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Abstract: Femtosecond laser pulses were applied for precise alphanumeric code engraving 
on the zona pellucida (ZP) of mouse zygotes for individual embryo marking and their 
identification. The optimal range of laser pulse energies required for safe ZP microsurgery 
has been determined. ZP was marked with codes in three different planes to simplify the 
process of embryo identification. No decrease in developmental rates and no morphological 
changes of embryos post laser-assisted engraving have been observed. ZP thickness of 
embryos post laser-assisted code engraving has been shown to differ significantly from that of 
control group embryos at the hatching stage. Due to moderate ZP thinning as compared to its 
initial width at 0.5 dpc (days post coitum), readability of the code degrades slightly and it still 
remains recognizable even at hatching stage. Our results demonstrate that application of 
femtosecond laser radiation could be an effective approach for noninvasive direct embryo 
tagging, enabling embryo identification for the whole period of preimplantation development. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Lasers have become an efficient tool in assisted reproductive technologies (ART) [1–3]. 
Various laser sources are extensively employed for oocytes as well as for spermatozoa 
treatment and manipulations. Thus, for example, possibility of using a non-contact infrared 
diode laser (wavelength λ = 1.48 μm) for spermatozoa immobilization and permeabilization 
of the sperm membrane has been demonstrated in [4]. Low-power He-Ne laser has been used 
in in vitro fertilization for immature oocytes treatment and improving the system of in vitro 
embryo production [5,6]. Although first studies regarding spermatozoa movement stimulation 
have been conducted in 1980s, they are still underway. Earlier studies of Sato et al [7] and 
Lenzi [8] have demonstrated the stimulating effect of red (λ = 647 nm) and infrared 
(parameters of laser light were not clarified) laser light on sperm motility. Today, main 
attempts are made to develop methodology (usually based on optical tweezers) for safe and 
exact measurement of stimulating effects of laser light [9–11]. Optical tweezers have been 
successfully applied not only for sperm motility measurements, but also for sperm trapping 
and insertion into the perivitelline space of oocytes for in vitro fertilization [12], and for 
noncontact removal of polar bodies for their genetic analysis [13,14] (the so-called embryo 
biopsy). Openings in the outer shell surrounding oocytes and embryos required for sperm 
insertion during in vitro fertilization [12,15] or cell extraction during embryo biopsy can also 
be created by means of lasers [13]. 

Nowadays, infrared diode lasers (λ = 1.48 um) with milli- to microsecond pulse durations 
are the most popular lasers applied in the field of assisted reproduction for microdissection. 
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Such systems are widely used for opening the ZP in assisted hatching [16–20]. Efficacy of 
various types of laser assisted hatching (LAH), for example, partial, quarter and total LAH 
has been analyzed [21]. The main danger of pointing a laser at an embryo is thermal damage. 
Infrared diode lasers seem to be an effective and safe tool, nevertheless strong 
recommendations regarding optimum regimes of embryo exposure should be taken into 
account to minimize possible laser-related thermal risks [22–24]. According to this, 
application area of infrared diode lasers is commonly limited to ZP dissection and 
spermatozoa immobilizing prior to use. 

Recently, new approaches to assisted reproduction problems based on a novel, more 
delicate and effective laser systems generating laser pulses with shorter durations have been 
proposed. Femtosecond lasers have proven to be an excellent tool for noninvasive and precise 
microsurgery at cellular and even subcellular levels, for micromanipulation and optical 
modification of living biological objects. Femtosecond lasers have been successfully applied 
for fully noncontact optical microinjection and trapping of developing embryos [25], for 
oocyte enucleation by automated ablation of entire metaphase plates in porcine oocytes [26], 
and for blastomere fusion [27,28]. Efficacy of femtosecond laser use for laser-assisted 
hatching [29], noncontact polar body [30], and trophectoderm biopsy [31] (by simultaneous 
use of femtosecond laser and optical tweezers) has been previously shown by our group. We 
also used the unique ability of femtosecond lasers to perform precise microdissections to 
develop a novel technique for individual labeling of preimplantation embryos [32]. The 
technique is based on femtosecond laser microsurgery of ZP and “engraving” small (~5 µm in 
width and ~20 µm in length) alphanumeric codes in the depth of ZP. This technique may be 
useful in assisted reproductive technologies for preventing medical accidents relating to mix-
ups. Although such errors are rare, several cases of mix-up in IVF laboratories have been 
reported [33–36] and various strategies, safety polices, and devices aimed at eliminating the 
risk of mistakes during the entire ART procedure are still being developed. By using 
femtosecond laser pulses relatively fast, precise, and delicate microsurgery can be performed 
with a minimal risk of thermal damage. The process of laser code engraving is performed in a 
contactless mode under sterile conditions and can be fully automated in the future. Moreover, 
only the ZP is subjected to laser microsurgery while leaving the embryo cells intact. 

In our previous study [32] we performed one-plane code engraving (the code on ZP was 
created in a single, usually equatorial plane) as well as three-plane code engraving on 0.5 dpc 
(days post coitum) mouse embryos. No detrimental effects of laser-assisted code engraving 
on embryo developmental and hatching rates as well as on trophectoderm-to-inner cell mass 
ratio as compared to control group embryos have been observed. We have demonstrated that 
code created on the ZP could be clearly visualized at least until 3.5 dpc that allowed 
successful utilization of such technique for embryo identification from the day 0.5 to day 3 
when embryo transfer could be done. However, the questions about code visualization at later 
stages of preimplantation embryo development and embryo identification during the entire 
preimplantation period were left unanswered. Our current study aims to answer these 
questions and provide interesting observations regarding features of ZP subjected to laser 
engraving and embryo hatching. Our observations allow us to suppose that the technique 
proposed may be used not only for embryo labelling but also for stimulating embryo hatching 
to start at prescribed location. 

2. Experimental design 

The femtosecond laser-based system for embryo microsurgery shown in Fig. 1 is based on 
our previously reported setup [32]. A femtosecond ytterbium 1028 nm wavelength laser 1 
(TETA, Avesta LLC) that operates at 280 fs with repetition rate of 2.5 kHz was used. After 
power attenuation (beam attenuator 2 consists of half-wave plate and prism polarizer), the 
beam was sent through a second-harmonic generator 3. We employed second-harmonic 
radiation (514 nm wavelength) to perform microdissections on ZP in the form of arbitrary 
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Fig. 5. Checking the code readability at late developmental stage. (A) Mouse embryo (0.5 
dpc). The code “VIVO” indicated as “1” is engraved in the first plane. (B) The same embryo. 
The code “VIVO” indicated as “2” is engraved in the second plane. (C) ZP after embryo 
hatching; the code “2” is still readable. 

The second peculiar fact is that code marking in multiple planes did not decrease embryo 
hatching rate compared to control groups. Moreover, code engraving procedure similarly to 
assisted hatching can facilitate hatching to start right at the location of laser treatment. To 
demonstrate this, an angle between the code “1” and code “2” shown in Fig. 5(B) in the ZP of 
embryo at 0.5 dpc was measured. This angle equal to 107° is also shown in Fig. 5(C). One 
can see that hatching occurred in the rear part of ZP exactly where the code “1” had been 
engraved. This was not a single case, but determining the exact rate of embryo hatching 
through the code in the ZP was beyond the framework of current research; detailed studying 
of this phenomenon is a matter of further investigations. 

5. Discussion and conclusions 

Although events of eggs, sperm or oocytes switching occur very rare at fertility clinics, 
sample mix-up has been reported in the literature several times. According to the latest 
research, 90.4% of the respondents (patients undergoing IVF treatment in a single private 
infertility center in Europe) expressed significant concerns relating to biological sample mix-
up [36]. To eliminate the risk of any mix-up, strong recommendations and protocols by 
leading ART-related organizations (ESHRE and HFEA (Europe), FLASEF (Latin America) 
have been developed [38,39]. According to their guidelines, accurate labelling of all labware 
for correct patient identification and “double-witnessing” procedure are mandatory. Recently, 
novel electronic witness systems have been developed. Systems based on Radio Frequency 
Identification technology [40,41], barcode labels [42], and even direct embryo tagging system 
based on silicon barcode injection into zygotes/embryos [43] have been proposed. However, 
nearly all of these approaches have some limitations. Thus, for example, additional equipment 
is required (such as label printer or code reader) when using safety systems based on QR 
(quick response) code generation and recognition [44]; volatile organic components in the 
printing and adhesive materials should be thoroughly selected so as not to be toxic to embryo 
development [44]. Moreover, possible effects of polysilicon barcodes proposed in [43] on 
fetal growth and development should be studied in future. Thus, optimisation of existing 
methods aimed at preventing biological sample mix-up and development of new alternative 
devices and techniques are still required. 

In this paper the possibility of direct embryo tagging with femtosecond laser microsurgery 
as well as possibility of embryo identification during the whole preimplantation period have 
been demonstrated. Due to highly localized effect during the action of fs-laser pulses, which 
fades away for out-of-focus cellular structures, relatively low pulse energy, and ultrahigh 
intensity, fs-lasers could be used for precise and delicate microsurgery of ZP with minimal 
risk of thermal damage to the adjacent embryo cells. The advantages of femtosecond laser-
assisted microsurgery over milli-/microsecond or even nano-/picosecond duration pulses for 
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minimizing collateral damage have been discussed in [45–47]. We have performed laser-
assisted engraving of alphanumeric codes on mouse embryo’s ZP in three different planes in 
order to simplify the process of code searching and embryo identification. The codes 
engraved have been proven to be readable even after embryo hatching. No morphological 
changes of embryos subjected to three-plane laser-assisted engraving as compared to control 
group embryos have been observed. We have demonstrated that the average ZP thickness of 
embryos in experimental group was larger than ZP thickness of control group embryos. In 
spite of this fact, the blastocysts broke out of the shell successfully and hatching rates in the 
experimental and control groups embryos were nearly the same. A possible explanation for 
this is that formation of cuts on the ZP during laser-assisted code engraving leads to a 
weakening of the ZP stiffness and its easier rupture with no need for significant thinning. 

In this study femtosecond laser pulses have been successfully applied for ZP microsurgery 
of mouse embryos. The thickness of the ZP at the time of code engraving (0.5 dpc) was 
measured to be ~7 µm. It was enough for creating high-quality, clearly readable codes. ZP of 
human embryos is usually wider than that of mouse embryos. Data regarding typical 
thickness of ZP of mouse and human embryos at various days of in vitro culture are 
summarized in Table 1. As can be seen, the thickness of the human embryo ZP usually lies 
within the range of 14 – 18 µm. Taking into account relatively higher ratio of ZP width to the 
size of focused laser beam in human embryo as compared to the mouse one, we suppose that 
the technique of femtosecond laser-assisted code engraving will be easier to implement for 
human embryo labelling as compared to mouse one. 

Table 1. Zona pellucida thickness of mouse and human embryos 

Embryo type ZP thickness, µm Details 
Day of ZP 
measurement 

Ref. 
No 

Mouse 8 – – [48] 
 4.3 ± 1.4 C57BL/6J strain 3.25 dpc [49] 

 
10.8 ± 1.2 – 12.2 ± 
3.2 (ICR) strain two-cell [50] 

Human (mean 
age of patients 
33.9 ± 3.4) 

16.6 ± 3.2 Fertilized  [51] 

18.9 ± 4.0 unfertilized   
Human (mean 
age 33.8 ± 4.2) 

19.4 ± 2.7 Patients with unexplained infertility Day 1 of culture [52] 
 

17.7 ± 2.2 Patients with endometriosis Day 1 of culture 

17.5 ± 2.4 Patients with tubal-factor infertility Day 1 of culture 

16.4 ± 2.7 Patients with male-factor infertility Day 1 of culture 

18.2 ± 0.2  Day 1 of culture 

16.0 ± 0.2  Day 2 of culture 

13.9 ± 0.16  Day 3 of culture 
Human (mean 
age 33.8 ± 4.2) 

17.7 ± 0.14  Day 1 of culture [53] 
16.3 ± 0.14  Day 2 of culture  
14.9 ± 0.14  Day 3 of culture  
 Embryo scope rangea:   
14.4 ± 0.23 1.0-1.5 Day 3 of culture  
15.1 ± 0.37 2.0- 2.5 Day 3 of culture  
15.9 ± 0.60 >3.0 Day 3 of culture  

Human (mean 
age 35.3 ± 4.2) 

14.29 ± 0.56 Embryo scope rangea: 1.0-1.5 Day 3 of culture [54] 
16.22 ± 0.61 1.6-2.2 Day 3 of culture  

Human (mean 
age 33.91 ± 
5.91) 

16.18 ± 2.00  Day 3 of culture [55] 

aembryos were scored according to the criteria of Van den Abbeel et al. [56] and Staessen et al. [57]. 

 
In conclusion, we have demonstrated that femtosecond lasers could be employed as 

precise and effective tools for embryo microsurgery. Potential applications for laser-assisted 
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code engraving technique would not be limited to safety systems aimed at preventing embryo 
mix-ups during the IVF treatment. The technique may be also useful in the field of
developmental biology for studying the peculiarities of embryo development during their
culture in groups.
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