi-arid regions, 

particularly central Australia, Texas and northern Mexico, and southern Africa. The standard 

deviations of the DI′ values (as for the original mean DI values) are most similar for the 

NDVI′ and NDII′. However, there are also some differences. For example, higher standard 

deviations are shown for FPET′ as compared with the vegetation indices over tropical rain 

forest areas (Amazonia, central Africa, and the tropical Pacific). Relative to the VI′, FPET′ 
in these areas may be affected more by cloud contamination. In addition, there may also be 

some residual cloud contamination in the VI data. Cloud contamination should affect the 

NDVI more than the NDII since the band reflectance differences for NDVI are larger. This is 

consistent with the higher standard deviations of IAV seen for NDVI as compared with NDII 

in cloudy areas such as Amazonia.

Fig. 4 shows mapped correlations between each DI′ and RZM′ and with respect to each 

other obtained during our fitting procedure (Eq. (2)) for all gridboxes (left) and only for 

those with p-values < 0.00001 (right). All satellite-based DI′s generally show similar 

correlations with respect to RZM′. NDVI′ generally displays the highest correlations with 

respect to RZM′ (panel b), but this only occurs in specific areas. In some areas, particularly 

the boreal forest areas at high northern latitudes (above 40°N) and parts of western Europe, 

FPET′ shows somewhat larger extents of areas significantly correlated with RZM′ as 

compared with the other satellite-based DI′. This indicates that FPET′ has higher sensitivity 

to water stress in these regions, although the correlations are in the moderate range, 

generally below 0.5.

In heavily forested regions such as Amazonia and other tropical rain forests and less 

drought-prone areas such as the NE US, there is less variability in the IAV values due to 

temporal stability of the vegetation itself. Therefore, the IAV values in these areas are likely 

dominated by measurement error (i.e., noise and cloud contamination). This results in 

mostly insignificant correlations of the satellite-based DI′s with respect to RZM′. An 

examination of fitting residuals (see Appendix B) provides additional insight into 

measurement errors. The correlations of FPET′ with respect to NDVI′ (panels d and i) 

show similar spatial patterns as with respect to RZM′ (panels a and f). Similar correlations 

have been shown at monthly timescales and for different months (Vicente-Serrano et al., in 

press) and empirical relationships between NDVI and ET have also been reported (Yao et 

al., 2010). NDVI′ and NDII′ are found to be highly correlated (panels e and j); they share a 

common reflectance band (NIR band 2) and so will have correlated measurement errors. 

However, the impact of cloud contamination will differ for NDVI and NDII with a larger 

expected effect on NDVI. This may explain the lower correlations in tropical regions that are 
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frequently cloud covered. Appendix C provides additional statistical analyses and a 

summary of the correlations between the DI′s.

Fig. 5 shows vegetation types within eight large boxes that display high correlations between 

satellite-based DI′ and RZM′. The vegetation types are from the MODIS MCD12C1 2010 

yearly land cover product gridded at 0.05°× 0.05° (Friedl et al., 2010). Table 2 lists the 

corresponding percentages of different vegetation types within these eight water-sensitive 

regions. These regions are dominated by grasslands, shrublands, and savannas that tend to 

have relatively shallow roots that lie within the top 1 m soil layer of the MERRA-2 RZM 

estimates. Vegetation systems with deeper roots, such as rain forests, may be able to extract 

water from deeper layers where moisture can be decoupled from the MERRA-2 RZM.

The areas with significant correlations between the satellite-based DI′ and RZM′ (and also 

between FPET′ and VI′) are similar to those found to have high correlations between NDVI 

and cumulative precipitation IAV (Zeng et al., 2013; Koster et al., 2014). These same areas 

were also found to have a significant drought resistance coefficient derived from NDVI at a 

bimonthly timescale (De Keersmaecker et al., 2015). It has been suggested that these regions 

play a major role in carbon cycle variability, particularly in the southern hemisphere (Poulter 

et al., 2014; Ahlström et al., 2015; Ma et al., 2016; Zhang et al., 2016).

Fig. 6 shows time series of smoothed IAV for several individual gridboxes from Fig. 5 

(marked as an ‘x’ within the black boxes). From Fig. 6 it is immediately apparent that all 

satellite DI′ vary similarly in time, with timescales similar to those of RZM′. Well-known 

features, such as the 2011 Texas drought in box 1 (Sun et al., 2015; Wang et al., 2016) and 

2010 Russian drought in box 6 (Yoshida et al., 2015) are shown as distinctly negative values 

in all DI′. Small time shifts of the order of a week to two weeks (i.e., 1–2 samples) between 

these different drought indicators are not readily apparent.

Fig. 7 shows computed time lags (Δt) and their estimated 2σ uncertainties for the same pairs 

of variables as in Fig. 4. These uncertainties are generally considered to be lower limits as 

explained in Appendix A. The lags of FPET′ with respect to RZM′ are generally smaller 

(~zero to a few weeks negative) than those of NDVI′ and NDII′. This means that FPET′ 
has a somewhat faster response to dry conditions than NDVI′ and NDII′. This is consistent 

with the results of Otkin et al. (2016) who showed that decreases in the ET-driven ESI 

anomalies (or IAV) preceded observed changes in crop conditions by up to one month 

during the 2012 US flash drought.

The lags can take on negative values when IAV in the first parameter precedes that of the 

second variable. Fig. 7a shows some substantially negative values of Δt for FPET′ with 

respect to RZM′, for example on the Iberian Peninsula(meaning that FPET′ precedes RZM

′). While this may seem counterintuitive at first, there are plausible explanations. In areas 

with sparse vegetation, ET is more sensitive to surface soil moisture through its direct 

connection to soil evaporation (E) and soil surface temperature. In these areas, reductions in 

FPET are more strongly tied to reductions in near-surface moisture than to reductions in 

moisture throughout the top 1 m (the “root zone” depth in the MERRA-2 system). An 

extended precipitation deficit will dry the top several centimeters of soil first (with 
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concomitant impacts on FPET), while the full top meter of soil will take longer to dry. 

Similarly, a subsequent rainy period will allow near-surface moisture (and thus FPET) to 

recover more quickly than the full root zone. The net effect could be a negative time lag of 

FPET′ with respect to RZM′.

In fully vegetated areas, ET is dominated by vegetation transpiration (T), which is sensitive 

to the IAV in RZM through its link to vegetation water content, transpiration, and stomatal 

closure. For areas where transpiration is high and a negative time lag may occur between 

FPET′ and RZM′, such as in the southeastern US, negative lags could result if the 

MERRA-2 model underestimates the rate of depletion of soil water through ET or drainage. 

These areas generally have low correlations and high uncertainties in the computed lags 

owing to smaller IAV values and also fewer satellite land surface temperature retrievals in 

these frequently cloudy regions.

NDVI′ and NDII′ generally respond within about a week relative to RZM′ for most 

sensitive areas. We do not detect many significant leads or lags between NDVI′ and NDII′ 
(see Fig. 7e). The faster response, in general, of FPET′ as compared to the other satellite-

based DI′ likely reflects surface processes (including soil evaporation and canopy 

interception) whose decline does not necessarily indicate long-term drought conditions.

The correlations and lags for NDVI′ with respect to RZM′ are generally consistent with 

those that have been found in more detailed studies at individual sites (e.g., Wang et al., 

2007; Méndez-Barroso et al., 2009; Schnur et al., 2010; Swain et al., 2013; Jamali et al., 

2011). For example, NDVI lags were found to vary with soil moisture at different depths 

ranging from a few days to several weeks (Jamali et al., 2011) and also varied with plant 

type (Swain et al., 2013). It should be noted that lags may vary with climatic or land-use 

changes (Ahmed et al., 2017) and that our approach derives a single lag value based on the 

wide range of conditions occurring over more than a decade.

4. Conclusions

Comparing global responses of FPET, NDVI, NDII, and RZM interannual variations, we 

show that they all feature the same basic spatial and temporal variability with respect to 

water stress in sensitive areas. These sensitive areas are dominated by grasslands, 

shrublands, and savannas. These vegetation types tend to have root systems contained within 

the 1 m defined root zone of the MERRA-2 RZM fields. Vegetation with deeper root 

systems, falling outside the top 1 m layer of the MERRA-2 root zone, such as trees within 

tropical rain forests, may be able to access water from deeper layers that can be decoupled 

from the MERRA-2 RZM. This effect, along with frequent cloud contamination of satellite 

retrievals in the same areas, may explain the low correlations between satellite drought 

indicators and RZM interannual variations in tropical regions. In moderately to highly 

vegetated areas of high northern latitudes such as in western Europe and North America, 

FPET′ shows larger areas with significant correlations with respect to RZM′ than NDVI′ 
or NDII′. Although the correlations in these areas are somewhat reduced (< ~ 0.5) as 

compared with more sensitive areas that correspond with semi-arid regimes (grasslands, 
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shrublands, and savannas), our analysis indicates that FPET′ has higher sensitivity to water 

stress in these higher latitude regions.

FPET′ frequently leads RZM′ as well as NDVI′ and NDII′ in water sensitive regions by 

days, and by up to a week or more. The VI interannual variations typically lag those of RZM 

by days to a week or more. One explanation is that the bare soil evaporation component of 

FPET is a significant driver of interannual variations in these areas. Soil evaporation 

responds more quickly to soil conditions near the surface (top few cm) as compared with 

soil moisture throughout the top 1 m of the soil. Interannual variations in FPET′ therefore 

may show a rapid response to mild water stress, while NDVI′ and NDII′ respond primarily 

to more severe conditions throughout the root zone during a longer-term drought. This effect 

would tend to occur in more sparsely vegetated areas which is where FPET′ most frequently 

leads RZM′, NDVI′, and NDII′. In more fully vegetated areas, where correlations are 

generally lower, transpiration dominates over evaporation. In these areas, such as the eastern 

US and eastern China, negative lags of FPET′ interannual variations with respect to those of 

other indicators may result if the MERRA-2 model underestimates the rate of depletion of 

soil water through ET or drainage.

Our study suggests that the FPET and VI anomalies contain complementary information. 

While many drought-related parameters are produced on a monthly basis, these satellite data 

sets may also be useful at daily to weekly timescales. VI data, when processed carefully to 

remove the effects of sun-satellite geometry and clouds, provide relatively clean time series 

that show impacts of water availability changes in sensitive regions on timescales of the 

order of days to weeks. FPET anomalies, while somewhat more variable on daily timescales, 

may provide earlier detection of drought impacts as compared with VI anomalies owing to 

its sensitivity to changes in near-surface soil moisture that affects sparsely vegetated regions 

and stomatal conductance that plays more of a role in heavily vegetated area.

FPET, NDVI, and NDII can all be obtained at management level spatial resolutions (e.g., 1 

km × 1 km or better) and with revisit times of the order of days with current satellites in low 

Earth orbit. In addition, NDVI can be derived at the field level (~30 m) with Landsat and 

Sentinel 2 that when combined is available at approximately weekly timescales. While our 

analyses were conducted at the scale of the global RZM data set, the approach of using IAV 

can be applied at the higher spatial resolution of the currently available satellite data sets. 

While both vegetation indices and FPET are currently used in the USDM, we have identified 

several regions of the world where these data may be useful in similar approaches.

We expect improvements in all data sets used here in the future, both in terms of data quality 

as well as spatial resolution. Reanalysis soil moisture will improve in the future as the input 

and assimilated data quality improves, for example through the addition of satellite-based 

rainfall estimates from the joint NASA and Japanese Aerospace Exploration Agency 

(JAXA) Global Precipitation Mission (GPM) and assimilation of radiometer observations 

from the NASA Soil Moisture Active Passive (SMAP) mission and the European Soil 

Moisture Ocean Salinity (SMOS) mission. We also expect higher spatial resolution in future 

reanalysis data sets.
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Our approach of using IAV to estimate leads/lags between different satellite indicators is 

least effective in heavily vegetated areas owing in part to deeper root zones (deeper than 1 

m) and less interannual variability in general. These aspects present inherent limitations of 

the method in more heavily vegetated areas. Particularly in the tropical rain forests, there is 

little interannual variability in the satellite indicators and there are larger observational errors 

due to cloud contamination. With respect to the cloud contamination issue, several next- 

generation geostationary Earth orbit (GEO) instruments including the Advanced Baseline 

Imager (ABI) may improve the data quality of the vegetation indices and FPET by 

increasing the number of potential observations with more frequent opportunities to see 

between clouds. Utilization of cloud tolerant microwave observations may improve the 

consistency and revisit time of sampling underpinning the ET retrieval. It also has the 

potential to reduce the noise, especially in areas with frequent cloud cover (Holmes et al., 

2018). The ECOsystem Spaceborne Thermal Radiometer Experiment on (the international) 

Space Station (ECOSTRESS) since July 2018, is expected to provide the ESI for 1–2 years 

at a field level spatial resolution of tens of meters.
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Appendix A.: Details regarding the calculations of time lags

To compute the lag Δt between DI′1 and DI′2 according to Eq. (2), we solve for a state 

vector x consisting of A, ϵ, and Δt using an unconstrained non-linear least-squares approach, 

e.g., Rodgers (1990), i.e.,

Δxi = Hi
TSy

−1Hi
−1Hi

TSy
−1 yobs − ycalc, i , (A,1)

where the subscript i denotes the iteration, H is the Jacobian matrix or linearized observation 

operator (∂ y/∂ x), superscript T denotes transpose, Sy is the observation error covariance, 

yobs is the time series of DI′1 (DI′1,t) and ycalc is a vector of values computed using the 

forward model (Eq. (2)). In this formulation, Δt may take on non-integer values (i.e., 

fractions of the 7 day sampling interval); The shifted time series of DI′2(DI′2,t Δt) in Eq. (2) 

is calculated using linear interpolation. Hi is computed by finite differences (Eq. (2)), i.e., 

linearized about the current state estimate, using a Δt interval of 1 sample (7 days). The first 

guess for A and ϵ is computed using a linear (non-iterative) unconstrained least squares 

approach (Eqs. (2) and (A.1)) with Δt = 0. The retrieved Δt in samples can be converted to 

units of days by multiplication with 7 days/sample.

In Eq. (A.1), we assume that Sy is a diagonal matrix (σ2
yI), implying uncorrelated and 

constant errors for all observations. With these assumptions the Sy terms then cancel in Eq. 

(A.1) so that the state vector solution does not depend on the assumed measurement error 
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variance. However, the measurement error variance is needed to estimate the retrieval error 

covariance. At convergence, the error covariance for x, Sx, is computed using

Sx = HTSy
−1H −1 = σy

2 HTH −1
(A,2)

following Rodgers (1990). Here, we use the standard deviation of the residuals (yobs −ycalc) 

at convergence as an estimate of σy.

We tested the approach with a Monte Carlo simulation and found that it worked very well 

for the case of random noise applied to DI′1,t but noise free DI′2,t. However, this standard 

linear error propagation technique may underestimate uncertainties when noise is added to 

DI′2,t, because that noise is propagated into the Jacobian calculation and is not taken into 

account within the standard linear error estimation. A similar condition can occur if there are 

systematic differences between the two time series applied, i.e., when the model in Eq. (2) is 

imperfect. The Jacobian error may also produce a bias in the retrieval. To mitigate these 

issues, we always use the less noisy parameter for DI′2,t. In addition, we apply a six point 

box car smoothing to all time series. This nearly eliminated the bias and underestimation of 

errors within the Monte Carlo simulator. However, with real data and imperfections in the 

assumed model, we must consider the error estimates as lower limits as they will tend to 

underestimate errors. In addition, intercomparison of lead/lags computed between different 

pairs of variables may not provide a perfect closure owing again to imperfections in the 

assumed models as well as nonlinearities.

We also found that in some cases, outliers (e.g., that may be present owing to undetected 

clouds for vegetation indices) can drive the fitting and produce unreliable shifts. We 

therefore undertook several measures to remove outliers as follows: 1) We compute standard 

deviations (σ) of DI′1,t and DI′2,t (DI2 not time shifted) and assign a large error (i.e., 

resulting in a negligible weight, referred to as de-weighting) to any points with absolute 

values > 3.5σ; 2) We similarly de-weight any points where the absolute values of both DI

′1,tand DI′2,t are > 2σ and DI′1,t and DI′2,tare of opposite sign; 3) To avoid extrapolation 

error, we de-weight the first and last points of a time series; 4) To avoid interpolation error, 

we de-weight any points that are adjacent to the points that are filtered out by checks (1) –

(3) or missing data; 5) We de-weight any points with absolute values of residuals > 3σy;6) 

We de-weight any point for which the adjacent value of the IAV changes by more 4σ 
(continuity check).

Appendix B.: Fitting residuals

One way to assess the errors in the various DI measurements is to examine the fitting 

residuals (yobs −ycalc) using Eq. (2) for different pairs of DI′. Fig. B.8 shows maps of the 

standard deviations of the fitting residuals. The units of the residuals are the fraction of the 

climatological range. In other words, a value of 0.3 means that the standard deviation of the 

fit is 30% of the range of climatological values observed during the growing season. In the 

ideal case, a perfect match exists between the noisy DI′ after accounting for a phase shift. 

Then, the standard deviation of the residual would be equal to the square root of the summed 
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error variances of each DI′ used in Eq. (2). However, if there is an imperfect match between 

the DI′, then the residual will be increased. Note that the residuals are shown after quality 

control has been applied.
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Fig. B.8. 
Standard deviations of the fitting residuals for different pairs of gridded drought indicators 

using Eq. (2); the first variable listed is the fitted parameter (fit by a scaled and shifted 

version of the second variable): a) FPET′ fitted using RZM′; b) NDVI′ fitted using RZM′; 

c) NDII′ fitted using RZM′; d) FPET′ fitted using NDVI′; e)NDII′ fitted using NDVI′.

It is difficult to separate the effects of pure measurement error from model error in Eq. (2). 

Comparing the residuals computed with different pairs of DI′ and with the standard 

deviations of the interannual variations (IAV) may provide some clues. In places where 

residuals are not significantly reduced compared with the original standard deviations, this 

indicates measurement error and/or inability to fit one variable effectively with respect to 
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another. For example, larger residuals are observed over Texas and northern Mexico as 

compared with surrounding regions for all DI′s. However, the residuals are reduced as 

compared with the standard deviations of the IAV indicating that there are significant yet 

imperfect relationships between the DI′ in this area.

In general, the fitting residuals are smallest for NDVI′ and NDII′ with respect to RZM′ 
and each other. NDVI and NDII benefit from relatively wide reflectance bands (e.g., 20 nm) 

with much higher SNR and larger signals.

The residuals involving FPET′ show large values over tropical rain forests where the range 

of the climatology (used for normalization) is small owing to limited seasonal variation. In 

these regions, known to be particularly cloudy, the effects of cloud contamination may be 

significant in comparison with the climatological range. A small climatological range may 

also explain the relatively high values of residuals in parts of sparsely vegetated Australia. 

At high northern latitudes where there is substantial seasonal variation during the growing 

season and in general small IAV values, the VI residuals are fairly small (standard deviations 

< ~ 0.2). Values are somewhat higher for FPET′ as compared with NDVI′ and NDII′.

Appendix C.: Further analyses of correlations between DI′s

Fig. C.9 shows histograms of the correlations between the different satellite-based DI′ and 

RZM′. Table 3 summarizes statistics related to those distributions (means and standard 

deviations). It is apparent that FPET′ is better correlated with RZM′ than with NDVI′ 
indicating that it has a better relationship with water availability than vegetation structure.
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Fig. C.9. 
Histograms of correlations between different satellite-based DI′ (left: satellite-based DI′ 
with RZM′; right: satellite-based DI′ with each other).
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Fig. 1. 
Conceptual diagram showing impacts of different stages of drought on vegetation as 

expressed by NDVI, transpiration (T), root-zone soil moisture (RZM), and evaporation (E).
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Fig. 2. 
Example of how the satellite and soil moisture anomaly data sets are processed; satellite data 

aggregated to the 7 day native period of the FPET data set at native spatial resolutions are 

denoted with “−0”; the data sets at 7 day temporal resolution at the native spatial resolution 

of the 0.5°× 0.625° RZM data set are denoted with “−1”; data sets with subsequent temporal 

smoothing applied are denoted with “−2”.
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Fig. 3. 
Left: means computed over the active growing season for a) FPET, (b) NDVI, (c) NDII, and 

(d) fractional “root-zone” soil moisture (RZM, in the top 1 m layer) from MERRA-2 (all 

quantities are dimensionless); Right: corresponding standard deviation of their weekly IAV 

(panels e–h). White areas with no data correspond to large deserts such as the Sahara, 

Arabian, and Gobi deserts.
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Fig. 4. 
Maps of Pearson’s correlation coefficient (r) between weekly satellite-based DI′ and RZM′ 
after fitting with Eq. (2); the first variable listed is the fitted parameter (fit by a scaled and 

shifted version of the second variable): a) FPET′ fitted using RZM′; b) NDVI′ fitted using 

RZM′; c) NDII′ fitted using RZM′. d) FPET′ fitted using NDVI′; and e) NDII′ fitted 

using NDVI′. Left: all gridboxes with valid data; Right (f–j): only for gridboxes with p-

values < 0.00001 (all other gridboxes with valid data shown in gray).
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Fig. 5. 
Vegetation types within water sensitive regions. The ‘x’ markers within each box denote 

locations for which time series will be further examined in detail below in Fig. 6.
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Fig. 6. 
Time series of smoothed RZM′ (black) and DI′, the latter being offset (as indicated by the 

horizontal lines that indicate the zero level) for clarity with different colors as noted in the 

legend. Pearson’s correlation coefficients (r) with respect to RZM′ prior to the fitting are 

listed on the top right in the associated colors. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. 
Left: Time lags (Δt, in days) between various drought indicators, where positive values 

indicate the lag of the first variable listed with respect to the second a) FPET′ and RZM′, b) 

NDVI′ and RZM′, c) NDII′ and RZM′; d) FPET′ and NDVI′; e) NDII′ and NDVI′; 

Right: Estimated 2σ uncertainty in lags computed with linear assumption for same 

parameter pairs.
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Table 2

Percentages of different vegetation types within large boxes shown in Fig. 5. Shrublands include both open 

and closed shrublands; Savannas include woody savannas; Forests include evergreen broadleaf and needleleaf, 

deciduous broadleaf and needleleaf, mixed forests, and grass + mixed forests; Other includes water, urban, 

snow/ice, barren/sparsely vegetated, and wetlands. The last line (“all”) shows averages over the gridboxes 

within all the large boxes (i.e., not area-weighted).

Box # Grasslands Shrublands Savannas Croplands Forests Other

1 35.6 25.8 13.2 8.5 12.1 4.7

2 17.9 31.3 9.7 20.0 16.3 4.9

3 0.3 0.6 80.5 0.7 11.4 6.5

4 9.0 33.6 48.7 1.7 1.7 5.3

5 20.2 24.9 25.9 7.9 13.4 7.7

6 73.9 0.9 0.2 16.1 6.4 2.5

7 77.0 1.1 0.3 8.1 8.0 5.5

8 7.7 50.3 16.6 11.8 6.2 7.4

All 32.9 20.8 22.3 9.5 9.0 5.5

Remote Sens Environ. Author manuscript; available in PMC 2019 December 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Joiner et al. Page 33

Ta
b

le
 3

N
um

be
r 

of
 p

oi
nt

s 
m

ee
tin

g 
p-

va
lu

e 
cr

ite
ri

a,
 m

ea
ns

, m
od

es
, a

nd
 s

ta
nd

ar
d 

de
vi

at
io

ns
 (
σ)

 o
f 

th
e 

di
st

ri
bu

tio
ns

 o
f 

co
rr

el
at

io
ns

 b
et

w
ee

n 
di

ff
er

en
t p

ai
rs

 o
f 

D
I′

.

1s
t 

D
I′

2n
d 

D
I′

# 
po

in
ts

M
ea

n
M

od
e

σ

FP
E

T
′

R
Z

M
′

20
,5

20
0.

49
0.

40
0.

17

N
D

V
I′

R
Z

M
′

13
,4

32
0.

53
0.

52
0.

20

N
D

II
′

R
Z

M
′

18
,1

04
0.

50
0.

36
0.

18

FP
E

T
′

N
D

V
I′

11
,6

13
0.

47
0.

28
0.

20

N
D

II
′

N
D

V
I′

14
,1

65
0.

72
0.

92
0.

23

Remote Sens Environ. Author manuscript; available in PMC 2019 December 15.


	Abstract
	Introduction
	Materials and methods
	Satellite drought indicator (DI) data sets
	ALEXI-based ET estimates
	Vegetation Indices

	Soil moisture
	Calculation of interannual variations (IAV)
	Calculation of time lags
	Processing and sampling of the satellite and soil moisture fields

	Results and discussion
	Conclusions
	Details regarding the calculations of time lags
	Fitting residuals
	Further analyses of correlations between DI′s
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Table 1
	Table 2
	Table 3

