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Abstract

Sorted L-One Penalized Estimation (SLOPE, Bogdan et al., 2013, 2015) is a relatively new convex 

optimization procedure which allows for adaptive selection of regressors under sparse high 

dimensional designs. Here we extend the idea of SLOPE to deal with the situation when one aims 

at selecting whole groups of explanatory variables instead of single regressors. Such groups can be 

formed by clustering strongly correlated predictors or groups of dummy variables corresponding 

to different levels of the same qualitative predictor. We formulate the respective convex 

optimization problem, gSLOPE (group SLOPE), and propose an efficient algorithm for its 

solution. We also define a notion of the group false discovery rate (gFDR) and provide a choice of 

the sequence of tuning parameters for gSLOPE so that gFDR is provably controlled at a 

prespecified level if the groups of variables are orthogonal to each other. Moreover, we prove that 

the resulting procedure adapts to unknown sparsity and is asymptotically minimax with respect to 

the estimation of the proportions of variance of the response variable explained by regressors from 

different groups. We also provide a method for the choice of the regularizing sequence when 

variables in different groups are not orthogonal but statistically independent and illustrate its good 

properties with computer simulations. Finally, we illustrate the advantages of gSLOPE in the 

context of Genome Wide Association Studies. R package grpSLOPE with an implementation of 

our method is available on CRAN.
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1 Introduction

Consider the classical multiple regression model of the form

1An earlier version of the paper appeared on arXiv.org in November 2015: arXiv:1511.09078
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y = Xβ + z, (1.1)

where y is the n dimensional vector of values of the response variable, X is the n by p 
experiment (design) matrix and z ~ (0, σ2In). We assume that y and X are known, while β 
is unknown. In many applications the purpose of the statistical analysis is to recover the 

support of β, which identifies the set of important regressors. Here, the true support 

corresponds to truly relevant variables (i.e. variables which have impact on observations). 

Common procedures to solve this model selection problem rely on minimization of some 

objective function consisting of the weighted sum of two components: first term responsible 

for the goodness of fit and second term penalizing the model complexity. Among such 

procedures one can mention classical model selection criteria like the Akaike Information 

Criterion (AIC) (Akaike, 1974) and the Bayesian Information Criterion (BIC) (Schwarz, 

1978), where the penalty depends on the number of variables included in the model, or 

LASSO (Tibshirani, 1996), where the penalty depends on the ℓ1 norm of regression 

coefficients. The main advantage of LASSO over classical model selection criteria is that it 

is a convex optimization problem and, as such, it can be easily solved even for very large 

design matrices.

LASSO solution is obtained by solving the optimization problem

argmin
b

1
2‖y − Xb‖2 + λL‖b‖1 , (1.2)

where λL is a tuning parameter defining the trade-off between the model fit and the sparsity 

of solution. In practical applications the selection of good λL might be very challenging. For 

example it has been reported that in high dimensional settings the popular cross-validation 

typically leads to detection of a large number of false regressors (see e.g. Bogdan et al., 

2015). The general rule is that when one reduces λL, then LASSO can identify more 

elements from the true support (true discoveries) but at the same time it generates more false 

discoveries. In general the numbers of true and false discoveries for a given λL depend on 

unknown properties on the data generating mechanism, like the number of true regressors 

and the magnitude of their effects. A very similar problem occurs when selecting thresholds 

for individual tests in the context of multiple testing. Here it was found that the popular 

Benjamini-Hochberg rule (BH Benjamini and Hochberg, 1995), aimed at control of the 

False Discovery Rate (FDR), adapts to the unknown data generating mechanism and has 

some desirable optimality properties under a variety of statistical settings (see e.g. 

Abramovich et al., 2006; Bogdan et al., 2011; Neuvial and Roquain, 2012; Frommlet and 

Bogdan, 2013). The main property of this rule is that it relaxes the thresholds along the 

sequence of test statistics, sorted in the decreased order of magnitude. Recently the same 

idea was used in a new generalization of LASSO, named SLOPE (Sorted L-One Penalized 

Estimation, Bogdan et al., 2013, 2015). Instead of the ℓ1 norm (as in LASSO case), the 

method uses FDR control properties of Jλ norm, defined as follows; for sequence {λ}i = 1
p
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satisfying λ1 ≥ … ≥ λp ≥ 0 and b ∈ ℝp, Jλ(b): = ∑i = 1
p λi ∣ b ∣(i), where |b|(1) ≥ … ≥ |b|(p) is 

the vector of sorted absolute values of coordinates of b. SLOPE is the solution to a convex 

optimization problem

argmin
b

1
2‖y − Xb‖2 + Jλ(b) , (1.3)

which clearly reduces to LASSO for λ1 = … = λp =: λL. Similarly as in classical model 

selection, the support of the solution defines the subset of variables estimated as relevant. In 

(Bogdan et al., 2013, 2015) it is shown that when the sequence λ corresponds to the 

decreasing sequence of thresholds for BH then SLOPE controls FDR under orthogonal 

designs, i.e. when XTX = In. Moreover, in (Su and Candès, 2016) it is proved that SLOPE 

with this sequence of tuning parameters adapts to unknown sparsity and is asymptotically 

minimax under orthogonal and random Gaussian designs.

In the sequence of examples presented in (Bogdan et al., 2013, 2015; Brzyski et al., 2017) it 

was shown that SLOPE has very desirable properties in terms of FDR control in the case 

when regressor variables are weakly correlated. While there exist other interesting 

approaches which allow to control FDR under correlated designs (e.g. Barber and Candès, 

2015), the efforts to prevent detection of false regressors which are strongly correlated with 

true ones inevitably lead to a loss of power. An alternative approach to deal with strongly 

correlated predictors is to simply give up the idea of distinguishing between them and 

include all of them into the selected model as a group. This leads to the problem of group 

selection in linear regression, extensively investigated and applied in many fields of science. 

In many of these applications the groups are selected not only due to the strong correlations 

but also by taking into account the problem-specific scientific knowledge. It is also common 

to cluster dummy variables corresponding to different levels of qualitative predictors.

Probably the most well known convex optimization method for selection of groups of 

explanatory variables is the group (gLASSO Bakin, 1999). For a fixed tuning parameter, λgL 

> 0, the gLASSO estimate is most frequently (e.g. Yuan and Lin, 2006; Simon et al., 2013) 

defined as a solution to optimization problem

argmin
b

1
2 y − ∑

i = 1

m
XIi

bIi

2
+ σλgL ∑

i = 1

m
∣ Ii ∣‖bIi

‖
2

, (1.4)

where the sets I1, …, Im form a partition of the set {1, …, p}, |Ii| denotes the number of 

elements in set Ii, XIi is the submatrix of X composed of columns indexed by Ii and bIi is the 

restriction of b to indices from Ii. The method introduced in this article is, however, closer to 

the alternative version of gLASSO, in which penalties are imposed on ||XIi bIi||2 rather than ||

bIi||2. This method was formulated in (Simon and Tibshirani, 2013), where the authors 

defined an estimate of β by
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βgL: = argmin
b

1
2 y − ∑

i = 1

m
XIi

bIi 2

2
+ σλgL ∑

i = 1

m
∣ Ii ∣‖XIi

bIi
‖

2
, (1.5)

with the condition ‖XIi
βIi

gL‖
2

> 0 serving as a group relevance indicator.

Similarly as in the context of regular model selection, the properties of gLASSO strongly 

depend on the shrinkage parameter λgL, whose optimal value is the function of unknown 

parameters of true data generating mechanism. Thus, a natural question arises of whether the 

idea of SLOPE can be used for construction of a similar adaptive procedure for the group 

selection. To answer this query in this paper we define and investigate the properties of the 

group SLOPE (gSLOPE). We formulate the respective optimization problem and provide the 

algorithm for its solution. We also define the notion of the group FDR (gFDR), and provide 

the theoretical choice of the sequence of regularization parameters, which guarantees that 

gSLOPE controls gFDR in the situation when variables in different groups are orthogonal to 

each other. Moreover, we prove that the resulting procedure adapts to unknown sparsity and 

is asymptotically minimax with respect to the estimation of the proportions of variance of 

the response variable explained by regressors from different groups. Additionally, we 

provide a way of constructing the sequence of regularization parameters under the 

assumption that the regressors from distinct groups are independent and use computer 

simulations to show that it allows to control gFDR. Good properties of group SLOPE are 

illustrated using the practical example of Genome Wide Association Study. R package 

grpSLOPE with an implementation of our method is available on CRAN. All scripts used in 

simulations as well as in real data analysis are available at https://github.com/dbrzyski/

gSLOPE. This repository contains also R scripts which were used to generate article figures.

2 Group SLOPE

2.1 Formulation of the optimization problem

Let the design matrix X belong to the space M(n, p) of matrices with n rows and p columns. 

Furthermore, suppose that I = {I1, …, Im} is some partition of the set {1, …, p}, i.e. Ii’s are 

nonempty sets, Ii ∩ Ij = ∅ for i ≠ j and ⋃Ii = {1, …, p}. We will consider the linear 

regression model with m groups of the form

y = ∑
i = 1

m
XIi

βIi
+ z, (2.1)

where XIi is the submatrix of X composed of columns indexed by Ii and βIi is the restriction 

of β to indices from the set Ii. We will use notation l1, …, lm to refer to the ranks of 

submatrices XI1, …, XIm. To simplify notation later, we will assume that li > 0 (i.e. there is 
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at least one nonzero entry of XIi for all i). Besides this, X may be an arbitrary matrix, in 

particular linear dependence inside each of the submatrices XIi is allowed.

In this article we will treat the value ||XIi βIi||2 as a measure of an impact of ith group on the 

response and we will say that the group i is truly relevant if and only if ||XIi βIi||2 > 0. Thus 

our task of the identification of the relevant groups is equivalent with finding the support of 

the vector ⟦β⟧I,X := (||XI1βI1||2, …, ||XIm βIm||2)⊤.

To estimate the nonzero coefficients of ⟦β⟧I,X, we will use a new penalized method, namely 

group SLOPE (gSLOPE). For a given nonincreasing sequence of nonnegative tuning 

parameters, λ1, …, λm, a given sequence of positive weights, w1, …, wm, and a design 

matrix, X, the gSLOPE estimator of regression coefficients, βgS, is defined as any solution to 

the optimization problem

βgS: = argmin
b

1
2‖y − Xb‖2

2 + σJλ(W⟦b⟧I, X) , (2.2)

where W is a diagonal matrix with Wi,i := wi, for i = 1, …, m. The estimate of ⟦β⟧I,X 

support is simply defined by the indices corresponding to nonzeros of ⟦β gS ⟧I,X.

It is easy to see that when one considers p groups containing only one variable (i.e. singleton 

groups situation), then taking all weights equal to one reduces (2.2) to SLOPE (1.3). On the 

other hand, taking wi = ∣ Ii ∣ and putting λ1 = … = λm =: λgL, immediately gives gLASSO 

problem (1.5) with the smoothing parameter λgL. The gSLOPE could be therefore treated 

both: as the extension to SLOPE, and the extension to group LASSO.

As shown in Appendix B the function Jλ,I,W,X(b) := Jλ(W⟦b⟧I,X) is a seminorm and 

becomes a norm when the design matrix X is of the full rank. Figure 1 illustrates how the 

shape of the unit ball in the norm Jλ,I,W(b) := Jλ(W⟦b⟧I) depends on the selection of the λ 
sequence. In this example p = 3, m = 2, I1 := {1, 2} and I2 := {3}. In case when only the first 

coefficient in the λ sequence is larger than zero Jλ,I,W(b) = λ1 maxi∈{1,2} wi||βIi||2, and the 

corresponding ball takes form of the cylinder. The privileged solutions occur on the “edges” 

of this cylinder and have the same weighted group effects for both groups (i.e. 

w1 β1
2 + β2

2 = w2 ∣ β3 ∣). When λ1 = λ2 > 0 then the the ball takes the form of the “spinning 

top”, with “edges” occuring when at least one group effect is equal to zero. Then the group 

SLOPE reduces to the group LASSO and has a tendency to select a sparse solution. When 

λ1 > λ2 > 0 the corresponding ball has both types of edges and encourages the 

dimensionality reduction in both ways: by inducing the sparsity and making some of the 

weighted group effects to be equal to each other.

Now, let us again consider an arbitrary m > 0, define p̃ = l1+…+lm and examine the 

following partition,  = { 1, …, m}, of the set {1, …, p̃}
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𝕀1: = {1, …, l1}, 𝕀2: = {l1 + 1, …, l1 + l2}, …, 𝕀m: = ∑
j = 1

m − 1
li + 1, …, ∑

j = 1

m
li .

Observe that each XIi can be represented as XIi = UiRi, where Ui is a matrix with li 
orthogonal columns of a unit l2 norm, whose span coincides with the space spanned by the 

columns of XIi, and Ri is the corresponding matrix of a full row rank. Define n by l matrix X̃ 

by putting X̃
i := Ui for i = 1, …, m. Now observe that after defining vector ω by conditions 

ω i := RibIi for i ∈ {1, …, m}, we immediately obtain

Xb = ∑i = 1
m XIi

bIi
= ∑i = 1

m UiRIbIi
= ∑i = 1

m X∼𝕀iω𝕀i
= X∼ω,

⟦b⟧I, X i
= ‖XIi

bIi
‖

2
= ‖RibIi

‖
2

= ‖ω𝕀i
‖

2

(2.3)

and for ⟦ω⟧  := (||ω 1||2, …, ||ω m||2)⊤ the problem (2.2) can be equivalently presented in the 

form

ωgS: = argmin
ω

1
2‖y − X∼ω‖2

2 + σJλ(W⟦ω⟧𝕀) , (2.4)

where ωgS and βgS are linked via conditions ω𝕀i
gS: = RiβIi

gS, i = 1, …, m. Therefore to identify 

the relevant groups and estimate their group effects it is enough to solve the optimization 

problem (2.4). We will say that (2.4) is the standardized version of the problem (2.2).

Remark 2.1—The formulation of the group SLOPE was proposed independently in 
(Brzyski et al., 2015) (earlier version of this article) and in (Gossmann et al., 2015). In 
(Gossmann et al., 2015) only the case when the weights wi are equal to the square root of the 
group size is considered and penalties are imposed directly on ||βIi||2 rather than on group 
effects ||XIi βIi||2. This makes the method of (Gossmann et al., 2015) dependent on scaling or 
rotations of variables in a given group. In comparison to (Gossmann et al., 2015), where a 
Monte Carlo approach for estimating the regularizing sequence was proposed, our article 
lays theoretical foundations and provides the guidelines for the choice of the sequence of 
smoothing parameters, so gSLOPE can control FDR and has desired estimation properties.

2.2 Numerical algorithm

We will at first show that the problem of solving (2.4) can be easily reduced to the situation 

when W is the identity matrix. For this aim we define a diagonal matrix M such that for 

j ∈ 𝕀i M j, j: = wi
−1. Then observe that
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Jλ, 𝕀, W(ω) = Jλ(W⟦ω⟧𝕀) = Jλ(⟦M−1ω⟧𝕀) = Jλ, 𝕀, Ip∼
(M−1ω) = :Jλ, 𝕀(M

−1ω) . (2.5)

Since M is nonsingular, we can substitute η := M−1ω and consider equivalent formulation of 

(2.4), η∗: = argminη
1
2‖y − X∼Mη‖2

2 + Jσλ, 𝕀(η) , and recover ωgS as ωgS = Mη*. This allows to 

recast gSLOPE as a problem with unit weights.

Now, the above problem is of the form minimize
b

{‖y − 𝒳b‖2
2/2

g(b)
+ Jλ, 𝕀(b)

h(b)

}, where g and h are 

convex functions and g is differentiable. There exist efficient methods, namely proximal 
gradient algorithms, which could be applied to find numerical solution in such situation. To 

design efficient algorithms, however, h must be prox-capable, meaning that there is known 

fast algorithm for computing the proximal operator for h,

proxth(u): = argmin
b

1
2t ‖u − b‖2

2 + h(b) , (2.6)

for each u ∈ ℝp̃ and t > 0.

To derive the proximal operator for the group SLOPE, we at first assume without the loss of 

generality that σ = 1. Now, we need to find the algorithm to minimize 1
2t ‖u − b‖2

2 + Jλ, 𝕀(b), 

for any u ∈ ℝp̃ and t > 0, which is equivalent to finding the numerical solution to the 

problem

proxJ(u): = argmin
b

1
2‖u − b‖2

2 + Jλ, 𝕀(b) , for λ
∼: = tλ . (2.7)

As discussed in Appendix D, this problem can be solved in two steps

c∗: = argmin
c ∈ Rm

1
2‖⟦u⟧𝕀 − c‖2

2 + J
λ
∼(c)

(proxJ(u))𝕀i
= ci

∗(‖u𝕀i
‖

2
)−1u𝕀i

, i = 1, …, m
(2.8)

Consequently, calculating proxJ (u) in fact reduces to identifying c*, which can be efficiently 

done using the fast prox algorithm for regular SLOPE, provided e.g. in (Bogdan et al., 2013, 

2015).

After defining the proximal operator, the solution to the gSLOPE can be obtained by the 

Procedure 1. There exist many ways in which ti’s can be selected to ensure that f(b(k)) 
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converges to the optimal value (see e.g. Beck and Teboulle, 2009; Tseng, 2008). In our R 

package grpSLOPE available on CRAN (The Comprehensive R Archive Network) the 

accelerated proximal gradient method known as FISTA (Beck and Teboulle, 2009) is 

applied, which uses the specific procedure for choosing steps sizes, to achieve a fast 

convergence rate. To derive the proper stopping criterion, we have considered the dual 

problem to gSLOPE and employed the strong duality property. The detailed description of 

the dual norm, conjugate of grouped sorted l1 norm and the stopping criterion are provided 

in the Appendix C.

Procedure 1

Proximal gradient algorithm

input: b[0] ∈ ℝp̃, k=0

while ( Stopping criteria are not satisfied) do

1 b[k+1] = proxtkh (b[k] − tk ⊤( b[k] − y));

2 k ← k + 1.

end while

2.3 Group FDR

Group SLOPE is designed to select groups of variables, which might be very strongly 

correlated within a group or even linearly dependent. In this context we do not intend to 

identify single important predictors but rather want to point at the groups which contain at 

least one true regressor. To theoretically investigate the properties of gSLOPE in this context 

we now introduce the respective notion of group FDR (gFDR).

Definition 2.2—Consider model (2.1) and let βgS be an estimate given by (2.2). We define 
two random variables: the number of all groups selected by gSLOPE (Rg) and the number of 
groups falsely discovered by gSLOPE (Vg), as

Rg: = ∣ {i:‖XIi
βIi

gS‖
2

≠ 0} ∣ , Vg: = ∣ {i:‖XIi
βIi

‖
2

= 0, ‖XIi
βIi

gS‖
2

≠ 0} ∣ .

Definition 2.3—We define the false discovery rate for groups (gFDR) as

gFDR = gFDR(X, β, σ2): = 𝔼 Vg
max {Rg, 1} . (2.9)

2.4 Control of gFDR when variables from different groups are orthogonal

Our goal is the identification of the regularizing sequence for gSLOPE such that gFDR can 

be controlled at any given level q ∈ (0, 1). In this section we will provide such a sequence, 

which provably controls gFDR in case when variables in different groups are orthogonal to 
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each other. In subsequent sections we will replace this condition with the weaker assumption 

of the stochastic independence of regressors in different groups. Before the statement of the 

main theorem on gFDR control, we will recall the definition of χ distribution and define a 

scaled χ distribution.

Definition 2.4—We will say that a random variable X1 has a χ distribution with l degrees 
of freedom, and write X1 ~ χl, when X1 could be expressed as X1 = X2, for X2 having a χ2 

distribution with l degrees of freedom. We will say that a random variable X1 has a scaled χ 
distribution with l degrees of freedom and scale , when X1 could be expressed as X1 =  · 

X2, for X2 having a χ distribution with l degrees of freedom. We will use the notation X1 ~ 

χl.

Theorem 2.5 (gFDR control under orthogonal case)—Consider model (2.1) with 

the design matrix X satisfying XIi
⊤XI j

= 0, for any i ≠ j. Denote the number of zero 

coefficients in ⟦β⟧I,X by m0 and let w1, …, wm be positive numbers. Moreover, define the 

sequence of regularizing parameters λmax = (λ1
max, …, λm

max)⊤, with

λi
max: = max

j = 1, …, m
1
w j

F χl j

−1 1 − q · i
m , (2.10)

where Fχlj
 is a cumulative distribution function of χ distribution with lj degrees of freedom. 

Then any solution, βgS, to problem gSLOPE (2.2) generates the same vector ⟦βgS⟧I,X and it 
holds

gFDR = 𝔼 Vg
max {Rg, 1} ≤ q ·

m0
m .

Proof: Consider the standardized version of the gSLOPE problem, given by (2.4). Since X is 

orthogonal at groups level, X̃ in problem (2.4) is an orthogonal matrix, i.e. X̃⊤ X̃ = Ip̃. It is 

easy to show that this implies ‖y − X∼b‖2
2 = ‖X∼⊤y − b‖2

2
+ C, where C does not depend on b 

(see Appendix D). Hence under orthogonal situation the optimization problem in (2.4) can 

be recast as

b∗: = argmin
b

1
2‖y∼ − b‖2

2 + σJλ(W⟦b⟧𝕀) , (2.11)

where ỹ:= X̃⊤y is a whitened version of y, which has the multivariate normal distribution 

(β, σ2Ip̃), with β̃ i := RiβIi, i = 1, …, m. As discussed in the previous section the problem 

(2.11) can be equivalently formulated as
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c∗: = argminc
1
2 ∑i = 1

m (‖y∼𝕀i
‖

2
− wi

−1ci)
2 + Jσλ(c)

b𝕀i
∗ = ci

∗(wi‖y∼𝕀i
‖

2
)−1y∼𝕀i

, i = 1, …, m
. (2.12)

The above formulation yields the conclusion, that indices of groups estimated by gSLOPE as 

relevant coincide with the support of the solution to the SLOPE problem with the diagonal 

design matrix D such that Dii = wi
−1. After defining β̃ ∈ ℝ p̃ by conditions β̃ i := RiβIi, i = 1, 

…, m, we also have ỹ ~ (β̃, σ2Ip̃).

Now, we define random variables R: = ∣ {i:ci
∗ ≠ 0} ∣ and V : = ∣ {i:‖β

∼
Ii

‖
2

= 0, ci
∗ ≠ 0} ∣

Clearly, then Rg = R and V g = V. Consequently, it is enough to show that

𝔼 V
max {R, 1} ≤ q ·

m0
m .

Without loss of generality we can assume that groups I1, …, Im0 are truly irrelevant, which 

gives ||β̃ 1||2 = …= ||β̃ m0||2 = 0 and ||β̃ j||2 > 0 for j > m0. Suppose now that r, i are some fixed 

indices from {1, …, m}. From definition of λr
max

λr
max ≥ 1

wi
F χli

−1 1 − qr
m 1 − F χli

(λr
maxwi) ≤ qr

m . (2.13)

Now, let us assume that i ≤ m0. Since σ−1||ỹ i||2 ~ χli we have

ℙ wi
−1‖y∼𝕀i

‖
2

≥ σλr
max = ℙ σ−1‖y∼𝕀i

‖
2

≥ λr
maxwi = 1 − F χli

(λr
maxwi) ≤ qr

m . (2.14)

Denote by R̃i the number of nonzero coefficients in SLOPE estimate (2.12) after eliminating 

ith group of explanatory variables. Thanks to lemmas E.6 and E.7 in the Appendix, we 

immediately get

{⟦y∼⟧𝕀:ci
∗ ≠ 0 and R = r} ⊂ {⟦y∼⟧𝕀:wi

−1‖y∼𝕀i
‖

2
> σλr

max and R∼i = r − 1}, (2.15)

which together with (2.14) raises
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ℙ(ci
∗ ≠ 0 and R = r) ≤ ℙ wi

−1‖y∼𝕀i
‖

2
> σλr

max and R∼i = r − 1

= ℙ (wi
−1‖y∼𝕀i

‖
2

> σλr
max) ℙ R∼i = r − 1

≤ qr
m ℙ R∼i = r − 1 ,

(2.16)

where the equality follows from the independence between ||ỹ i||2 and R̃i. Therefore

𝔼 V
max {R, 1} = ∑

r = 1

m
𝔼 V

r 𝟙(R = r) = ∑
r = 1

m 1
r 𝔼 ∑

i = 1

m0
𝟙

{ci
∗ ≠ 0}

𝟙{R = r} =

∑
r = 1

m 1
r ∑

i = 1

m0
ℙ (ci

∗ ≠ 0 and R = r) ≤ ∑
i = 1

m0 q
m ∑

r = 1

m
ℙ (R∼i = r − 1) =

qm0
m ,

(2.17)

which finishes the proof.

Figure 2 illustrates the performance of gSLOPE under the design matrix X = Ip (hence li, the 

rank of group i, coincides with its size), with p = 5000. In Figure 2(a) all groups are of the 

same size l = 5, while in Figures 2(b)–(d) the explanatory variables are clustered into m = 

1000 groups of sizes from the set {3, 4, 5, 6, 7}; 200 groups of each size. Each coefficient of 

βIi, in a truly relevant group i, was generated independently from a U[0.1, 1.1] distribution 

and then βIi was scaled such that (⟦β⟧I, X)
i

= a li. Parameter a was selected to satisfy the 

condition

a ∑
i = 1

m
li = ∑

i = 1

m
4 ln (m)/(1 − m

−2/li) − li,

which, according to the calculations presented in the Appendix H, yields signals comparable 

to the maximal noise. Such signals can be detected with moderate power, which allows for a 

meaningful comparison between different methods.

Figure 2(a) illustrates that the sequence λmax keeps gFDR very close to the “nominal” level 

when groups are of the same size. However, Figure 2(b) shows that for groups of different 

size λmax is rather conservative, i.e. the achieved gFDR is significantly lower than assumed. 

This suggests that the shrinkage (dictated by λ) could be decreased, such that the method 

gets more power and still achieves the gFDR below the assumed level. Returning to the 

proof of Theorem 2.5, we can see that for each i ∈ {1, …, m} we have
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1 − F χli
(λr

maxwi) ≤ qr
m , (2.18)

with equality holding only for i being the index of the maximum in (2.10). In the result the 

inequality in (2.17) is usually strict and the true gFDR might be substantially smaller than 

the nominal level. The natural relaxation of (2.18) is to require only that

∑
i = 1

m
1 − F

wi
−1χli

(λr) ≤ qr . (2.19)

Replacing the inequality in (2.19) by equality yields the strategy of choosing the relaxed λ 
sequence

λr
mean: = F−1 1 − qr

m for F(x): = 1
m ∑

i = 1

m
F

wi
−1χli

(x), r ∈ {1, …, m}, (2.20)

where F
wi

−1χli

 is the cumulative distribution function of scaled chi distribution with li 

degrees of freedom and scale 𝒮 = wi
−1. In Figure 2(c) we present estimated gFDR, for tuning 

parameters given by (2.20). The results suggest that with a relaxed version of tuning 

parameters, we can still achieve the “average” gFDR control, where the “average” is with 

respect to the uniform distribution over all possible signal placements. As shown in Figure 

2(d), application of λmean allows to achieve a substantially larger power than the one 

provided by λmax. Such a strategy could be especially important in situations where 

differences between the smallest and the largest quantiles (among distributions wi
−1χli

) are 

relatively large and all groups have the same prior probability of being relevant.

2.5 The accuracy of estimation

Up until this point, we have only considered the testing properties of gSLOPE. Though 

originally proposed to control the FDR, surprisingly, SLOPE enjoys appealing estimation 

properties as well, (see e.g Su and Candès, 2016; Bellec et al., 2016b,a). It thus would be 

desirable to extend this link between testing and estimation for gSLOPE. In measuring the 

deviation of an estimator from the ground truth β, as earlier, we focus on the group instead 

of an individual level. Accordingly, here we aim to estimate parts of variance of Y explained 

by every group, which are contained in the vector ⟦β⟧X,I := (||XI1βI1||2, …, ||XImβIm||2)⊤ or 

⟦β̃⟧  := (||β̃ 1||2, …, ||β̃ m||2)⊤, equivalently. For illustration purpose, we employ the setting 

described as follows. Imagine that we have a sequence of problems with the number of 
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groups m growing to infinity: the design X is orthonormal at groups level; ranks of 

submatrices XIi, li, are bounded, that is, max li ≤ l for some constant integer l; denoting by k 
≥ 1 the sparsity level (that is, the number of relevant groups), we assume the asymptotics 

k/m → 0. Now we state our minimax theorem, where we write a ~ b if a/b → 1 in the 

asymptotic limit, and ||⟦β⟧I,X||0 denotes the number of nonzero entries of ⟦β⟧I,X. The proof 

makes use of the same techniques for proving Theorem 1.1 in (Su and Candès, 2016) and is 

deferred to the Appendix.

Theorem 2.6—Fix any constant q ∈ (0, 1), let wi = 1 and λi = F χl
−1(1 − qi/m) for i = 1, …, 

m. Under the preceding conditions m → ∞ and k/m → 0, gSLOPE is asymptotically 
minimax over the nearly black object {β : ||⟦β⟧||I,X||0 ≤ k}, i.e.,

sup
‖⟦β⟧I, X‖0 ≤ k

𝔼 ⟦βgS⟧I, X − ⟦β⟧I, X 2
2 inf

β
sup

‖⟦β⟧I, X‖0 ≤ k
𝔼 ⟦β⟧I, X − ⟦β⟧I, X 2

2 ,

where the infimum is taken over all measurable estimators β̂(y, X).

Notably, in this theorem the choice of λi does not assume the knowledge of sparsity level. 

Or putting it differently, in stark contrast to gLASSO, gSLOPE is adaptive to a range of 

sparsity in achieving the exact minimaxity. Combining Theorems 2.5 and 2.6, we see the 

remarkable link between FDR control and minimax estimation also applies to gSLOPE 

(Abramovich et al., 2006; Su and Candès, 2016). While it is out of the scope of this paper, it 

is of great interest to extend this minimax result to general design matrices.

2.6 The impact of chosen weights

In this subsection we will discuss the influence of chosen weights, {wi}i = 1
m , on results. Let I 

= {I1, …, Im} be a given partition into groups and l1, …, lm be ranks of submatrices XIi. 

Assume the orthogonality at group level, i.e., that it holds XIi
⊤XI j

= 0, for i ≠ j, and suppose 

that σ = 1. The support of ⟦β⟧I,X coincides with the support of vector c* defined in (2.12), 

namely

c∗ = argmin
c

1
2‖⟦y∼⟧𝕀 − W−1c‖2

2 + Jλ(c) , (2.21)

where W−1 is a diagonal matrix with positive numbers w1
−1, …, wm

−1 on the diagonal. Suppose 

now, that c* has exactly r nonzero coefficients. From Corollary E.4 in the Appendix E, these 

indices are given by {π(1), …, π(r)}, where π is permutation which orders W−1⟦ỹ⟧ . 

Hence, the order of realizations {wi
−1‖y∼𝕀i

‖
2
}

i = 1

m
 decides about the subset of groups labeled 

by gSLOPE as relevant. Suppose that groups Ii and Ij are truly relevant, i.e., ||β̃ i||2 > 0 and ||β̃
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j||2 > 0. The distributions of ||ỹ i||2 and ||ỹ j||2 are noncentral χ distributions, with li and lj 
degrees of freedom, and the noncentrality parameters equal to ||β̃ i||2 and ||β̃ j||2, respectively. 

Now, the expected value of the noncentral χ distribution could be well approximated by the 

square root of the expected value of the noncentral χ2 distribution, which gives

𝔼(wi
−1‖y∼𝕀i

‖
2
) ≈ wi

−1 𝔼(‖y∼𝕀i
‖

2
2) = wi

−1 li + ‖β
∼

𝕀i
‖

2
2 .

Therefore, roughly speaking, truly relevant groups Ii and Ij are treated as comparable, when 

it occurs li/wi
2 + ‖β

∼
𝕀i

‖
2

2/wi
2 ≈ l j/w j

2 + ‖β
∼

𝕀 j
‖

2

2/w j
2. This gives us the intuition about the behavior 

of gSLOPE with the choice wi = li for each i. Firstly, gSLOPE treats all irrelevant groups as 

comparable, i.e. the size of the group has a relatively small influence on it being selected as 

a false discovery. Secondly, gSLOPE treats two truly relevant groups as comparable, if 

groups effect sizes satisfy the condition (⟦β⟧I, X)
i
/(⟦β⟧I, X)

j
≈ li/ l j. The derived condition 

could be recast as ‖XIi
βIi

‖
2
2/li ≈ ‖XI j

βI j
‖

2
2/l j. This gives a nice interpretation: with the 

choice wi: = li, gSLOPE treats two groups as comparable, when these groups have similar 

squared effect group sizes per coefficient. One possible idealistic situation, when such a 

property occurs, is when all βi’s in truly relevant groups are comparable.

In Figure 3 we see that when the condition (⟦β⟧I, X)
i
/(⟦β⟧I, X)

j
≈ li/ l j is met, the fractions 

of groups with different sizes in the selected truly relevant groups (STRG) are approximately 

equal. To investigate the impact of selected weights on the set of discovered groups, we 

performed simulations with different settings, namely we used wi = 1 and wi = li (without 

changing other parameters). With the first choice, larger groups are penalized less than 

before, while the second choice yields the opposite situation. This is reflected in the 

proportion of each groups in STRG (Figure 3). The values of gFDR are very similar under 

all choices of weights.

2.7 Independent groups and unknown σ

The assumption that variables in different groups are orthogonal to each other can be 

satisfied only in rare situations of specifically designed experiments. However, in a variety 

of applications one can assume that variables in different groups are independent. Such a 

situation occurs for example in the context of identifying influential genes using distant 

genetic markers, whose genotypes can be considered as stochastically independent. In this 

case a group can be formed by clustering dummy variables corresponding to different 

genotypes of a given marker. Though the difference between stochastic independence and 

algebraic orthogonality seems rather small, it turns out that small sample correlations 

between independent regressors together with the shrinkage of regression coefficients lead to 

magnifying the effective noise and require the adjustment of the tuning sequence λ (see Su 

et al., 2015, for discussion of this phenomenon in the context of LASSO). Concerning 

regular SLOPE, this problem was addressed by heuristic modification of λ, proposed in 
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(Bogdan et al., 2013, 2015). This modified sequence was calculated based upon the 

assumption that explanatory variables are randomly sampled from the Gaussian distribution. 

However, simulation results from (Bogdan et al., 2015) illustrate that it controls FDR also in 

case when the columns of the design matrix correspond to additive effects of independent 

SNPs and the number of causal genes is moderately small.

To derive the similar heuristic adjustment for the group SLOPE we will at first confine 

ourselves to the case σ = 1, l1 = … = lm := l, w1 = … = wm := w.

The first step in our derivation relies on specifying the optimality conditions for the 

standardized version of group SLOPE provided in (2.4), under which XIi
⊤XIi

= Il, for all i ∈ 

{1, …, m}.

Theorem 2.7 (Optimality conditions)—Let X be the standardized design matrix 

satisfying XIi
⊤XIi

= Il for each i and let β̂ be the solution to the gSLOPE problem. Let us 

order the groups such that ||β̂I1||2 > … > ||β̂Is||2 > 0 and ||β̂Ii||2 = 0 for i > s and consider the 
partition of I into IS := {I1, …, Is} and IC := {Is+1, …, Im}. Moreover, let us define 

vIi
: = XIi

⊤ y − X\Ii
β \Ii

, where X\Ii is a matrix X without columns from Ii. Then the following 

two sets of conditions are met

XIi
⊤(y − Xβ) = wλi

βIi
‖βIi

‖
2

, i < s

⟦X⊤(y − Xβ)⟧
Ic ∈ C

wλc

and
‖vIi

‖
2

− wλi = ‖βIi
‖

2
, i ≤ s

⟦v⟧
Ic ∈ C

wλc

, (2.22)

where v: = (vI1
⊤ , …, vIm

⊤ )⊤, λc = (λs+1, …, λm) and 

C
wλc: = x ∈ ℝm − s: ∑i = 1

k ∣ x ∣(i) ≤ ∑i = 1
k wλi

c, k = 1, …m − s  is the unit ball of the dual 

norm to Jwλc.

Proof: The proof of Theorem 2.7 is provided in Appendix G.

The task now is to select λi’s such that the condition ⟦v⟧IC ∈ Cwλc regulates the rate of false 

discoveries. Let us at first observe that

vIi
= XIi

⊤ Xβ − X\Ii
β \Ii

+ z = βIi
+ XIi

⊤X\Ii
(β\Ii

− β \Ii
) + XIi

⊤z . (2.23)
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Note that under the orthogonal design the last expression reduces to XIi
⊤z for i > s and has χ 

distribution with l degrees of freedom. This fact was used in subsection 2.4 to define the 

sequence λ. In the considered near-orthogonal situation, the term XIi
⊤X\Ii

(β\Ii
− β \Ii

) does not 

vanish and creates an additional “noise”, which needs to be taken into account when 

designing the λ sequence. To approximate the distribution of vIi under the assumption of 

independence between different groups we will use the following simplifying assumptions. 

To estimate the distribution of vIi we will first simplify the situation by assuming that true 

and estimated signals define the same set of relevant groups, with indices from the set {1, 

…, s}, and that the signal strength is sufficiently large to assume that 
βIi

‖βIi
‖

2

 can be well 

approximated by 
βIi

‖βIi
‖

2
 for i ≤ s. After defining IS := ∪i≤s Ii, from the left set of conditions in 

(2.22) we get that

XIS
⊤ (XIS

βIS
− XIS

βIS
) + XIS

⊤ z ≈ w(λ1βI1
⊤ /‖βI1

‖
2
, …, λsβIs

⊤ /‖βIs
‖

2
)⊤

Hλ, β

, (2.24)

which gives XIi
⊤XIS

(βIS
− βIS

) ≈ XIi
⊤XIS

(XIS
⊤ XIS

)−1(wHλ, β − XIS
⊤ z). Finally, combining the last 

expression with (2.23) let us to assume vIi ≈ v̂Ii, where

v Ii
: = XIi

⊤XIS
(XIS

⊤ XIS
)−1 wHλ, β − XIS

⊤ z + XIi
⊤z . (2.25)

Now, we will assume that the distribution of v̂Ii can be well approximated by assuming that 

the individual entries of X come from the normal distribution 𝒩(0, 1
n). This assumption can 

be justified if the distribution of the individual entries of X is sufficiently regular and n is 

substantially larger than lm0. The following Theorem 2.8 provides the expected value and 

the covariance matrix of the random vector v̂Ii for i > s under the assumption of normality.

Theorem 2.8—Assume that the entries of the design matrix X are independently drawn 
from (0, 1/n) distribution. Then for each i > s the expected value of v̂Ii is equal to 0 and 
the covariance matrix of this random vector is given by
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Cov(v Ii
) = n − ls

n + w2 ‖λS‖2
2

n − ls − 1 Il, where λS: = (λ1, …, λs)
⊤ . (2.26)

Proof: The proof of Theorem 2.8 is provided in Appendix G.

Now, if n is large enough with respect to sl, then by the Central Limit Theorem the 

distribution of vIi can be approximated by the multivariate normal distribution and the 

distribution of ||vIi||2 by the scaled χ distribution with l degrees of freedom and a scale 

parameter 𝒮 = n − ls
n +

w2‖λS‖2
2

n − sl − 1 . Now, analogously to the orthogonal situation, lambdas 

could be defined as λi: = 1
wi

F𝒮χl
−1 (1 − q · i

m ) = 𝒮
wi

F χl
−1 (1 − q · i

m ). Since s is unknown, we will 

apply the strategy used in (Bogdan et al., 2013): define λ1 as in orthogonal case and for i ≥ 2 

define λi by incorporating the scale parameter corresponding to the sparsity s = i − 1. This 

yields the following procedure.

Procedure 2

Selecting lambdas under the assumption of independence: equal groups sizes

input: q ∈ (0, 1), w > 0, p, n, m, l ∈ ℕ

λ1: = 1
wF χl

−1 (1 − q
m );

For i ∈ {2, . . . , m}:

 λS := (λ1, . . . , λi−1)⊤;

  𝒮: = n − l(i − 1)
n +

w2‖λS‖2
2

n − l(i − 1) − 1 ;

  λi
∗: = 𝒮

w F χl
−1 (1 − q · i

m );

 if λi
∗ ≤ λi − 1, then put λi: = λi

∗. Otherwise, stop the procedure and put λj := λi−1 for j ≥ i;

end for

Consider now the Gaussian design with arbitrary group sizes and a sequence of positive 

weights w1, . . . , wm. One possible approach is to construct consecutive λi by taking the 

largest scaled quantiles among all distributions, i.e. as max
j = 1, …, m

{
𝒮 j
w j

F χl j

−1 (1 − q · i
m )}, with the 

scale parameter j adjusted to lj (the conservative strategy). In this article, however, we will 

stick to the more liberal strategy based on λmean, which leads to the modified sequence of 

tuning parameters presented in Procedure 3.
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Procedure 3

Sequence of tuning parameters for independent groups

input: q ∈ (0, 1), w1, . . . , wm > 0, p, n, m, l1, . . . , lm ∈ ℕ

λi: = F−1 (1 − q · i
m ), for F(x): = 1

m ∑i = 1
m F

wi
−1χli

(x);

for i ∈ {2, . . . , m}:

 λS := (λ1, . . . , λi−1)⊤;

  𝒮 j: =
n − l j(i − 1)

n +
w j

2‖λS‖2
2

n − l j(i − 1) − 1 , for j ∈ {1, . . . , m};

  λi
∗: = F𝒮

−1 (1 − qi
m ), for F𝒮(x): = 1

m ∑ j = 1
m F

𝒮 jw j
−1χl j

(x);

 if λi
∗ ≤ λi − 1, then put λi: = λi

∗. Otherwise, stop the procedure and put λj := λi−1 for j ≥ i;

end for

Up until this moment, we have used σ in gSLOPE optimization problem, assuming that this 

parameter is known. However, in many applications σ is unknown and its estimation is an 

important issue. When n > p, the standard procedure is to use the unbiased estimator of σ2, 

σOLS
2 , given by

σOLS
2 : = y − XβOLS ⊤ y − XβOLS /(n − p), for βOLS: = (X⊤X)−1X⊤y . (2.27)

For the target situation, with p much larger than n, such an estimator can not be used. To 

estimate σ we will therefore apply the procedure which was dedicated for this purpose in 

(Bogdan et al., 2015) in the context of SLOPE. Below we present algorithm adjusted to 

gSLOPE (Procedure 4). The idea standing behind the procedure is simple. The gSLOPE 

property of producing sparse estimators is used, and in each iteration columns in design 

matrix are first restricted to support of βgS, so that the number of rows exceeds the number 

of columns and (2.27) can be used. Algorithm terminates when gSLOPE finds the same 

subset of relevant variables as in the preceding iteration.

Procedure 4

gSLOPE with estimation of σ

input: y, X and λ (defined for some fixed q)

initialize: S+ = ∅;

repeat
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 S = S+;

 compute RSS obtained by regressing y onto variables in S;

 set σ̂2 = RSS/(n − |S| − 1);

 compute the solution βgS to gSLOPE with parameters σ̂ and sequence λ;

 set S+ = supp(βgS);

until S+ = S

To investigate the performance of gSLOPE under the Gaussian design and various group 

sizes, we performed simulations with 1000 groups. Their sizes were drawn from the 

binomial distribution, Bin(1000; 0.008), so as the expected value of the group size was equal 

to 8 (Figure 4(c)). As a result, we obtained 7917 variables, divided into 1000 groups (the 

same division was used in all iterations and scenarios). For each sparsity level and the gFDR 

level 0.1, and each iteration we generated entries of the design matrix using 𝒩(0, 1
n)

distribution, then X was standardized and the values of response variable were generated 

according to model (2.1) with σ = 1 and signals generated as in simulations for Figure 2. To 

identify relevant groups based on the simulated data we have used the iterative version of 

gSLOPE, with σ estimation (Procedure 4) and lambdas given by Procedure 3. We performed 

200 repetitions for each scenario, n was fixed as 5000. Results are represented in Figure 4 

and show that our procedure allows to control gFDR at the assumed level.

Additionally, Figure 4 compares gSLOPE to gLASSO with two choices of the smoothing 

parameter λ. Firstly, we used λ = λ1
mean, which allows control of the gFDR under the total 

null hypothesis. Secondly, for each of the iterations we chose λ based on leave-one-out 

cross-validation. It turns out that the first of these choices becomes rather conservative when 

the number of truly relevant groups increases. Then gLASSO has a smaller FDR but also a 

much smaller power than SLOPE (by a factor of three for k = 60). Cross-validation works in 

the opposite way - it yields a large power but also results in a huge proportion of false 

discoveries, which in our simulations systematically exceeds 60%.

2.8 Simulations under Genome-Wide Association Studies

To test the performance of gSLOPE in the context of Genome-Wide Association Studies 

(GWAS) we have used the North Finland Birth Cohort (NFBC1966) dataset, available in 

dbGaP with accession number phs000276.v2.p1 (http://www.ncbi.nlm.nih.gov/projects/gap/

cgi-bin/study.cgi?study_id=phs000276.v2.p1) and described in detail in (Sabatti et al., 

2009). The raw data contains 364, 590 markers for 5, 402 subjects. To obtain roughly 

independent SNPs this data set was initially screened using the clump procedure in the 

PLINK software (Purcell et al., 2007; Purcell, 2009) and additional screening in R such that 

in the final data set the maximal correlation between any pair of SNPs does not exceed 

0.1 = 0.316. The reduced data set contains p = 26, 315 SNPs. The details of the screening 

procedure are provided in Appendix I.

The explanatory variables for our genetic model were defined in Table 1, where a denotes 

the less frequent (variant) allele. In case when population frequencies of both alleles are the 

same, variables X̃ and Z̃ are uncorrelated. In other cases correlations between these variables 
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is different from zero and can be very strong for rare genetic variants. Since each SNP is 

described by two dummy variables, the full design matrix [X̃ Z̃] contains 52, 630 potential 

regressors. This matrix was then centered and standardized, so the columns of the final 

matrix [X Z] have zero mean and unit norm.

The trait values are simulated according to two scenarios. In Scenario 1 we simulate from an 

additive model, where each of the causal SNPs influences the trait only through the additive 

dummy variable in matrix X,

y = XβX + ε . (2.28)

Here ε ~ (0, I), the number of ‘causal’ SNPs k varies between 1 and 80 and each causal 

SNP has an additive effect (non-zero components of βX) equal to 5 or −5, with P(βXi = 5) = 

P(βXi = −5) = 0.5. In each of 100 iterations of our experiment causal SNPs were randomly 

selected from the full set of 26, 315 SNPs.

Since SNPs were selected in such a way that they are only weakly correlated, the 

identification of ”causal” mutations based on the additive model (2.28) can be done with 

regular SLOPE, as it was demonstrated in (Bogdan et al., 2015). However, the additive 

model (2.28) implicitly assumes that for each of the SNPs the expected value of the trait for 

the heterozygote aA is the average of expected trait values for both homozygotes aa and AA. 

This idealistic assumption is usually not satisfied and many of the SNPs exhibit some 

dominance effects. To investigate the performance of model selection criteria in the presence 

of the dominance effects, we simulated data according to Scenario 2;

y = [X Z]
βX

βZ
+ ε (2.29)

which differs from Scenario 1 by adding dominance effects (non-zero components of βZ), 

which for each of k selected SNPs are sampled from the uniform distribution on [−5, −3] ∪ 
[3, 5]. Now, the influence of i-th SNP on the trait is described by the vector βi = (βXi, βZi), 

containing its additive and dominance effects, which sets the stage for the application of the 

gSLOPE.

The data simulated according to Scenario 1 and Scenario 2 were analyzed using three 

different approaches:

A.1 gSLOPE with p = 26, 315 groups, where each of the groups contains two 

explanatory variables, for the additive and the dominance effect of the same 

SNP,

A.2 SLOPEX, where the regular SLOPE is used to search through the reduced design 

matrix X (as in Bogdan et al., 2015; Brzyski et al., 2017),
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A.3 SLOPEXZ, where the regular SLOPE is used to search through the full design 

matrix [X Z].

In all versions of SLOPE we used the iterative procedure for estimation of σ and the 

sequence λ heuristically adjusted to the case of the Gaussian design matrix, as implemented 

in the CRAN packages SLOPE and grpSLOPE. All scripts used in simulations as well as in 

real data analysis are available at https://github.com/dbrzyski/gSLOPE.

Figure 5 summarizes this simulation study. Here FDR and power are calculated at the SNP 

level. Specifically, in case of SLOPEXZ the SNP is counted as a one discovery if the 

corresponding additive or the dominance dummy variable is selected.

As shown in Figure 5, for both of the simulated scenarios all versions of SLOPE control 

gFDR for all considered values of k. When the data are simulated according to the additive 

model the highest power is offered by SLOPEX, with the power of gSLOPE being smaller 

by approximately 13% over the whole range of k. However, in the presence of large 

dominance effects the situation is reversed and gSLOPE offers the highest power, which 

systematically exceeds the power of SLOPEX by the symmetric amount of 13%. In our 

simulations SLOPEXZ has intermediate performance and does not substantially improve the 

power of SLOPEX in the presence of dominance effects.

Thus our simulations suggest that gSLOPE provides an information complementary to 

SLOPEX and our recommendation is to use both these methods when performing GWAS. 

SNPs detected by gSLOPE and not detected by SLOPEX almost certainly exhibit strong 

dominance effects and might represent rare recessive variants, as suggested by the real data 

analysis reported in the following section.

2.9 gSLOPE under GWAS application: real phenotype data

Finally, we have applied group SLOPE to identify SNPs associated with four lipid 

phenotypes available in NFBC1966 dataset. This data set contains many characteristics of 

individuals from the Northern Finland Birth Cohort 1966 (NFBC1966) ((Rantakallio, 1969; 

Jarvelin et al., 2004)), a sample that enrolled almost all individuals born in 1966 in the two 

northernmost Finnish provinces. The most advantageous feature of this study is 

that ”participants derive from a genetic isolate that is relatively homogeneous in genetic 

background and environmental exposures and that has more extensive linkage 

disequilibrium (i.e. neighboring markers are more strongly correlated) than in most other 

populations”(see Sabatti et al., 2009). The second of these features allows to capture the 

associations resulting from mutations which are not genotyped (i.e. they are represented in 

the design matrix only through their neighbors). In (Sabatti et al., 2009) this data set was 

used to look for associations for ”nine quantitative traits that are heritable risk factors for 

cardiovascular disease (CVD) or type 2 diabetes (T2D): body mass index (BMI), fasting 

serum concentrations of lipids (triglycerides (TG), high-density lipoproteins (HDL) and low-

density lipoproteins (LDL)), indicators of glucose homeostasis (glucose (GLU), and insulin 

(INS)) and inflammation (CRP), and systolic (SBP) and diastolic (DBP) blood pressure. 

Extreme values of these traits, in combination, identify a metabolic syndrome, hypothesized 

to increase risks for both CVD and T2D”. In (Brzyski et al., 2017) four lipid phenotypes: 
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HDL, LDL, TG, and total cholesterol (CHOL), were reanalyzed using the geneSLOPE 

method based on SLOPEX. The results were compared to those obtained with the up-to-date 

EMMAX procedure (Kang et al., 2010), which controls for the polygenic background by 

using the mixed model approach. The study reported in (Brzyski et al., 2017) shows that in 

this example geneSLOPE usually points at the same genomic regions as EMMAX, but 

allows to obtain a better resolution of gene location. Here we analyze the same four traits 

(HDL, LDL, TG, and CHOL) with the geneSLOPE based on SLOPEXZ and group SLOPE 

and compare the results with those obtained with SLOPEX and reported in (Brzyski et al., 

2017).

We started with 5, 402 individuals and 334, 103 SNPs, obtained after first step of screening 

procedure described in details in Appendix I. Since this pre-processing selects most 

promising SNPs by performing multiple testing on the full set of p = 334, 103 SNPs, the 

sequence of the tuning parameters for SLOPE needs to be adjusted to this value of p rather 

than to the number of selected representatives (see Brzyski et al., 2017). The algorithm for 

GWAS analysis with SLOPE (the entire procedure is called geneSLOPE) is implemented in 

R package geneSLOPE and its details are explained in (Brzyski et al., 2017). According to 

an extensive simulation study and real data analysis reported in (Brzyski et al., 2017), 

geneSLOPE allows to control FDR for the analysis with full size GWAS data.

In our data analysis we used three methods: geneSLOPE for additive effects (as in Brzyski et 

al., 2017), geneSLOPEXZ, with the design matrix extended by inclusion of dominance 

dummy variables, and gene group SLOPE (geneGSLOPE). In geneSLOPEXZ and 

geneGSLOPE representative SNPs were selected based on one-way ANOVA tests. For all 

these procedures the pre-processing was based on p-value threshold p < 0.05 and the 

correlation cutoff ρ < 0.3, which allowed to reduce the data set to roughly 8500 of 

interesting representative SNPs (this number depends on the phenotype). For the 

convenience of the reader, the Procedure 5 for the full geneGSLOPE analysis is provided 

below.

Procedure 5

geneGSLOPE procedure

Input: r ∈ (0, 1), π ∈ (0, 1]

Screen SNPs:

(1) For each SNP calculate independently the p-value for the ANOVA test with the null hypothesis, H0: μaa = μaA = μAA.

(2) Define the set ℬ of indices corresponding to SNPs whose p-values are smaller than π.

Cluster SNPs:

(3) Select the SNP j in ℬ with the smallest p-value and find all SNPs whose Pearson correlation with this selected SNP 
is larger than or equal to r.

(4) Define this group as a cluster and SNP j as the representative of the cluster. Include SNP j in , and remove the 
entire cluster from ℬ.

(5) Repeat steps (3)–(4) until ℬ is empty. Denote by m number of all clumps (this is also the number of elements in ).

Selection:

(6) Apply the iterative gSLOPE method (i.e. gSLOPE with σ estimation and correction for independent regressors) on X
, being matrix X restricted to columns corresponding to the set  of selected SNPs. Here, the tuning parameters, 
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vector λ, is defined as in Procedure 3, with p being the number of all initial SNPs, and then this vector is restricted only 
to first m coefficients.

(7) Representatives which were selected indicate the selection of entire clumps.

Results in the context of number of discoveries given by geneSLOPE, geneSLOPEXZ and 

geneGSLOPE are summarized in Table 2, where we can observe that both geneSLOPE and 

geneSLOPEXZ, gave identical results for LDL, CHOL and TG. Compared to these methods 

geneGSLOPE did not reveal any new response-related SNPs for LDL and CHOL. Actually, 

for these two traits geneGSLOPE missed some SNPs detected by the other two methods. A 

different situation takes place for TG, where geneGSLOPE identifies 6 additional SNPs as 

compared to the other two methods. All these detections have a similar structure, showing a 

significant recessive effect of the minor allele. In all these cases the minor allele frequency 

was smaller than 0.1. The detection of such “rare” recessive effects by the simple linear 

regression model is rather difficult, since the regression line adjusts mainly to the two 

prevalent genotype groups and is almost flat (Lettre et al., 2007).

In case of HDL all three versions of SLOPE gave different results. geneSLOPEXZ identifies 

one new SNP as compared to geneSLOPE, while geneGSLOPE identifies one more SNP 

and misses one of the discoveries obtained by other two methods. In Figure 6 we compare 

two exemplary discoveries: one detected at the same time by geneSLOPE and geneGSLOPE 

(known discovery) and one detected only by geneGSLOPE (new discovery). This example 

clearly shows the additive effect of the previously detected SNP and the recessive character 

of the second SNP. In case of new discovery there are only 5 individuals in the last genotype 

group, which makes the change in the mean not detectable by simple linear regression.

The results of real data analysis agree with results of simulations. They show that 

geneGSLOPE has a lower power than geneSLOPE for detection of additive effects but can 

be very helpful in detecting rare recessive variants. Thus these two methods are 

complementary to each other and should be used together to enhance the power of detection 

of influential genes.

3 Discussion

Group SLOPE is a new convex optimization procedure for selection of important groups of 

explanatory variables, which can be considered as a generalization of group LASSO and of 

SLOPE. In this article we provide an algorithm for solving group SLOPE and discuss the 

choice of the sequence of regularizing parameters. Our major focus is the control of group 

FDR, which can be obtained when variables in different groups are orthogonal to each other 

or they are stochastically independent and the signal is sufficiently sparse. After some pre-

processing of the data such situations occur frequently in the context of genetic studies, 

which in this paper serve as a major example of applications.

The major purpose of controlling FDR rather than absolutely eliminating false discoveries is 

the wish to increase the power of detection of signals which are comparable to the noise 

level. As shown by a variety of theoretical and empirical results, this allows SLOPE to 

obtain an optimal balance between the number of false and true discoveries and leads to very 
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good estimation and predictive properties (see e.g. Bogdan et al., 2013, 2015; Su and 

Candés, 2016). Our Theorem 2.6 illustrates that these good estimation properties are 

inherited by group SLOPE.

We provide the regularizing sequence λmax, which provably controls gFDR in case when 

variables in different groups are orthogonal. Additionally, we propose its relaxation λmean, 

which according to our extensive simulations controls “average” gFDR, where the average is 

with respect to all possible signal placements. This sequence can be easily modified taking 

into account the prior distribution on the signal placement. Such “Bayesian” version of 

gSLOPE and the proof of control of the respective average gFDR remains an interesting 

topic for a further research.

Another important topic for a further research is the formal proof of gFDR control when 

variables in different groups are independent and setting precise limits on the sparsity levels 

under which it can be done. Asymptotic formulas, which allow for accurate prediction of 

FDR for LASSO under Gaussian design are provided in (Su et al., 2015). We expect that 

similar results can be obtained for SLOPE and gSLOPE and generalized to the case of 

random matrices, where variables are independent and come from sub-Gaussian 

distributions. We consider this as an interesting topic for a further research.

While we concentrated on control of FDR in case when groups of variables are roughly 

orthogonal to each other, it is worth mentioning that original SLOPE has very interesting 

properties also in case when regressors are strongly correlated. As shown e.g. in (Figueiredo 

and Nowak, 2016), the Sorted L-One norm has a tendency to average estimated regression 

coefficients over groups of strongly correlated predictors, which enhances the predictive 

properties. This also allows not to lose important predictors due to their correlation with 

other features. Moreover, minimax estimation and prediction properties of SLOPE under 

correlated designs have been recently proved in (Bellec et al., 2016b) and (Bellec et al., 

2016a). We expect similar properties to hold for gSLOPE, which would pave the way for the 

applications in a variety of applications, where the groups of predictors are not necessarily 

independent.

Our proposed construction of the group SLOPE allows for the estimation of the group 

effects but does not allow to estimate the regressor coefficients by individual explanatory 

variables. We believe that the estimation of the individual effects would require a 

modification of the penalty term, so that a penalty would be imposed not only on entire 

groups, but also on individual coefficients. Such an idea was used in (Simon et al., 2013) in 

the context of sparse-group LASSO, where an additional l1 penalty on individual 

coefficients was used. The modification of gSLOPE in this direction would be an interesting 

contribution, since it could be applied for a bi-level selection the selection of groups and 

particular variables within the selected groups at the same time. However, achieving gFDR 

control with such a modified penalty currently seems to be a challenging task.

We proposed a specific application of gSLOPE for Genome Wide Association Studies, 

where groups contain different effects of the same SNP. It is also worth mentioning that 

gSLOPE can be used to group SNPs based on biological function, physical location etc. We 
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also expect this method to be advantageous in the context of identification of groups of rare 

genetic variants, where considering their joint effect on phenotype should substantially 

increase the power of detection. Going beyond genetic analysis group SLOPE could be used 

also for example in neuroimaging studies, where one can group voxel-wise brain activity 

measures, such as the ones derived from functional magnetic resonance imaging (fMRI), 

using the region of interest (ROI) definitions given by available anatomical atlases. Apart 

from these bioinformatics and medicine applications, one could also consider application of 

a group SLOPE for a variety of compressed sensing tasks. Here the most basic application of 

block/group sparsity is the extension to complex numbers in which the real and imaginary 

parts are split (and all represented by their coefficient), with each pair forming a group (see 

e.g. van den Berg and Friedlander, 2008; Maleki et al., 2013). As discussed e.g. in 

(Elhamifar and Vidal, 2012) block sparsity arises also in a variety of other applications such 

as reconstructing multiband signals, face/digit/speech recognition or clustering of data on 

multiple subspaces etc (see Elhamifar and Vidal, 2012, for the respective references). 

Another interesting application discussed in (van den Berg and Friedlander, 2011) is the 

identification of the temporal signals arriving from different, unknown, but stationary 

directions. Here the sparsity is the direction of arrival, whereas the L2-norm is over the time 

series corresponding to this direction. These few possible applications represent only a small 

part of the real life group sparsity scenarios and exciting potential applications for the group 

SLOPE and we look forward investigating practical properties of group SLOPE in these real 

life problems.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Unit balls of Jλ,I,W norm for different λ. Weights w1 and w2 are equal to 2 and 1. The 

edges in (a) correspond to the same weighted group effects, i.e. w1 β1
2 + β2

2 = w2 ∣ β2 ∣ = 0.5; 

all edges in (b) contain at least one zero group effect (gLASSO); in (c) both types of edges 
appear.
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Figure 2. 
Orthogonal situation with n = p = 5000 and m = 1000. In (a) all groups are of the same size l 

= 5, while in (b)–(d) there are 200 groups of each of sizes li ∈ {3, 4, 5, 6, 7}. In (a) and (b) 

gSLOPE works with the regularizing sequence λmax, while in (c) and (d) λmean is used. 

First 500 elements of different λ sequences are shown in (e). For each target gFDR level and 

true support size, 300 iterations were performed. Bars correspond to ±2SE. Black straight 

lines represent the “nominal” gFDR level q · ((m − k)/m), for k being true support size. 

Weights are defined as wi: = li.
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Figure 3. 
Fraction of each group sizes in selected truly relevant groups (STRG). Beyond the weights, 

this simulation was conducted with the same setting as in experiments summarized in Figure 

1 for λmean. In particular, for truly relevant groups i and j, it occurs 

(⟦β⟧I, X)
i
/(⟦β⟧I, X)

j
= li/ l j. Target gFDR level was fixed as 0.05.
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Figure 4. 
Results for the example with independent regressors and various group sizes: m = 1000, p = 

7917 and n = 5000. Bars correspond to ±2SE. Entries of design matrix were drawn from 

(0, 1/n) distribution and truly relevant signal, i, was generated such as 

‖XIi
βIi

‖
2

= 1
m ∑i = 1

m B(m, li), where B(m, l) is defined in (H.4).
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Figure 5. 
Simulations using real SNP genotypes: n = 5, 402, p = 26, 315. Power and gFDR are 

estimated based on 100 iterations of each simulation scenario. Upper panel illustrates the 

situation where all causal SNPs have only additive effects, while in lower panel each causal 

SNP has also some dominance effect.
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Figure 6. 
Comparison of a discovery detected by both geneSLOPE and geneGSLOPE (known 

discovery), and a discovery detected only by geneGSLOPE (new discovery). The mean 

values of HDL for different genotypes are shown in (a) and the corresponding boxplots are 

presented presented in (b).
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Table 1

Coding for explanatory variables

Genotype aa Genotype aA Genotype AA

additive dummy variable X̃ 2 1 0

dominance dummy variable Z̃ 0 1 0
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Table 2

Number of discoveries in real data analysis

HDL LDL TG CHOL

geneSLOPE 7 6 2 5

geneSLOPEXZ 8 6 2 5

geneGSLOPE 8 4 8 4

New discoveries: geneSLOPEXZ 1 0 0 0

New discoveries: geneGSLOPE 2 0 6 0
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