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Abstract

Position-specific denatured-state thermodynamics were determined for a database of human 

proteins by use of an ensemble-based model of protein structure. The results of modeling 

denatured protein in this manner reveal important sequence-dependent thermodynamic properties 

in the denatured ensembles as well as fundamental differences between the denatured and native 

ensembles in overall thermodynamic character. The generality and robustness of these results were 

validated by performing fold-recognition experiments, whereby sequences were matched with 

their respective folds based on amino acid propensities for the different energetic environments in 

the protein, as determined through cluster analysis. Correlation analysis between structure and 

energetic information revealed that sequence segments destined for β-sheet in the final native fold 

are energetically more predisposed to a broader repertoire of states than are sequence segments 

destined for α-helix. These results suggest that within the subensemble of mostly unstructured 

states, the energy landscapes are dominated by states in which parts of helices adopt structure, 

whereas structure formation for sequences destined for β-strand is far less probable. These results 

support a framework model of folding, which suggests that, in general, the denatured state has 

evolutionarily evolved to avoid low-energy conformations in sequences that ultimately adopt β-

strand. Instead, the denatured state evolved so that sequence segments that ultimately adopt α-

helix and coil will have a high intrinsic structure formation capability, thus serving as potential 

nucleation sites.
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Introduction

Characterization of the denatured states of proteins has long been recognized as important 

for understanding protein folding, stability, transport across membranes, and turnover rates.
1,2 More recently, the denatured state has gained significant prominence with the observation 
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that many proteins are intrinsically disordered (ID) or contain ID regions, even under normal 

physiological conditions,3 which suggests that many proteins may have evolved to use the 

denatured state for functions previously associated with folded, native proteins. Indeed, 

disorder has been found to be a conserved feature,4–6 and its importance has already been 

established to processes such as catalysis7,8 and molecular recognition.9–11 In addition, the 

biological advantages of coupling allosteric control to the folding of ID regions have 

recently been developed.12

Although the relationship between ID regions and the denatured states of folded proteins has 

been the subject of intensive study,3,5,13–19 the ability of osmolytes to induce the folding of 

ID regions, such as the N-terminal domain of the glucocorticoid receptor,20 suggests that ID 

regions may share common structural and thermodynamic characteristics. The observation 

that ID regions can be folded by osmolytes indicates that while the conformational ensemble 

under physiological conditions is dominated by unstructured states for these proteins, there 

exists a restricted conformational manifold of folded and compact structures that are 

important for functional interactions, similar to what is observed for natively folded proteins. 

As such, the study of the denatured states of proteins may help to illuminate the common 

thermodynamic organizing principles governing the relationships between sequence, 

structure, and function in both folded and ID proteins.

Our approach here is to study the denatured states of a database of proteins and to identify 

common thermodynamic architecture across all proteins. Previously, we showed that the 

native states of proteins share common thermodynamic properties, and that these properties 

are independent of, and even transcend, structural similarities.21–23 This was done by 

developing a position-specific energetic description of each protein and determining the 

amino acid propensities for the different thermodynamic environments. The utility of our 

energetic representation was established by matching (with an 84% success rate) a protein’s 

sequence to a one-dimensional representation of that protein’s energy landscape. That result 

conclusively demonstrated that the organizing principles for native proteins can be 

represented in purely energetic terms and that the specific thermodynamic descriptors 

developed in that work were sufficient to quantitatively characterize a diverse database of 

human protein structures.

Here, the thermodynamics of the denatured states of that same database of proteins was 

examined in order to determine (1) if organizing principles exist for denatured proteins 

similar to those that were observed for natively folded proteins, (2) the nature of the 

organizing principles under unfolding conditions, (3) the relationship of this organizing 

scheme with both sequence and structure, and (4) the quantitative similarity between the 

native and unfolded state energetics.

Results and Discussion

Ensemble-based thermodynamic characterization of the denatured state

Much in the same way that structural similarities across multiple proteins can be used as the 

basis for establishing organizing principles, thermodynamic organization and hierarchy can 

be identified via similarities in the position-specific thermodynamics of different protein 
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folds. To facilitate a thermodynamic description, a COREX/BEST analysis was performed 

on a database of nonhomologous Homo sapiens protein structures (Fig. 1).21,23 Briefly, the 

COREX/BEST algorithm starts with the high-resolution structure of a protein and generates 

a statistical thermodynamic ensemble of states by alternatively folding and unfolding a fixed 

number of residues of the sequence (in this case, five) in all possible combinations. This 

strategy produces a large ensemble of states, each containing different amounts of folded 

and unfolded segments. Application of an experimentally trained surface-area-based energy 

function provides the relative energy of each state from which the probabilities can be 

calculated.24,25 Although conceptually simple, the COREX/BEST energy function has been 

tested extensively by comparing calculated with experimentally determined protection 

factors from hydrogen–deuterium exchange.24,26 The utility of the COREX/BEST algorithm 

has also been validated through a number of other experimental comparisons examining a 

range of biophysical and functional phenomena, such as residue cooperativity,27–29 pH-

dependent stability,30 and cold denaturation.31,32

Position-specific thermodynamic descriptors for each protein were calculated by 

determining the energetic differences between the folded and unfolded (i.e., 

conformationally fluctuating) subensembles for each position (see Materials and Methods). 

As such, these descriptors report the energetics of the whole ensemble, but are obtained on a 

position-specific basis.21–23 Because our previous analysis was determined under native 

conditions, the Boltzmann- weighted thermodynamic values reported at each position were 

dominated by contributions from structured states, as they have the highest probability under 

native conditions (See Fig. 1a). In other words, for a database of proteins, we generated an 

energetic representation of native state conformational fluctuations, and this representation 

provided a thermodynamic picture of each native fold.

To determine whether fold-encoding information (and thus common organizing principles) 

is also contained within any other subset of states in the full ensemble (i.e., vertical columns 

in Fig. 1a), the previously computed ensembles were systematically perturbed by increasing 

the stability of each state in a manner proportional to the amount of unfolded structure, as 

described in Materials and Methods. The net effect of such a perturbation strategy preserves 

the relative stability of the different states within a particular column in Fig. 1a, but 

redistributes the ensemble so that the more unfolded states (column 1 in Fig. 1a) are more 

probable. These conditions can be referred to as denaturing because the ensemble 

probabilities are dominated by states wherein the folded regions account for less than 20% 

of the residues in any given state. We note that according to this model, the denatured 

ensemble is composed solely of states that have isolated segments of native structure in an 

otherwise disordered protein, and that alternative folded conformations are not considered 

explicitly. Although such a treatment may seem at first to bias the results, we show below 

that this treatment does not impact the conclusions of this work.

Interestingly, the Boltzmann-weighted descriptors determined here for the ensemble under 

denaturing conditions differ considerably from the values determined previously under 

native conditions. This is highlighted in Fig. 1b, where it is clear that regions of high 

stability under native conditions often correspond to regions of low stability under 

denaturing conditions, and vice versa. Quantitative comparison of the position specific free 
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energies under native and denatured conditions, for example (Fig. 2), show no correlation 

(R2 = 0.04). In fact, all four position-specific thermodynamic variables (i.e., the position-

specific free energy [ΔG]j, conformational entropy [TΔS]conf,j, and apolar [ΔH]apol,j and 

polar [ΔH]pol,j enthalpy), show no correlation between native and denaturing conditions 

(Fig. 2b), indicating that the calculations for the native and denatured ensembles are 

monitoring different physical properties. This point becomes clear upon inspection of the 

generalized expressions used to calculate the position-specific energetics. Each position-

specific thermodynamic parameter, [ΔX]j, is determined from the difference in the average 

values for two different subensembles as revealed by the expression;

[ΔX]j = ΔXfolded ,j − ΔXnonfolded ,j , (1)

where the first term in Eq. (1) is a summation over the subensemble in which residue j is 

folded and can be represented as:

ΔXfolded, , j = ∑
i = 1

Nfolded 
PiΔXi = ∑

i = 1

Nfolded  KiΔXi
Q , (2)

where Ki and Pi are the statistical weight and probability of each state i, Nfolded is the 

number of states in the folded subensemble, and Q is the partition function. The second term 

of Eq. (1), 〈ΔXnonfolded,j〉, was calculated in an analogous manner, except the summation 

was over the subensemble in which residue j is unfolded.

Under denaturing conditions, the energetics at each position are largely reporting on the 

stability of isolated pieces of the native structure in the absence of the stabilization effects 

from tertiary interactions. This is because only highly denatured states have appreciable 

probability under these modeled conditions. The energetics under native conditions, in 

contrast, are reporting on the stability of each region in the context of those stabilizing 

interactions with neighboring segments. For example, the loop at position 105 to 111 in G 

protein (Fig. 1b; PDB ID 1KAO) is a moderately stable element of structure under 

denaturing conditions, yet under native conditions it is among the least stable regions. The 

stability of this loop region originates from local interactions; the folding of the remainder of 

the molecule adds comparatively little to the stability of this region. Conversely, many 

positions involved in the β-sheet (e.g., residues 55–57 and 78–81) have relatively low 

stability under denaturing conditions, owing to the dearth of short-range stabilizing 

interactions, but acquire significant stability under native conditions because those regions 

come together from distal parts of the protein to form the stable core.

Identification and characterization of thermodynamic environments within denatured 
ensembles

Identification of the thermodynamic organization within the denatured state of the database 

was facilitated through the use of the partitioning around medoids clustering method applied 

to the position-specific thermodynamic descriptors for the entire database. This was 
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followed by an indirect determination of the information content through fold-recognition 

experiments. The strategy was to establish amino acid propensity scales for different 

energetic environments (similar to the propensity scales for structural environments)33 and 

to determine the generality of these preferences by successfully matching sequences to their 

respective fold (defined in energetic terms).21,23 This strategy will establish whether a 

common set of thermodynamic rules applies across the entire database.

Fold-recognition success was defined as cases where the target sequence scored higher than 

99% of the sequences in the decoy library. Because the decoy library that was used 

contained 431 sequences,21 to be successful, the target sequence had to score among the top 

4 sequences. As described previously, grouping the position-specific thermodynamics 

calculated from the database of natively folded proteins into eight thermodynamic 

environments (TEN) yielded a success rate of 83.6% (i.e., more than 80% of the sequences 

were matched successfully to their fold21; see Fig. 3a). Confirming that the residue-specific 

information at each position originated from native-like states, identical results were 

obtained when the thermodynamic environments were derived instead by clustering data 

calculated solely from the subensemble of states that contain 80–100% folded structure. 

Fold-recognition success was not achieved for control calculations where the subensembles 

that contain 20–40%, 40–60%, or 60–80% of the folded native structure were used. The 

inability of the states with between 20% and 80% folded structure to show common 

organizing principle by this method suggests that these folding intermediates play little to no 

role in determining which native fold a particular sequence will adopt. It should be noted 

that a success rate of 28% was observed in fold-recognition experiments that used the 

subensemble of states that contained 10 folded residues or less (a success rate higher than 

that of the control calculations), suggesting that a denatured ensemble may contain some 

folding information even under native conditions.

To evaluate fold determinants in the denatured state, fold-recognition experiments were 

conducted using thermodynamic descriptors calculated under denaturing conditions (TED). 

Interestingly, for the denatured ensembles, fold-recognition success was found to plateau at 

98.3%, using eight environments, a substantial improvement over the same calculation 

performed with ensembles under native conditions (Fig. 3b). Partitioning the denatured 

ensembles to investigate the contribution of the different subensembles revealed that under 

denaturing conditions, the information content of the subensemble containing 80–100% 

structure (i.e., 0–20% unfolded regions) was sufficient to produce fold-recognition success at 

a rate of only 35%.

Within the context of this analysis, the eight clusters identified from the partitioning 

correspond to different thermodynamic environments. This is shown in Fig. 4, where the 

normalized average thermodynamic properties (i.e., the numerical mean of all positions) of 

each cluster are shown for the four position-specific descriptors, where TE8D is the least 

stable and TE1D is the most stable environment. Similar to the previous analysis using the 

native-state thermodynamic environments,21 the eight denatured-state thermodynamic 

environments (TED) represent a segmenting of the space (Fig. 4), where the different 

environments correspond to different free energies of stabilization as well as the different 

thermodynamic contributions (i.e., polar and apolar enthalpy and entropy differences) for 
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achieving that stability. Thus, cluster analysis can be readily applied to the ensemble under 

native or denaturing conditions, and the clusters obtained in each case can be used for fold-

recognition experiments. Nonetheless, as Fig. 1b reveals, the range of thermodynamic values 

for the ensemble under native and denaturing conditions is significantly different (i.e., under 

native conditions, the stability constants, ln κf,j, are generally positive, meaning the states in 

which each residue is folded are more probable than states in which each residue is 

unfolded, and under denaturing conditions that trend is reversed). This indicates that the 

environment clusters identified in each case are different.

Identifying the source of denatured-state fold-recognition success

To identify the source of the improved fold-recognition success when using the denatured-

state thermodynamics, the target sequences that scored well using TED, but poorly when 

using TEN, were examined. Improved alignments were observed (Fig. 5a), resulting in a 

15% increase in the success rates for the fold-recognition experiments. To assess 

quantitatively the improvements in the alignments obtained from the denatured-state 

energetics, we compared the average identities for structural, energetic, and sequence 

information obtained from native and denatured fold-recognition experiments (Fig. 5b). For 

example, the mean identity of the thermodynamic environments between the actual and the 

aligned structures is 69.5% using denatured-state energetics for fold recognition, compared 

to just 56.6% (P = 0.02) when using native thermodynamic environments. Similarly, 

secondary-structure identities display a statistically significant improvement (+8%) when 

denatured-state energetics, rather than native-state energetics, were used as the basis for 

alignment. As the alignment statistics reveal, both the length and the quality of the 

alignments were increased when derived from denatured-state energetics.

The relationship between denatured-state thermodynamic environments and secondary 
structure

The high level of alignment identity for secondary structure using denatured-state energetics 

suggests that the algorithm may be capturing local energetics that are specific to different 

structure types. To address this question, the propensity of each secondary-structure type for 

each thermodynamic environment was calculated (see Fig. 6), and four important 

observations can be made from the calculated propensities. First, the propensity of each 

secondary structure for different thermodynamic environments is nonrandom in both the 

native and the denatured states, resulting in “thermodynamic signatures” for different 

secondary structural elements. Second, within the native state, there appear to be only two 

general signatures, one that is shared by regular secondary structures (i.e., α-helix and β-

strand) and one that is shared by irregular structures (coil and turn). Positions that adopt 

either α-helices or β-strands have positive propensities for environments TEN 5 and 6, which 

correspond to the most stable regions in the proteins, and negative propensities for TEN 1, 2, 

and 8, which correspond to the least stable regions of the proteins. On the other hand, 

positions that adopt either coil or turn have positive propensities for environments TEN 1, 2, 

and 8 and negative propensities for TEN 4,5, and 6. Third, unlike the native-state signatures, 

the thermodynamic signatures for regular secondary structures (i.e., α-helix and β-strand) 

within the denatured-state thermodynamic environments show clear differences. Positions 

that adopt α-helix in the folded protein show preferences to be in TED 1,2,3,4, and 5 (i.e., 
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the most stable environments in the denatured ensemble), whereas positions that adopt β-

strand prefer TED 7 and 8 (i.e., the least stable regions). Fourth, although the signatures for 

α-helix and β-strand (and to a lesser extent, turn) contain strong propensities, there are no 

significant propensities for coil when compared to the magnitude of the propensities in the 

native thermodynamic environments. In summary, the propensities in Fig. 6 show clearly 

that while the thermodynamics of the native state can discriminate between regular and 

nonregular structure, the denatured-state thermodynamics appear to discriminate between 

different types of regular structure.

The clear separation of thermodynamic propensities (Fig. 6) based on the secondary 

structure adopted by that position in the final fold opens the possibility that calculations 

using TED may be useful for making inferences about secondary structure. To challenge this 

hypothesis, the thermodynamic environment of each position (from the TEDs) was assigned 

to a secondary structure based on the propensity of observing the structure in that 

environment (taken from Fig. 6). For example, because α- helix has a high propensity (i.e., 

>0.2) for TED 1, 2, 4, and 5, any positions with TED 1, 2, 4, or 5 were assigned to α-helix. 

That assignment was then compared to the secondary structure observed in the native fold. 

The fraction of matches for each secondary structure using this approximation is shown in 

Fig. 7 (black bar). For comparison, the number of matches obtained by assigning secondary 

structure randomly from a fixed number of counts for each secondary-structure type (i.e., 

controlling for the composition of each secondary structure in the database; Fig. 7a) reveals 

that the predictions are significant in all cases, but especially for α-helix and β-strand. 

Similarly, when the results were compared to the number of matches obtained by randomly 

assigning entire elements to consecutive stretches of positions (i.e., controlling for 

composition and continuity of each secondary structural element in the database; Fig. 7b), it 

is clear that in successfully matching sequence to fold, the denatured-state thermodynamic 

information performs disproportionately well with regular secondary structure, and only 

marginally well in turns and coils.

The results presented in Figs. 6 and 7 indicate that the thermodynamic properties of 

denatured states contain significant fold-encoding information, and that the majority of the 

positions that are correctly aligned in the fold-recognition experiments are found to be in 

regions of high α-helix and β-strand content. To investigate whether those results are due 

simply to our modeling of the denatured ensembles (i.e., that they are composed of states 

with isolated segments of native-like structure), we next explored the importance of 

nonnative conformations in modeling the denatured states.

The role of nonnative structures in the denatured-state ensemble

To investigate the importance of the local structural features to the position-specific 

energetics of the denatured ensemble, the hard-sphere collision model34 was used to 

generate self-avoiding conformations through random sampling of backbone and side-chain 

dihedral angles, as described elsewhere.35 For this analysis, 12 proteins from the database 

were selected (DATASET1) such that each structural class [i.e., all alpha (all-α), all beta 

(all-β), alpha and beta (α + β), and small proteins (small)] had three representative 

members. Fifty random structures were generated for each sequence using the hard-sphere 
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collision model (RAND_3D) and the denatured position-specific thermodynamics were 

calculated in separate experiments for each random structure using the same ensemble-based 

method that was applied to the original structures (see Materials and Methods).

Although the notion of calculating stability constants for a random conformation appears at 

first to be paradoxical, the unique computational strategy employed by the COREX/BEST 

algorithm24–26 allows this calculation to be made in a straightforward manner. Just as with a 

structured protein, any randomly generated conformation can be defined by a set of atomic 

coordinates. Of course, in the case of the randomly generated conformation, the resultant 

chain will not form a compact tertiary structure. There will nonetheless be regions that, due 

to local structural constraints caused by neighboring residues, will bury surface area, even in 

a randomly generated chain. We are interested in determining how much surface area is 

being buried along the sequence in each randomly generated conformation, and we are 

interested in calculating the energetic cost of burying that surface by comparing the 

measured value to nominal unfolded-state values for near completely exposed amino acids.
24–26,36 In other words, what is the difference between an extended conformation and the 

randomly generated conformation for an amino acid sequence? By generating multiple 

conformations for a given sequence and calculating the energetics of local structure 

formation (i.e., only 5 or 10 residues) with COREX/BEST for each case, we can ascertain 

(1) whether there is a consistent deviation from the extended conformation, (2) where in the 

sequence these deviations occur, and (3) what the energetic consequences of these deviation 

are.

Shown in Fig. 8 for each of the 12 sample sequences (DATASET1) are the position-specific 

stabilities, ln κf,j, calculated under denaturing conditions and averaged over the 50 random 

structures. Interestingly, the stability profiles determined under denaturing conditions for the 

high-resolution structures were practically identical to the averaged stabilities determined for 

the random structures (with the exception of regions known to adopt α-helix in the native 

fold, as discussed below). Inspection of Eq. (8) (see Materials and Methods) reveals the 

origin of this behavior. Because the thermodynamics of the unfolded subensemble for each 

residue j, 〈ΔGnf,j〉, is dominated by the probability of the completely unfolded state, PU, it is 

determined from the additive contribution of the individual unfolded state values for each 

amino acid (Table 1).24,25,37–39 As such, 〈ΔGnf,j〉 for each amino acid is independent of 

conformation, and the variation in the magnitude of ln κf,j for each conformation, taken at 

each position, is reporting on the variability of 〈ΔGf,j〉. The similarities in the ln κf,j pattern 

for each conformation calculated from different denatured-state structures (Fig. 8) indicates 

that the differences in stability between the different regions of the sequence are far greater 

than the stability variation between each alternative conformation for a specific region. In 

other words, the peaks and valleys that are visible in each sequence provide an ensemble-

averaged “foldability” metric (i.e., the probability of finding that residue in the context of its 

sequence neighbors in a unique conformation, relative to being disordered). We distinguish 

foldability from stability because stability refers to the energy of a particular structure, 

relative to the unfolded state, whereas the foldability describes the average stability of 

multiple conformations and is surprisingly insensitive to the structure. The foldability is 

instead determined primarily by the sequence.
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Although the negative sign for ln κf,j in Fig. 8 indicates that the denatured ensemble is 

dominated by a broad conformational repertoire at every position, there are, nonetheless, 

significant position-specific differences in the foldability metric. For example, the difference 

between the denatured-state foldability at positions 33 and 40 of the protein 1KTH (Fig. 9) 

reveals that regardless of the specific conformation, position 40 is 20,000 times less likely to 

adopt a unique conformation than position 33, and will instead populate a broader ensemble. 

In other words, the combined probability for the ensemble of alternative conformations at 

position 40 is far greater than at position 33 and ensures that the ensemble will be distributed 

among many states.

The sequence contributions to the observed stabilities in Fig. 8 were investigated further by 

comparing the denatured stability profiles from the actual sequences to those calculated in 

an identical manner with sequences that were randomly shuffled (RAND_3DSEQ, Fig. 10). 

Several observations can be made from these comparisons. First, the sequence composition 

determines the mean stability for each protein with little deviation from this mean, even 

when the sequence has been shuffled several times (Fig. 11a). The difference between the 

mean value when only the native structure was randomized and the case where both the 

sequence was shuffled and the structure was randomized is not statistically significant (P = 

0.77). Second, the ordering of amino acids within a sequence impacts the variance of residue 

stabilities (P = 0.03), indicating that neighboring residues have significant stabilizing and 

destabilizing contributions (Fig. 11b) and that the thermodynamics that are calculated at 

each position are not simply reporting on the properties of the individual amino acids.

Is the denatured state poised to minimize unfavorable folding?

A significant observation from Fig. 8 is that segments of protein that ultimately adopt α-

helix in the native structure are more stable under denaturing conditions using the denatured 

state that consists of only native-like conformations. The origin of this increase in stability is 

that the helical structure is significantly more compact and stable than randomly selected 

conformations and represents a very narrow region of the conformational space sampled in 

the random generation of states. Nonetheless, it is note-worthy that in spite of this built-in 

bias, sequence segments destined for α-helix show peaks in structure-forming propensity 

(i.e., in the foldability of the sequence), even when randomly generated structures were used, 

indicating that these segments of protein have a comparatively low energetic cost associated 

with constraining the ensemble to a unique structure. In fact, reinspection of Figs. 4 and 6 

reveal that the positive propensities that were found in the most stable environments (i.e., 

TE1D and TE4D) are only those segments destined for α-helix. Sequences destined for all 

other secondary structures have low intrinsic structure-forming capability (i.e., they are 

represented by troughs in Fig. 8). Likewise, sequence segments with high intrinsic structure-

forming capability (i.e., peaks in Fig. 8) have among the highest negative propensities for β-

sheet. In other words, relative to all other secondary structure, β-forming sequences 

characteristically favor high conformational degeneracy when in isolation.

The presence of residual structure in denatured proteins has been the subject of intensive 

study40–44 because of the perceived importance of residual structure in determining the 

folding pathway. The structural thermodynamic characterization of the denatured state 
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described here reveals interesting and previously unreported trends that support a framework 

model of protein folding.45,46 Specifically, the denatured state is predicted to be 

macroscopically heterogeneous, with the propensity for any single structure being highly 

improbable across the entire sequence. Within this background, many regions, particularly 

those destined for α-helix or coil, will flicker (in the context of small isolated segments) into 

the folded conformation far more often than those regions destined for other secondary 

structures (Fig. 12). Indeed, the existence of residual structure in the denatured state as well 

as regional difference in the propensity to form structure has been observed experimentally.
42,44 More important, however, is that our results provide a statistical picture, which reveals 

that regions destined for β-sheet will form unique local structure much less often than 

random. In effect, the denatured-state thermodynamics (particularly with regard to β and α-

helical structures) are characterized by strong negative propensities (Fig. 6).

Although our studies do not establish the underlying reasons why protein denatured states 

have evolved with these propensities, there is at least one plausible hypothesis. Because β-

strands interact with other β-strands through backbone hydrogen bonding, the potential for 

partnering through incorrect strand formation is relatively high. α-Helices, however, 

presumably exclude potential nonspecific backbone interactions through the formation of 

local i to i + 4 hydrogen bonds of the helix. As a consequence, most of the favorable (and 

unfavorable) interactions between helical regions can, in principle, be controlled or 

modulated through individual site mutations, as they will involve mostly side-chain 

interactions. Controlling for incorrect β-strand pairing, on the other hand, will be less 

amenable to modulation through single-site mutation and would presumably require a more 

global solution. Our results provide insight into such a solution. The thermodynamic 

architecture of the denatured state indicates that the denatured ensemble is biased in a way 

that minimizes the probability of equilibrium states that could promote folding to non-

productive end states (Fig. 12). It is interesting that protein misfolding into amyloid fibrils 

has been associated with β structure formation, indicating that nonspecific β structure is 

indeed a potential problem.47,48 The fact that our results suggest that the denatured states 

evolved to minimize this problem raises the possibility that the determinants of amyloid 

propensity for a sequence may be found in the denatured-state thermodynamics, rather than 

in the properties of the native state. Whether this is indeed the case awaits further study.

Equally as important as the strong negative preference for structure formation in sequences 

that adopt β structure in the final fold are the positive propensities for structure formation in 

sequences that adopt α-helix. For function, molecular recognition features were identified in 

ID regions involved in protein–protein interactions.49,50 Interestingly, sequence analysis of 

those ID regions predicted α-helical structure, which was ultimately verified when high-

resolution structural data of the bound complexes became available. It has been postulated 

that the presence of preformed structural elements in the ID regions may help to facilitate 

molecular recognition and transient binding.19 Although we cannot rule out the possibility 

that α-helices may be especially useful for facilitating the recognition process in these ID 

proteins, the observed abundance of helix in ID regions is consistent with the need to 

minimize non-specific interactions. For proteins that utilize disorder for function, a strong 

negative preference for β structure would minimize the probability of amyloid 

Wang et al. Page 10

J Mol Biol. Author manuscript; available in PMC 2019 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



formation47,48 when the sequence is unfolded and most vulnerable to nonspecific β 
structure.

Finally, the high negative preference for structure formation in sequences that adopt β in the 

native fold could have significant implications for fold prediction. Specifically, numerous 

efforts have sought to understand β-sheet specificity by elucidating the determinants of β 
formation and establishing propensity scales.51–56 Our results, however, would suggest that 

those regions that adopt β structure are “less committed” to a particular conformation and 

that the determinants would be largely context dependent. Based only on our energetic 

considerations, folding into β could be viewed more as the consequence of other regions 

adopting a specific fold, as opposed to being a determinant of a particular fold. Indeed, our 

results are consistent with the studies of Minor and Kim,57 who conclude that β-sheet 

propensities, unlike helical propensities, are largely determined by the tertiary context.

Conclusions

The results presented here reveal that the overall fold that a sequence will adopt is not 

simply determined by the energetics of the final structure, but can also be determined by 

energetics in the denatured state. Under denaturing conditions, the energy landscape of the 

protein ensemble contains significant protein fold-encoding information, and this 

information is distinctly different from the information derived under native conditions. The 

fact that the denatured-state thermodynamic information is sufficient to match sequence to 

the thermodynamic signature almost 100% of the time within a database of structures 

suggests that the properties are robustly encoded. Information in denatured states is also 

found to correlate with secondary-structure elements in the folded native protein and appears 

to support a framework model of protein folding. Namely, the denatured ensemble strongly 

disfavors structure formation in most regions, especially those forming β-strands in the final 

fold. Somewhat positive propensities for structure in coil and helices promote “flickering” 

structure formation, which would presumably allow productive nucleation and intermediate 

folding. The high negative propensities for folding of β and turn, on the other hand, would 

prevent nonspecific structure accretion. Equally as important is the observation that the 

correlations between structure and energy in the denatured state are described by negative 

propensities, suggesting that the evolution of protein folds has been driven to a considerable 

extent by negative selection. Finally, because the partitioning of the energetic landscape can 

be successfully correlated to the structural features in the native state, it suggests that the 

denatured-state thermodynamics may also contain functional clues. Although this is an 

intriguing possibility, the validity of this hypothesis awaits further study.

Materials and Methods

Data sets used for analysis

Nonredundant data set of H. sapiens proteins—A data set of nonredundant H. 
sapiens proteins with protein structures in the Protein Data Bank (PDB) was curated for this 

analysis. This data set contained 122 proteins with a total of 17,802 residues. The selection 

criteria for this data set are as follows: (1) proteins containing 50–250 amino acids with a 

maximum of 50% sequence identity within the set; (2) only X-ray structures having a 
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resolution better than 2.5 Å. These criteria were set with consideration for computational 

demands and structure quality. The PDB IDs for the data set are 1A17, 1A3K, 1AD6, 1ALY, 

1B56, 1B9O, 1BD8, 1BIK, 1BKF, 1BKR, 1BR9, 1BUO, 1BY2, 1BYQ, 1CBS, 1CDY, 

1CLL, 1CTQ, 1CY5, 1CZT, 1D7P, 1DV8, 1E21, 1E87, 1EAZ, 1ESR, 1FAO, 1FIL, 1FL0, 

1FNA, 1FNL, 1FP5, 1FW1, 1G1T, 1G96, 1GEN, 1GGZ, 1GH2, 1GLO, 1GNU, 1GP0, 

1GQV, 1GR3, 1GSM, 1H6H, 1HDO, 1HDR, 1HMT, 1HNA, 1HUP, 1HZI, 1I1N, 1I27, 1I2T, 

1I4M, 1I71, 1I76, 1IAM, 1IAP, 1IFR, 1IHK, 1IJR, 1IJT, 1IKT, 1IMJ, 1J74, 1JHJ, 1JK3, 

1JSF, 1JSG, 1JWF, 1JWO, 1K04, 1K1B, 1K59, 1KAO, 1KCQ, 1KEX, 1KMV, 1KPF, 

1KTH, 1L8J, 1L9L, 1LCL, 1LDS, 1LN1, 1LPJ, 1LSL, 1M7B, 1M9Z, 1MFM, 1MH1, 

1MH9, 1MJ4, 1MWP, 1N6H, 1NKR, 1PBK, 1PBV, 1PHT, 1POD, 1QB0, 1QDD, 1QKT, 

1QUU, 1RBP, 1RLW, 1SRA, 1TEN, 1TN3, 1ZON, 1ZXQ, 2ABL, 2CPL, 2FCB, 2FHA, 

2ILK, 2PSR, 2TGI, 3FIB, 3IL8, and 5PNT.

DATASET1—This data set contains 12 randomly selected proteins from the nonredundant 

data set described above for a more in-depth analysis of sequence and structural 

contributions to the observed stability. Three proteins were selected from four diverse 

Structural Classification of Proteins (SCOP) categories [all α (PDB IDs 1I2T, 1I27, 1L9L), 

all β (PDB IDs 1FNA, 1LDS, 1TEN), α + β (PDB IDs 1ESR, 1MWP, 1MJ4), and small 

(PDB IDs 1KTH, 1I71, 1M9Z) to construct a representative data set.

RAND_3D (NULL MODEL1)—The null model used to investigate the structural 

contribution to the calculated energetics that were generated for DATASET1 was called 

RAND_3D. Random structures were generated for each protein of DATASET1 using an 

algorithm based on the hard-sphere collision model, MPMOD, as described elsewhere.35 

Fifty random structures were generated for each protein. Position-specific energetics were 

then calculated for each of the random structures generated using COREX/BEST, as 

described below. Because the ensemble under denaturing conditions is dominated by states 

that have 5 or 10 residues folded, there are no tertiary interactions in any of the most 

probable states. As such, all of the interactions are local, arising from buried surface 

associated with small groups of residues that are contiguous in sequence. When random 

structures are generated with MPMOD, the fact that they are random means they will not 

have native interactions like a folded globular protein. They will however, have local 

structure that can be compared to the local native-like structure under denatured conditions. 

Thus, while the MPMOD-generated structures cannot be used to compare alternative native 

folds, they can be used to compare the stability of native structural elements (taken in 

isolation) with local structure observed in the MPMOD calculations.

RAND_3DSEQ (NULL MODEL2)—The null model used to investigate the sequence 

contributions to the calculated energetics that were generated for DATASET1 was called 

RAND_3DSEQ. The sequence from each protein in DATASET1 was first shuffled randomly 

and then structures were generated randomly in the same manner as for RAND_3D (see 

above). Sequences were shuffled randomly 10 times with 50 random structures generated for 

each of the shuffled sequences. Position-specific energetics were then calculated for each of 

the random structures generated using COREX/BEST, as described below.
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The COREX/BEST algorithm

The COREX/BEST algorithm is a statistical thermodynamic model in which a native protein 

is depicted as an ensemble of states rather than as a single static structure.24,25 The 

thermodynamic properties of each of the 122 proteins in the H. sapiens data set was 

calculated using this algorithm. For proteins larger than 80 residues, due to computational 

intractability, Monte Carlo sampling was used to generate ensembles.29 For proteins less 

than 80 residues, all states in an ensemble were fully enumerated.

We describe the COREX/BEST algorithm briefly here and ask readers to refer to references 

for additional detail.25 Under equilibrium conditions, the probability of any given 

microstate, i, in the ensemble is given by:

Pi =
Ki

∑i = 1
Nstates Ki

=
Ki
Q , (3)

where Ki = e(−ΔGi/RT) is the statistical weight of each microstate and the summation in the 

denominator is the partition function, Q, for the system. The Gibbs free energy for each 

microstate, ΔGi, is calculated as:

ΔGi = ΔHi, solvation  − T ΔSi, solvation  + W*ΔSi, conf  , (4)

where W is an entropy weighting factor used to control the contributions of unfolded states.

Perturbing the ensemble to favor native or denatured subensembles

This entropy weighting factor enables us to perturb the ensemble to favor denatured or 

natively folded states, allowing us to investigate thermodynamic properties calculated under 

natively folded or denaturing conditions. For the calculation of the position-specific 

thermodynamic properties, an entropy weighting factor of W = 0.5 was used to increase the 

population of natively folded states in an ensemble, while W = 1.5 was used to favor the 

unfolded ensemble states. It should be noted that changes in W have very little impact on the 

relative distribution of states within a particular subensemble (e.g., fraction unfolded = 80–

100%) because the ΔSconf values are generally proportional to fraction unfolded. Thus, 

changes in W provide a means of alternately studying the energetics of the native and 

denatured subensembles without interference from the other subensemble.

The COREX/BEST energy function

The solvation terms of Eq. (4) were separated into their component apolar and polar 

contributions using accessible surface area (ASA)-based parameterized equations:24,37,39,58
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ΔGapolar,i(T) = − 8.44 * ΔASAapolar,i
+ 0.45 * ΔASAapolar, 1 * (T − 333)
− T * 0.45*ΔASApolar,i * ln(T /385)

(5)

ΔGpolar,i(T) = 31.44 * ΔASApolar,i 
− 0.26 * ΔASApolar,i * (T − 333)
− T * −0.26*ΔASApolar,i * ln(T /335)

(6)

The conformational entropy term of Eq. (4), ΔSconf, was determined as described previously.
37,38 Simulation temperature was set at 25 °C and the window size for local unfolding was 

five residues with a minimum window size set at four residues.

An important statistical descriptor of the equilibrium can be evaluated for each residue in the 

protein, which is defined as the residue stability constant, κf,j.24 This quantity is the ratio of 

the summed probability of all states in the ensemble in which a particular residue j is in a 

folded conformation (∑Pf,j) to the summed probability of all states in which j is in an 

unfolded conformation (∑Pnf,j):

κf,j =
∑Pf,j
∑Pnf,j

(7)

From the stability constant, the position-specific free energy can be written as:

[ΔG]j = − RT lnκf,j = ΔGf,j − ΔGnf,j (8)

The importance of the stability constant is that it has been shown to closely match 

hydrogen–deuterium exchange protection factors24 and thus represents an experimentally 

verifiable description of the energy landscape.

The COREX/BEST analysis of random conformations

COREX/BEST models states as being combinations of folded and unfolded regions. 

According to the algorithm, folded regions utilize the atomic coordinates to determine 

ASAs, while unfolded regions have their surface areas computed from the table of unfolded 

state surface areas (Table 1). COREX/BEST generates an ensemble by using a binomial 

expansion to systematically treat all folding units (i.e., five residue segments) of the protein 

as being either folded or unfolded in all possible combinations. For instance, for a 50-amino-

acid protein, there will be 10 folding units. In the first state, residues 1–5 will be treated as 

folded, and 6–50 will be treated as unfolded. The total surface area for that state will be the 

sum of the computed solvent-accessible surface area39 for the random structure for residues 
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1–5 and the unfolded state values for residues 6–50. Because we are interested in the 

energetics of local structure formation, the denatured ensemble only includes those states 

that have two or less folding units folded.

Position-specific thermodynamic descriptors

Parsing Eq. (4) into its component parts allowed for the calculation of four position-specific 

thermodynamic descriptors, which were then calculated by taking the difference in the 

weighted sum between those ensemble states in which a particular residue j was folded 

relative to the states that were unfolded. This was done for the free energy, [ΔG]j the apolar 

and polar enthalpies, [ΔH]apol,j and [ΔH]pol,j, respectively, and the conformational entropy, 

[ΔS]confj

[ΔH]pol, j, = ΔHpol, f, j − ΔHpol, nf, j , (9)

[ΔH] apol,j  = ΔH apol,f,j − ΔH apol,nf,j , (10

[ΔS]conf,j = ΔSconf, f, j − ΔSconf, nf, j , (11)

Quantities in the folded and unfolded subensembles were calculated as described previously:
21,23

ΔH = ∑
i = 1

Nstates 
PiΔHi = ∑

i = 1

Nstates  KiΔHi
Q (12)

ΔS = ∑
i = 1

Nstates
PiΔSi = ∑

i = 1

Nstates  KiΔSi
Q (13)

Defining thermodynamic environments

The partitioning around medoids clustering method was used to cluster all 17,802 residues 

in the H. sapiens data set based on the four position-specific thermodynamic descriptors 

([ΔG]j, [ΔH]apol,j, [ΔH]pol,j, and T[ΔS]conf,j) to identify in separate experiments 2, 4, 6, 8, 10, 

12, 14, 16, and 18 medoids. Thermodynamic environments were labeled according to 

clustering of medoids. Manhattan distance was used to measure dissimilarity between 

medoids. The clustering analyses were performed using the S-Plus 6.0 professional 

software. TENs were defined by clustering all residues using the four position-specific 
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thermodynamic descriptors for ensembles under native conditions. TEDs were defined by 

clustering all residues using the four position-specific thermodynamic descriptors for 

ensembles under denaturing conditions.

Log-odds probability calculations for each residue in each thermodynamic environment

Double-normalized log-odds probabilities (LOP) of each amino acid in thermodynamic 

environments were calculated21 as:

LOPAA,TE = ln
AATE/TotalAA

TotalTE/ Totalresidues
(14)

where AATE is the number of a particular amino acid in a specific thermodynamic 

environment (TE), TotalAA is the total number of a particular amino acid, TotalTE is the 

number of residues in the database in a particular TE, and Totalresidues is the total of all 

residues in the database.

Log-odds probability calculations for secondary structures in each thermodynamic 
environment

Secondary structures were assigned to each residue in the database using the program 

STRIDE.59 Log-odds probabilities of four secondary-structure categories (alpha, beta, coil, 

and turn) for each thermodynamic environment were calculated as:

LOPSS,TE = ln
SSTE/TotalSS

 TotalTE /Totalresidues 
(15)

where SSTE is the number of a particular secondary structure (SS) type in a specific 

thermodynamic environment (TE), TotalSS is the total number of a particular SS, TotalTE is 

the number of residues in the database in a particular TE, and Totalresidues is the total of all 

residues in the database.

Fold-recognition experiments

Fold-recognition experiments were performed using PROFILESEARCH of Bowie et al.33 as 

described previously.21 Based on the clustering results, each protein (profile) in the database 

was represented as a one-dimensional string with each residue assigned to a thermodynamic 

environment. There were 431 decoy sequences,21 including the 122 native sequences in our 

data set from which correct fold recognition was tested. PROFILE-SEARCH implements the 

Smith-Waterman local alignment algorithm60 that was used to align each profile to each 

sequence in the database. Log-odds probabilities of amino acids in thermodynamic 

environments [Eq. (15)] were used to construct a scoring matrix for alignment. Gaps were 

allowed with open and extension penalties set at the PROFILESEARCH defaults. A 

successful fold-recognition experiment was one in which the native sequence had an 

alignment Z score among the top 4 (1%) scores out of the total 431 sequences that were 

scored.
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Alignment identity calculations

Alignments between TEs and sequence were obtained based on PROFILESEARCH output. 

With these alignments, identities based on thermodynamic environment, secondary structure, 

and residue identities were calculated. Identity was calculated as the percentage of matched 

positions divided by total length of alignment. To test secondary structural alignment, each 

residue in the aligned sequence was assigned according to the log-odds probabilities of 

secondary structures in thermodynamic environments. For example, if α-helices have a 

positive log-odds probability in thermodynamic environment 1, residues in this environment 

were classified as α-helical. Secondary-structure assignment for residues in target 

sequences, the template structure used for fold recognition, was assigned using the program 

STRIDE.59 The alignment identities between these two assignments were then calculated.

Statistical tests

All statistical tests were performed using the open statistics software, R†. The simple t test 

was used to compare (1) the mean identity between the denatured ensemble alignment and 

the native ensemble alignment, (2) the mean of the stability profiles between DATASET1 

and RAND_3D, (3) the mean of the stability profiles between RAND_3D and 

RAND_3DSEQ and (4) the variance of the stability profiles between RAND_3D and 

RAND_3DSEQ. The threshold for significance was set at α = 0.05.
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Fig. 1. 
Example of the COREX ensemble and position-specific stability constants under native and 

denaturing conditions for G protein 1KAO. (a) The COREX ensemble: each column 

represents a different percentage of unfolding. Red regions in each state are portions that 

were modeled as native-like. Yellow regions were modeled as denatured-like (for schematic 

purposes only). The calculated state probabilities (values in yellow) are given below each 

state. (b) The position-specific stability constant, ln κf,J, calculated for the native (filled 

circles) and denatured ensembles (open circles). The positions of native secondary structure 

are shown at the top.
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Fig. 2. 
Calculated energetics using native and denatured ensembles show no correlation. (a) The 

position-specific free-energy (stability) values, [ΔG]j, calculated from denatured and native 

ensembles. Each point of the scatter plot corresponds to a residue in the H. sapiens protein 

database; all 122 proteins of the database were represented. The ordinate is the positional 

free energies calculated from denatured ensembles; the abscissa is from native ensembles. 

The correlation coefficient (R2) between the native and denatured [ΔG]j values were ~ 0.04, 

indicating no correlation. (b) Correlation statistics between the thermodynamic descriptors 

calculated under native and denaturing conditions are summarized, demonstrating that no 

correlations were observed.
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Fig. 3. 
Fold-recognition performance using thermodynamic environments identified with native and 

denatured ensembles. Fold recognition successes as a function of the number of 

thermodynamic environments. The fold-recognition experiments used scoring matrices 

composed of the log-odds probability of the amino acids for each thermodynamic 

environment. Fold recognition was defined as successful when the target protein was among 

the top 4 (1%) out of 431 sequences. Both native ensembles (a) and denatured ensembles (b) 

were divided into five subensembles (0–20% folded, 20–40% folded, 40–60% folded, 60–

80% folded, and 80–100% folded) to determine the subensemble contributions to fold 

recognition. (a) Fold-recognition success as a function of TENs. Each line represents a 

different subensemble (from top to bottom): full ensemble (open circle), 80–100% folded 

subensemble (filled square), the subensemble of states that contained 10 residues or less 

folded (star), 60–80% folded subensemble (open diamond), 0–20% folded subensemble 

(cross), 40–60% folded sub- ensemble (filled down triangle), 20–40% folded subensemble 

(open up triangle). (b) Fold-recognition success as a function of TEDs. Each line represents a 

different subensemble (from top to bottom): full ensemble (open circle), 0–20% folded 

subensemble (filled square), 80–100% folded subensemble (filled up triangle), 20–40% 

folded subensemble (cross), 60–80% folded subensemble (filled diamond), and 40–60% 

folded subensemble (open down triangle).

Wang et al. Page 23

J Mol Biol. Author manuscript; available in PMC 2019 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Comparison of the eight thermodynamic environments in denatured ensembles. The 

thermodynamic environments were defined based on the clustering of four thermodynamic 

descriptors. The mean values for the four thermodynamic descriptors within each cluster are 

plotted: free energy ΔG, apolar enthalpy ΔHapol, polar enthalpy ΔHpol, and conformational 

entropy TΔSconf. The TEDs are listed in order of increasing stability along the abscissa. 

Thus, TED7 and TED8 are the least stable, and TED1 and TED4 are the most stable. The 

normalized mean values of the thermodynamic descriptors are presented along the ordinate.
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Fig. 5. 
Comparison of alignments generated from the fold-recognition experiments using native and 

denatured thermodynamic environments. Alignments were generated using the Smith–

Waterman local alignment algorithm to score proteins for fold recognition based on the 

identified thermodynamic descriptors. (a) Alignments using TEN are boxed in red, while 

alignments using TED are boxed in green (gaps are represented as asterisks). Local 

alignment length and identity are shown next to the alignment and show clearly that 

alignments based on the denatured ensemble thermodynamic environments are matched over 

longer stretches and have higher identities. (b) The mean of calculated identities for all 

alignments of the target sequence matched to the fold is compared between the native (gray 

bar) and denatured (black bar) ensembles. Identities calculated based on (1) secondary 

structure, (2) thermodynamic environments, (3) and amino acid assignments are shown. 

Calculated identities using thermodynamic environments and secondary-structure 

assignments show a statistically significant difference between the two ensembles (P < 

0.05).
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Fig. 6. 
Secondary-structure propensities for TENs and TEDs. In each plot, the eight environments 

are aligned on the ordinate and the log-odds probabilities of the secondary structure are 

plotted against the abscissa. The log-odds probabilities of (a) α-helices, (b) β-strands, (c) 

coils, and (d) turns were calculated for both TEN (black bar) and TED (gray bar). In each 

panel, the eight thermodynamic environments appear in order of decreasing stability, with 

the highest stability environment on the left and the lowest stability environment on the 

right.
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Fig. 7. 
Comparison of secondary-structure assignments using thermodynamic environment 

information to the random assignment of secondary structure. The overall identity and those 

reported for each subcategory (α, β, and coil) using thermodynamic environment 

information (black bar) was compared to identities calculated using the random assignment 

of secondary structure (gray bar). (a) Secondary structures were randomly shuffled 

individually and reassigned to each position. (b) Randomly assigned secondary-structure 

segments within database. Irregular structures (including coil and turn) were categorized as 

coil. The identities calculated with the null model were the average of 100 repetitions.
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Fig. 8. 
Examining the effect of native structure to calculated position-specific stability ([ΔG]j) in 

denatured ensembles. Twelve proteins, three from each structural class [(a) all α, (b) all β, 

(c) α + β (d) small] were randomly selected (DATASET1, open circles). The [ΔG]j values 

calculated for each of the 12 proteins were compared to the null model where the protein 

structures were generated randomly (RAND_3D, filled triangles with error bars). Regions of 

α helices are highlighted with a black bar.
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Fig. 9. 
Three structures of the small Kunitz-type inhibitor protein (PDB ID 1KTH) generated 

randomly and the position-specific stability ([ΔG]j) calculated under denatured conditions 

for each of these structures. (a) The three randomly generated structures. Panel 1 shows 

conformations colored by residues. Panel 2 shows conformations colored by the position-

specific stability. Two residues, 33 (left) and 40 (right), are rendered in spacefill in each 

structure. The three random structures are clearly different. (b) The position-specific 

stabilities for the three structures under denatured conditions. Clearly, the structures 

generated randomly show similar denatured state stability profiles.
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Fig. 10. 
Examination of sequence contribution to the position-specific stability values in 12 proteins. 

Changes in position-specific stability were investigated between proteins with randomly 

generated structures (RAND_3D, open circles) and randomly generated structures plus 

randomly shuffled sequences serving as a second null model (RAND_3DSEQ, filled 

triangles with error bars). The same proteins from DATASET1 were used.
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Fig. 11. 
Sequence composition affects the mean observed stability, while sequence order effects the 

observed variance. (a) The mean position-specific stability ([ΔG]j) and (b) observed variance 

for each protein of DATASET1 (white), RAND_3D (gray), and RAND_3DSEQ (black) 

were calculated.
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Fig. 12. 
Schematic representation of the denatured-state energy landscape. Shown is a hypothetical 

unfolded protein (top), which is depicted as having no structural propensity. The strong 

negative bias for β-structure formation coupled to the modest propensity for α-helix and coil 

structure formation suggests that the subpartition function for states involving isolated 

folded segments of helix and coil (Qα/C, left) is significantly higher than the subpartition 

function for states where isolated segments of β-strand (Qβ/T, right) are folded. By 

minimizing the Qβ/T subensemble, the probability is decreased for misfolding events 

(pathways 3 and 4), and the folding flux25 through potentially hazardous pathways is 

decreased (pathway 2). We note that the precollapse equilibrium does not obligatorily 

signify that nucleation between different parts of the structure and subsequent folding occurs 

only through helix and coil, only that those segments in isolation have high folding 

probabilities.
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