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Abstract

The detection and segmentation of brain tumors from Magnetic Resonance Imaging (MRI) is a 

very challenging task, despite the availability of modern medical image processing tools. Neuro-

radiologists still diagnose deadly brain cancers such as even glioblastoma using manual 

segmentation. This approach is not only tedious, but also highly variable, featuring limited 

accuracy and precision, and hence raising the need for more robust, automated techniques. Deep 

learning methods such as the U-Net deep convolutional neural networks have been widely used in 

biomedical image segmentation. Although this model was demonstrated to yield desirable results 

on the BRATS 2015 dataset by using a pixel-wise segmentation map of the input image as an auto-

encoder, which assures best segmentation accuracy, the output only showed limited accuracy and 

robustness for a number of cases. The goal of this work was to improve the U-net model by 

replacing the de-convolution component with an up-sampled by the Nearest-neighbor algorithm 

and also employing an elastic transformation to augment the training dataset to render the model 

more robust, especially for the segmentation of low-grade tumors. The proposed Nearest-Neighbor 

Re-sampling Based Elastic-Transformed (NNRET) U-net Deep CNN framework has been trained 

on 285 glioma patients BRATS 2017 MR dataset available through the MICCAI 2017 grand 

challenge. The framework has been tested on 146 patients using Dice similarity coefficient (DSC) 

& Intersection over Union (IoU) performance metrics and outweighed the classic U-net model.
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I. INTRODUCTION

According to American Cancer Society, more than 80,000 people are newly diagnosed with 

cancer every year in the United States. Of all cancer patients, approximately 32% are 

diagnosed with malignant brain tumors that have a 5-year survival rate of 5.3% [1]. Brain 

tumors - one of the most quotidian neurological brain disorders with a devastating-effect on 

many lives represent an uncontrolled mass of tissues found in different parts of the brain. 
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Gliomas constitute the most common and deadliest type of brain tumors, with a subset 

ranging from slow growing low- to high-graded malignant tumors known as glioblastomas. 

As these tumors are generally localized in the posterior cranial fossa of human brain, their 

detection is challenging by means of biopsy, raising the need for noninvasive, image 

processing-based methods for detection and characterization. Image segmentation entails the 

partitioning of an image into its constituent regions of interest.

The human brain consists of five types of soft tissues - white matter (WM), gray matter 

(GM), cerebrospinal fluid (CSF), edema, and tumor tissue all of which appear different 

thanks to their differences in magnetic environment when imaged using magnetic resonance 

imaging (MRI), therefore enabling their differentiation (Fig. 1). As an example, high-graded 

gliomas (HGG) and necrotic tissues are delineated easily in a MRI image, while low-graded 

gliomas (LGG) and certain tumor tissue are much more difficult to identify and segment. 

Hence, it is important to devise segmentation techniques that are sufficiently accurate and 

robust to ensure accurate diagnosis and the most appropriate course of therapy.

Despite ongoing research in brain image segmentation, the vast variability and heterogeneity 

of the brain MRI data raises the need for more efficient segmentation techniques. To 

segment various types of brain tumors, some efforts have focused on the use of supervised 

algorithm that relied on a randomized tree for segmenting BRATS FLAIR MRI images [2]. 

This method yielded DICE similarity on the order of 88% for both LGG and HGG cases, but 

it was highly dependent on tuning the super-pixel size that could affect the final detection of 

the tumor. In recent years, the use of deep neural networks is becoming very popular for 

semantic segmentation, with a first application to medical imaging disseminated in [3]. The 

authors in [4] used the modified version of U-net where they employed segmentation layers 

in the localization pathway and combined them to form the final network output. However, 

their work did not show the performance of the new algorithm for both high-grade and low-

grade tumor images.

The fully connected layer problem was minimized by introducing a pixel-wise best deep 

convolutional neural network formulation as proposed in [5]. This U-net architecture works 

like an auto-encoder where the input is the same as output. Auto-encoders work by 

compressing the input into a latent-space and then reconstruct the output. Using this U-net 

architecture, the authors in [8] first implemented a fully automated brain tumor segmentation 

method and applied it to the BRATS 2015 dataset, using a small sub-set of the data to rain 

their network.

The classic U-net model [6] relies on the transposed convolution or deconvolution, in a 

similar, yet opposite fashion to the convolutional layers. I.e., instead of mapping from 4 × 4 

input pixels to 1 output, they map from 1 input pixel to 4 × 4 output pixels. Despite its 

learnable parameters [7], this methods performance is much slower, as the filters need 

additional weights to train. Additionally, it can easily lead to ”uneven overlap”, 

characterized by checkerboard-like pattern resulting in artifacts on a variety of scales 

affecting unusual colors (Fig. 2). While it is difficult to entirely remove these artifacts, they 

can be minimized.
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II. METHODOLOGY

A. Overview

To address the limitations associated with the classical U-Net architecture, we first selected a 

kernel size to avoid overlap and to further remove the artifacts. We resized the image using 

nearest-neighbor interpolation. In essence, we used an up-sampling operation (i.e., nearest 

neighbor interpolation) followed by a convolution operation with a carefully selected stride 

and kernel size. The main distinguishing feature of this proposed architecture over its 

precursor classical U-net framework consists of the up-sampling step. The U-net architecture 

with an up-sampling interpolation step for resizing the images prior to performing the 

transposed convolution provided additional robustness to the segmentation, especially for 

low-graded glioma tumors. The network was trained on the BRATS 2017 image database for 

100 epochs using data augmentation via elastic transformation. The achieved segmentation 

accuracy was comparable and slightly better than that achieved using the classical U-Net 

architecture and its robustness was improved, reducing segmentation artifacts on a large 

number of datasets. Moreover, our proposed, modified architecture was also more 

computationally efficient than the traditional transposed convolutional U-net approach 

described in [6].

B. Imaging Data

All experiments reported in this paper were conducted on the BRATS 2017 image database 

[6], [8]. This imaging repository consists of MRI scans from 285 glioma patients. Each 

patient datasets contains a T1-weighted, T2-weighted, FLAIR and a post-Gd T1c-weighted 

image. Of all 285 patient image datasets, 210 were acquired from high-grade (anaplastic 

astrocytomas and glioblastoma multiform tumors) and the remaining 75 images featured 

low-grade (histologically diagnosed astrocytomas or oligoastrocytomas) glioma patients. All 

images had been manually annotated by expert neuroradiologists according to four different 

tumor labels and served as ground truth segmentations against which the output of our 

algorithm was testes: Label 1 - background; Label 2 - necrotic, non-enhancing tumor; Label 

3 - edema; and Label 4 - enhancing tumor.

In addition, for testing purposes, we also used images from 146 patients featuring brain 

tumors of unknown grade available from the same MICCAI 2017 Challenge on Multi-modal 

Brain Tumor Segmentation [8], [9]; an example of these is shown in Figure 3.

C. Proposed Model

Figure 4 shows a schematic diagram of our proposed NNRET U-net deep convolution neural 

network. We replaced the fully connected layers with a down-sampling layer along with 

max-pooling layers. Every two layers form a block and the encoding path consists of 5 

convolutional blocks. The network is to a large extent similar to the approach presented in 

[6]. The convolution layers in all the blocks detect the local features from the previous layers 

and map their appearance to a feature map. The kernel size and the stride were both chosen 

such that the filter size can be divided by the stride. For a kernel size of 3×3 and a stride of 1 

in both directions coupled with a ReLU activation function, the stride will move the filters 
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one pixel at a time. This down-sampling path decreases the feature size while increasing the 

number of feature maps from 1 to 1024.

To decrease computational cost, we reduced the input volume size from 240 × 240 into 15 × 
15, further down-sampled via a 2 × 2 × then max-pooling operation (i.e., inserting pooling 

layer in-between successive convolutional layers), resulting in low-resolution feature maps. 

To decrease the spatial size of the image, we used the max pooling of size 2 × 2 with a stride 

of 2 that will move the filter 2 pixels at a time, resulting in 75% fewer activations. To avoid 

the cropping operation during the concatenation of feature maps, we used zero padding on 

every convolution layer.

For the up-sampling, we used the following modification to reconstruct the high resolution 

feature maps. The decoder consists of five blocks, but despite using the transposed 

convolution as in [8], we used nearest neighbor up-sampling layer with the scale factor of 2 

at the beginning of each block, followed by two convolution layers and ReLU function that 

increased the spatial dimension in each block by a factor of 2.

The nearest neighbor up-sampling works like convolution that performs a mathematical 

operation on every pixel and its neighbors by using interpolation to increase the spatial 

dimension of an image. The process being the nearest neighbor up-sampling to increase 

image resolution is shown in Figure 4. After locating the center pixel of a cell on the input 

raster that corresponds to the output raster dataset, the location of the nearest center of the 

cell on the input raster will be determined, and that value will then be assigned to the 

corresponding cell on the output raster. As an example, here we explain how a 4 × 4 pixel 

image would be up-sampled by NN interpolation method. The cell centers of the output 

raster are equally separated and a location value needs to be determined from the input raster 

for each output cell. The nearest neighbor algorithm selects select those cells centers from 

the input raster that are closest to that of output raster. The black areas of the image can be 

filled either with the copies of the center pixel or the weighted combinations of the 

surrounding pixels.

The second step is of the algorithm is similar to the one described in [10], [11]. For the sake 

of completeness, we reported the receptive fields of each network layer inside the U-net 

architecture in Table 1.

D. Network Training

A critical component of any successful deep learning model is having sufficient, good 

quality data to train the classifier and overcome the risk of the model over-fitting the data. To 

train our model, we used the BRATS 2017 database of brain images, which we further 

augmented using an elastic transformation that includes both affine and non-affine 

transformations. Rather than a fixed displacement fields, we generated random displacement 

fields (Eqn. 3):

x(x, y) = y(x, y) =  rand( − 1, + 1) (1)
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where, x and y are convolved with an intermediate value of (in pixels) and the fields are 

multiplied by a scaling factor α that controls intensity. Thus, we obtain the elastically 

transformed image in which the global shape of the tumor is undistorted, unlike in the 

affine-transformed image.

In addition, we also used several other transformations to augment the data specifically 

image scaling, translation, rotation, shear, and addition of salt and pepper noise as data 

augmentation, with the overall objective to improve the robustness of the model.

III. RESULTS

In this work, we used the Dice similarity coefficient which is an overlap index that 

quantified the agreement between two segmented image regions a ground truth segmentation 

and the tested segmentation method. The DSC coefficient assesses the similarity between the 

ground truth and the predicted output and reports it in the form of a coefficient between 0 

and 1 (Eq’n. 1). The higher the DSC coefficient, the higher the similarity and the more 

accurate the segmentation output.

DSC =
2. Tr1 ∩ Pr1
Tr1 + Pr1

(2)

In a sense, the DSC similarity coefficient is similar to the Intersection over Union (IoU) 

metric addition, which is also a measure of region overlap and agreement between two 

different segmentation results (Eq’n. 2):

IoU =
Tr1 ∩ Pr1
Tr1 ∪ Pr1

(3)

where ”||” refers to the sum of all the segmented areas, T r1 is the ground truth segmented 

tumor region and P r1 is the tumor region segmented by our proposed algorithm.

The proposed modified architecture yielded higher DSC than the IoU similarity metric. This 

model was implemented in Tensorflow with tensorlayers and was trained for a total of 100 

epochs. The hyper-parameters used were as follows: a batch size setting of 10 MRI volumes 

with a learning rate of 0.0001 for a total of 100 epochs. Each epoch consisted of 6 sub-steps 

(k-fold cross validation). After completing 6 sub-steps, the algorithm computes the average 

DCS score across all training cases.

Each epoch training required 1.9 to 2.5 hrs on a server equipped with NVidia Titan GPUs. 

We validated out segmented results on three tumor sub-regions for each patient dataset. The 

classification of a complete tumor was deemed successful if all four labels were detected. A 

correctly classified core tumor consisted of three labels, except edema, and similarly, a 

correctly classified enhancing tumor has only label 4. For each region, segmentation result 
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was evaluated. The results after the first three epochs, along with the 15th epoch are shown 

in Table 2, which summarizes the output of the algorithm in terms of DSC coefficient, 

Intersection over Union (IoU) and computing time for the first few training epochs.

We tested the NNRET U-Net on 30 MRI volumes with available ground truth annotations 

and evaluated the performance of our method according to the DSC & IoU metrics. The 

results are summarized in Table 3, which shows comparable and slightly better results than 

the classical U-Net implementation as quantified by the DSC for both high- and low-graded 

glioma tumors.

To visualize the segmentation results by our proposed model, we randomly selected two 

MRI sequences from the testing dataset with unknown ground truth. Figure 5 shows two 

image datasets a HGG and LGG. Each row shows the image dataset, ground truth 

segmentation, and the result of our proposed segmentation algorithm in axial, coronal and 

sagittal views. The yellow, cyan and light green colors correspond to edema, enhancing and 

non-enhancing tumor cores, respectively. Note that the model was trained using only axial 

slices. Note that while the HGG case features enhancing regions, the LGG case does not. 

Moreover, the model accurately depicts and differentiates between endemic, non-enhancing 

and enhancing tumor regions with minimal error.

IV. SUMMARY AND CONCLUSION

In this work we described a first, preliminary implementation of a modified U-Net 

framework for brain tumor tissue segmentation and characterization and evaluated its 

performance using the MICCAI 2017 Multimodal Brain Tumor Segmentation dataset. To 

improve robustness beyond that of the classical U-Net framework, we substituted the 

deconvolution layer with an up-sampling layer that uses nearest-neighbor followed by two 

convolution layers and augmentation via elastic transformation. We trained the network on 

the well-established BRATS 2017 database featuring both high- and low-graded glioma 

tumors. Our proposed algorithm achieved a mean DSC score of 0.8976 and a mean IoU 

score of 0.8869 assessed against the ground truth annotations, hence outperforming the 

traditional U-Net segmentation results.

Future work will focus on using kernel-based optimization to reduce training time, as well as 

a more thorough validation of the algorithm. According to these preliminary results, upon 

further refinement, this method has the potential to evolve into a robust patient-specific bran 

tissue characterization tool. The output of this technique can serve as a first order tissue 

characterization that the clinician can then refine for improved results and more accurate 

diagnosis.
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Fig. 1. 
Example of the structure of the human brain depicted in a MRI image: axial MRI slice of a 

normal brain (left) and a segmented tumor with labels as the ground truth (right). Image 

courtesy of BRATS database.
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Fig. 2. 
Schematic diagram illustrating an artifact caused by the transposed convolution operation: a) 

Checkerboard problem caused by applying a transposed convolution on images of improper 

resolution (a) resulting in uneven overlap (b), and artifacts (c) that can be minimized and 

essentially eliminated by applying a nearest-neighbor interpolation up-sampling operation 

(d).
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Fig. 3. 
Examples of brain images from the BRATS 2017 database: high grade glioma images - 

FLAIR, T1-weighted, T1c-weighted and T2-weighted (top row) and corresponding images 

for low-grade glioma, respectively (bottom row).
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Fig. 4. 
Schematic diagram of proposed NNRET U-net architecture (the concatenation process is not 

shown in the image) and nearest neighbor up-sampling for image enlargement.
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Fig. 5. 
Segmentation result by NNRET U-net model. a) high-graded glioma (HGG); b) low-graded 

glioma (LGG) images. Left column shows the raw imaging data, middle column shows the 

ground truth segmentation, and the right column shows the result of the proposed 

segmentation method. Each row corresponds to the axial, coronal and sagittal slice (top to 

bottom), c) low graded tumor (pointed using red circle), d) segment complete tumor region 

for LGG precisely.
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TABLE I

Down-sampling and up-sampling layers inside U-net architecture. The deconvolution layers in the U-net 

classic architecture were replaced by the nearest neighbor up-sampling layers. These up-sampling layers are 

similar to the deconvolution layers, but the up-sampled image are smoother and have a higher resolution than 

their precursors.

Layers Type Kernel No. of Feature map

Layer 1 input 4

Layer 2 Conv1 3×3 64

Layer 3 conv1 3×3 64

Maxpool Layerl pool1 2×2

Layer 4 conv2 3×3 128

Layer 5 conv2 3×3 128

Maxpool Layer2 pool2 2×2

Layer 6 conv3 3×3 256

Layer 7 conv3 3×3 256

Maxpool Layer3 pool3 2×2

Layer 8 conv4 3×3 512

Layer 9 conv4 3×3 512

Maxpool Layer4 pool4 2×2

Layer 10 conv5 3×3 1024

Layer 11 conv5 3×3 1024

NN Upsample Up4 scale factor=2 512

Concatenate

Layer 12 conv4 3×3 512

Layer 13 Conv4 3×3 512

NN Upsample up3 scale factor=2 256

Concatenate

Layer 12 conv3 3×3 256

Layer 13 conv3 3×3 256

NN Upsample up2 scale factor=2 128

Concatenate

Layer 12 conv2 3×3 128

Layer 13 conv2 3×3 128

NN Upsample Up1 scale factor=2 64

Concatenate

Layer 12 conv1 3×3 64

Layer 13 conv1 3×3 64

Sigmoid conv1 1×1 1
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TABLE II

Training accuracy after the first three epochs: every epoch consists of 6 sub-steps and upon the completion of 

each epoch, the mean DSC, IoU and computing time are computed. The training accuracy increased to 91% at 

convergence after the completion of 15 epochs.

Epoch Dice IoU Time (s)

1 0.0433 0.5588 10.600

1 0.1918 0.6223 10.442

1 0.1388 0.7349 10.385

1 0.0961 0.5256 10.463

1 0.1606 0.8142 10.513

1 0.8084 0.7338 10.385

1/100 0.1937 0.6931 6817.6

2 0.7219 0.5447 10.516

2 0.4983 0.8910 10.516

2 0.3646 0.7633 10.462

2 0.5008 0.7498 10.499

2 0.9915 0.7739 10.709

2 0.4068 0.0000 10.519

2/100 0.5629 0.7162 6860.7

3 0.5019 0.6125 10.471

3 0.3489 0.8541 10.543

3 0.8318 0.9049 10.535

3 0.5502 1.0000 10.574

3 0.6907 0.7348 10.721

3 0.3784 0.7411 10.511

3/100 0.5532 0.7342 6880.5

… … … …

100/100 0.9104 0.9075 6834.3

Proc IEEE West N Y Image Signal Process Workshop. Author manuscript; available in PMC 2019 June 19.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hasan and Linte Page 15

TABLE III

Assessment of proposed segmentation technique against the classical U-Net implementation on complete 

tumor region using DSC and IoU for both high-and low-graded glioma tumors.

Algorithm Tumor grade DSC IoU

NNRET HGG 0.8976 0.8869

NNRET LGG 0.8459 0.8263

Combined 0.8717 0.8566

Classic U-net HGG 0.88 -

Classic U-net LGG 0.84 -

Combined 0.86 -
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