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Abstract

In the big data era, conventional bioinformatics seems to fail in managing the full extent of the 

available genomic information. The current study is focused on olive tree species and the 

collection and analysis of genetic and genomic data, which are fragmented in various depositories. 

Extra virgin olive oil is classified as a medical food, due to nutraceutical benefits and its protective 

properties against cancer, cardiovascular diseases, age-related diseases, neurodegenerative 

disorders, and many other diseases. Extensive studies have reported the benefits of olive oil on 

human health. However, available data at the nucleotide sequence level are highly unstructured. 

Towards this aim, we describe an in-silico approach that combines methods from data mining and 

machine learning pipelines to ontology classification and semantic annotation. Fusing and 

analysing all available olive tree data is a step of uttermost importance in classifying and 

characterising the various cultivars, towards a comprehensive approach under the context of food 

safety and public health.

Introduction

The “Big Data” era is here and now. The amount of digitised data produced in modern 

society is increasing at an exponential rate and is estimated to account for five Tb (terabytes) 

for every human by 2020 (Egan 2013). Large-scale data is being generated each second in a 

wide range of areas, such as social networks, business and finance, and biosciences, posing a 

great challenge for data collection, storage, processing and analysis. In life sciences, the 
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revolution following next-generation sequencing (Bahassi and Stambrook, 2014; Hui, 2014; 

van Dijk et al., 2014) the Human Genome Project (Collins et al., 2003; Green et al., 2015), 

the advances in protein structure determination (Giege, 2013; Hekmat, 2015; Gavira, 2016), 

the development of biomedical and health informatics and of imaging informatics (Andreu-

Perez et al., 2015; Binder and Blettner, 2015) have inevitably led to an unprecedented data 

explosion. Consequently, biological data generated by genomics, proteomics, 

transcriptomics and metabolomics are characterised by a higher order complexity.

The advances in bioinformatics over the last decades has dramatically empowered 

researchers in handling omics information. An extensive set of computational tools, 

algorithms and databases have been developed for data analysis (Berger et al., 2013). Still, at 

the rate at which data is generated and the ever increasing needs for storage, processing and 

meaningful analysis the spotlights are on the realm of bioinformatics. Moore’s law predicts 

that computing power and storage capacity doubles every 15 years, whereas genomic data 

have grown tenfold every year since 2002 (Moore, 1965; Kahn, 2011). Storage space 

availability and computational power cannot keep up and fulfil the needs for rapidly 

expanding data-driven research domains (Papageorgiou et al., 2018). Genomic raw data are 

not always useful as they come out from NGS and Illumina pipelines. The extraction, 

analysis and collection of data or the way they are annotated in databases, is far from to be 

standardised. Furthermore, genomic datasets are packed with noise or erroneous information 

(Fan et al., 2014).

High-performance computing, smarter and faster algorithms and parallelisation for storage 

and processing seem to be the answer for data handling. As an example, column-oriented 

database systems have outmatched raw-oriented representation for data storage, enabling 

higher compressibility (Abadi et al., 2009). Moreover, compressive algorithms have been 

developed which enable direct processing of the compressed data (Loh et al., 2012; Berger 

et al., 2016). Cloud computing infrastructures either driven by major software companies 

such as MS Azure and AWS, or joined multinational initiatives, such as the Elixir1 

programme in Europe, strive towards the larger goal of unified and standardised 

metagenomics. The present study is focused on organising and mapping all available and 

dispersed olive tree nucleotide sequences to characterised regions on the reference genome 

of the recently published wild olive tree variant (Olea europaea var sylvestris) (Unver et al., 
2017).

The olive tree is one of the most ancient plants on earth and is primarily cultivated in the 

Mediterranean region which produces 90% of the olive oil consumed worldwide and 

controls almost 80% of the market share in exports (Bartolini and Petruccelli, 2002; Vasto et 
al., 2014). Olive oil is the principal source of healthy fatty acids of the Mediterranean 

cuisine and is perceived as “superfood” rich in beneficial compounds (Vasto et al., 2014; 

Gerber and Hoffman, 2015; Martinez-Gonzalez et al., 2015). Extra virgin olive oil, rich in 

phenolic components, such as polyphenols (Barbaro et al., 2014; Rigacci and Stefani, 2016), 

has been extensively studied for its antimicrobial, antioxidant and anti-inflammatory effect 

(Cicerale et al., 2012). Additional to its nutraceutical benefits, the consumption of olive oil 

1https://elixir-europe.org/
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has been associated with reduced risk of various diseases, establishing it as a medical food. 

Indeed, many studies have denoted the protective effects of extra virgin olive oil for 

cardiovascular disease (Estruch et al., 2006; Estruch et al., 2013), diabetes (Salas-Salvado et 
al., 2011, Salas-Salvado et al., 2014), age-related and neurodegenerative diseases 

(Khalatbary 2013; Rodriguez-Morato et al., 2015). Olive oil phenols have also been 

observed in several cancer cell lines to inhibiting proliferation and promote apoptosis, thus 

impending tumour aggregation.

The olive tree has been the subject of intensive research, whereas little is known about the 

phylogenetic relationships with other species. However, the molecular bases which conceal 

the differences between cultivars remain poorly understood. A resourceful pipeline for the 

analysis of the olive tree genetic and genomic information is essential towards the extraction 

of reliable conclusions about the molecular mechanisms of action of the olive tree and its 

beneficial effects on human health. On top of that, humanity will have to deal with the 

impact of climate change in the following years. Species in the plants’ kingdom are 

profoundly affected, especially the olive tree, and climate change is posing a significant risk 

in olive cultivars. The potentiality to cultivate in different climate conditions, and expand in 

non-traditional continents, is highly dependent on the genetic profile of the species. The 

present study is an important precursor for handling and analysing raw genomics and 

genetics data from plants. The aim is to fill in the gaps in such analysis through filtering, 

clustering and classification with the use of ontology terms to discover the relational nodes 

of the available information. A data mining pipeline was performed on available genomic 

data of several species of the Olea genus, and we have developed an approach that may help 

to annotate plant genomic sequences better.

Methods

Data Collection

The dataset of genomic sequences was built by collecting data from the Nucleotide database 

of the NCBI. Keywords used for the retrieval and extraction of data were: “Olea europaea”, 

“europaea”, “protein”, “dna” “nucleotide”, “genome”, “clone”, “cultivar” “wild species”, 

“propagating material’, “subspecies”, “Oleaceae”, “olive’, “gene’, “protein” and “Olea” The 

analysis of the collected sequences was performed on three basic layers interacting with 

each other: the size of sequences, ontologies and nucleotide sequence similarities.

Data Filtering – First level of analysis

The dataset of nucleotide sequences obtained was filtered using the MATLAB platform and 

programming language. To reduce the noise, partial and variant sequences were removed 

from the dataset using a set of regular expressions. The new dataset, containing only full 

sequences, was then split into three sub-datasets by sequences’ length as follow:

Group A: sequence length ≤ 1,000 bases

Group B: 10,000 bases ≤ sequence length ≥ 1000 bases

Group C: sequence length ≥ 10,000 bases
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The dataset was split by sequence length because the goal was to isolate and focus on areas 

which correspond to protein sequences. As a result, Group A and Group B were used in the 

second level of analysis.

Data Mining and Semantic – Second level of analysis

Different groups of datasets were characterised by ontologies using clustering and 

classification algorithms. In this direction, the Bioinformatics Toolbox2 was mainly 

employed for the computation, development, acquisition and modelling as a high-

performance language for computing and programming, in a user-friendly operating 

environment (Cai, Smith et al., 2005). In this direction, on the basis of the second level of 

analysis, a new database was created containing individual sub-datasets including: a) 

chloroplast, b) mitochondria, c) microsatellite, d) cultivars, e) protein, f) helicase, g) ATPase, 

h) plastid, i) trn gene, j) enzyme, k) species (Figure 1). Besides, the protein dataset was 

further categorised into smaller individual datasets, as follows: a) ribosomal, b) phosphatase, 

c) E3, d) FAR, e) Fbox, f) kinase, g) zinc-finger, h) pentatricopeptide.

Analysis of genetic information – Third level of analysis

The third level of analysis consisted of grouping data obtained by the second analysis level 

by strict correlations of gene information. A classification function was created with the 

BLASTClust algorithm, in the Bio Linux operating system, to identify genetic similarity/

dissimilarity between each genomic sequence BLASTClust inputs were nucleotide 

sequences that were analysed with the following parameters’ values: coverage over 90% of 

the length of each sequence, with a 95% similarity cut off, and for the full-length (100% 

query cover) sequence, a 70% similarity cut off.

Results and Discussion

Data collection

During the data collection stage, we were able to put together more than 420000 nucleotide 

sequences from NCBI, which were then mapped on the genome of the wild olive tree, called 

“oleaster”, which was assembled and annotated by Unver et al. (2017) (Unver, Wu et al., 
2017).

Data Filtering – First level of analysis

From the original pool of sequences, 8871% were classified as complete sequences and 

worthy of further investigation, while the remaining sequences (1129%) were partial or 

incomplete. The composition of the dataset was extremely heterogeneous; we indeed 

identified several genome regions of 15 different species of the genus Olea (Table 1), 

genome regions of 17 species of the plant kingdom and genome regions of 21 

microorganisms, most of them affecting directly of indirectly the olive tree phenotype. From 

the filtered full-length sequences, 8674% referred to the genus Olea and particularly to the 

ontologies europaea and oleaster. In more detail, within the Olea europaea dataset were 

identified sequences with the ontologies “europaea”, “cuspidata”, “ laperrinei”, 

2https://www.mathworks.com/products/bioinfo.html
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“cerasiformis”, “guanchika” and “maroccana” which represent the subspecies of Olea 
europaea species, and 74% of the sequences were uncharacterised and represented as 

“orphan” sequences within Olea europaea species. In the remaining filtered data set, 

nucleotide sequences of several species of the genus Olea were identified, including Olea 
exasperata, Olea capensis with the ontologies “hochstetteri”, “macrocarpa”, “enervis”, 

“capensis” and “welwitschii”. In total, 72 cultivars were identified in the filtered dataset and 

another 20 cultivars discovered in the noise dataset with the partial and variant.

Regarding the split of the sequence pool by sequence length, 65,521% of the filtered 

sequences were in length Group A, 29,345% were in length Group B, while the rest 5,132% 

belonged to the length Group C.

Data mining and Semantics on Olea europaea - Second level of analysis

After the collection of all the available genetic and genomic information on the Olea 
europea, the possible relationships between the nucleotide sequences had to be identified. To 

this aim we needed to determine the integral nodes inside the selected dataset. Individual 

subgroups based on ontologies were filtered against the thousands of entries in Groups A 

and B. As an example, in the sub-dataset under the ontology “chloroplast”, 1439 nucleotide 

sequences were clustered with a sequence average length of about ≈3841 bases 97,35% of 

the sequences referred to Olea europaea, while in the same group 12 species of the genus 

Olea were identified, three other species of the plant kingdom and four cultivars of the 

species Olea europaea europaea.

Similarly, the sub-dataset under the ontology “mitochondrial” contained 1439 sequences 

whose average length was about 1,241 bases. Among them, we identified two species of the 

genus Olea, 71,9% Olea europaea and 2,08% Olea exasperata, two other species of the plant 

kingdom and ten cultivars of the species Olea europaea europaea. Also, the sub-group under 

the ontology “micro satellite“, contained 343 sequences with mean sequence length ~270 

bases, was composed of 96,5% of Olea europaea sequences and the two subspecies, 

europaea and cuspidata. What is more, in the sub-group under the ontology “helicase” the 

70,06% of sequences referred to Olea europaea and in the sub-dataset under the ontology 

“enzyme“, Olea europaea sequences covered 74,27% of the dataset. The dataset under the 

ontology “trn” included 29 species, among which, two were Olea europaea, with six 

subspecies, and Olea capensis, with four subspecies.

On top of the above, in the dataset related to protein regions, 49 keywords with remarkable 

repeatability were identified, and 76,81% of the whole pool of sequences referred to Olea 
europaea, variant Sylvestris. Among the 49 keywords, eight became distinct and isolated 

from the dataset under the ontology “protein“. The keyword “ribosomal” representing 

15,27% of the dataset, “kinase” 30,06%, “E3” 9,85%, “phosphatase” 8,99%, 

“pentatricopeptide” 7,01%, “Fbox” 4,53% and “fatty acid- and retinol-binding protein 

(FAR)” 2,89% of the entire dataset, respectively. Lastly, based on the genetic information, 

we were able to identify nucleotide chains which bear the zinc-finger motif, representing the 

8,67% of the protein dataset.
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Analysis of genetic information – Third level of analysis

We were able to correlate nucleotide sequences of sub-datasets into clusters based on their 

genetic similarity. Clusters were made by considering that a cluster should have at least five 

nucleotide sequences with genetic similarity above the predefined threshold to be annotated 

as a cluster. Most of the sequences belonging to the length Group A, in the sub-datasets 

under the ontologies “trn” and “microsatellite”, formed the highest number of clusters, seven 

and six respectively. The sub-group under the ontology “chloroplast” revealed four clusters 

and the sub-group under the ontology “mitochondrial” were all grouped in one cluster. The 

other sub-groups did not reveal any cluster. In total, the length Group A marked 19 clusters. 

Results showed that genomic sequences annotated as unknown sequences were clustered in 

an equal percentage as appeared in the initial dataset of Olea genus. Ultimately, the 

clustering results revealed that the hybrid pipeline could work well as a prediction tool.

Conclusions

This work represents the first attempt to cluster and identify olive tree cultivars based on 

their genome and genetic information. To date, cultivar assignment is done on the merit of 

morphology and pedigree in known breeds of the olive tree. However, since only recently 

the full genome of the Olea europaea variant was made public, it is now feasible to map on it 

all fragmented sequences of the olive tree genera and produce a set of genes or a gene panel 

that will be used to identify each cultivar with high accuracy genetically. Olive tree genetic 

fingerprinting holds great promise in the future for advanced control of olive tree breeding 

and olive oil that is consumed by the masses under the prism of food safety and public 

health.
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Key Points

• Data mining and machine learning pipelines for the classification of olive tree 

cultivars.

• Olive tree genetic fingerprinting under the context of food safety and public 

health.

• Nutraceutical bioinformatics for olive oil as a medical food.
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Figure 1. 
Percentage of Olea europaea nucleotide sequences in the individual sub-groups.
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Table 1.

Ontologies per species identified in the dataset of the genus Olea

A/A Species Ontologies

1 Olea europaea Sylvestris

Europaea

cuspidata/africana/indica/
ferruginea

Laperrinei

cerasiformis

guanchika

maroccana

2 Olea exasperata -

3 Olea capensis hochstetteri

macrocarpa

enervis

capensis

welwitschii

4 Olea lancea -

5 Olea paniculata -

6 Olea salicifolia -

7 Olea rosea -

8 Olea borneensis -

9 Olea neriifolia -

10 Olea brachiata -

11 Olea javanica -

12 Olea tsoongii -

13 Olea schliebenii -

14 Olea chimanimani -

15 Olea woodiana woodiana
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