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abstract

PURPOSE Comprehensive genomic profiling (CGP) is increasingly used for routine clinical management of
prostate cancer. To inform targeted treatment strategies, 3,476 clinically advanced prostate tumors were
analyzed by CGP for genomic alterations (GAs) and signatures of genomic instability.

METHODS Prostate cancer samples (1,660 primary site and 1,816 metastatic site tumors from unmatched
patients) were prospectively analyzed by CGP (FoundationOne Assay; Foundation Medicine, Cambridge, MA)
for GAs and genomic signatures (genome-wide loss of heterozygosity [gLOH], microsatellite instability [MSI]
status, tumor mutational burden [TMB]).

RESULTS Frequently altered genes were TP53 (44%),PTEN (32%), TMPRSS2-ERG (31%), and AR (23%). Potentially
targetable GAs were frequently identified in DNA repair, phosphatidylinositol 3-kinase, and RAS/RAF/MEK pathways.
DNA repair pathway GAs included homologous recombination repair (23%), Fanconi anemia (5%), CDK12 (6%),
and mismatch repair (4%) GAs. BRCA1/2, ATR, and FANCA GAs were associated with high gLOH, whereas CDK12-
altered tumors were infrequently gLOH high. Median TMB was low (2.6 mutations/Mb). A subset of cases (3%)
had high TMB, of which 71% also had high MSI. Metastatic site tumors were enriched for the 11q13 amplicon
(CCND1/FGF19/FGF4/FGF3) and GAs in AR, LYN,MYC, NCOR1, PIK3CB, and RB1 compared with primary tumors.

CONCLUSION Routine clinical CGP in the real-world setting identified GAs that are investigational biomarkers for
targeted therapies in 57% of cases. gLOH and MSI/TMB signatures could further inform selection of poly (ADP-
ribose) polymerase inhibitors and immunotherapies, respectively. Correlation of DNA repair GAs with gLOH
identified genes associated with homologous recombination repair deficiency. GAs enriched in metastatic site
tumors suggest therapeutic strategies for metastatic prostate cancer. Lack of clinical outcome correlation was
a limitation of this study.

JCO Precis Oncol. © 2019 by American Society of Clinical Oncology

Creative Commons Attribution Non-Commercial No Derivatives 4.0 License

INTRODUCTION

Genomic alterations (GAs) that drive prostate cancer
have been elucidated by profiling primary tumors.1,2

Comprehensive genomic profiling (CGP) is increasingly
used for routine clinical management of patients with
prostate cancer,3 with accumulating evidence associating
GAs with responses to therapy. In clinical trials, candidate
genomic biomarkers include BRCA1/BRCA2/ATM for
poly (ADP-ribose) polymerase (PARP) inhibitors,4 PTEN/
AKT for AKT inhibitors,5,6 and PIK3CB for phospha-
tidylinositol 3-kinase (PI3K)-β inhibitors.7 Responses
to immunotherapy have been associated with CDK12
GAs,8 POLE GAs,9 and tumor mutational burden-high
(TMB-H)9 or microsatellite instability-high (MSI-H)
genomic signatures.10

GAs that are associated with castration resistance
and metastatic progression have been identified by

comparing primary versus metastatic tumors,2,11-13

including an analysis of 1,013 prostate tumors from
seven independent whole-exome sequencing studies2

and longitudinal genomic profiling.14,15 To date, the
largest study of primary versusmetastatic tumors using
a single targeted sequencing assay included 200
primary and 304 metastatic tumors.3 To refine further
the genomics of prostate cancer in the real-world
setting and to inform rational therapy selection and
drug development, we assessed GAs and genomic
signatures from routine prospective CGP on 1,660
primary and 1,816 metastatic site tumors from un-
matched patients.

METHODS

Consecutive CGP results were reported for 3,476
unique patients with prostate cancer by prospec-
tive sequencing (median coverage, 743×) of tissue
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samples using a validated assay16 (FoundationOne;
Foundation Medicine, Cambridge, MA; Appendix Table
A1). For patients with multiple samples, the sample with
the highest sequencing quality metrics was included. Age
and site of specimen collection were abstracted from ac-
companying pathology reports, clinical notes, and requi-
sition forms. The pathologic diagnosis of each case was
confirmed on routine hematoxylin and eosin–stained slides.
Results were analyzed for GAs and gene signatures (TMB,
MSI, genome-wide loss of heterozygosity [gLOH]). Germ-
line/somatic mutation calls were predicted without
a matched normal; in validation testing of 480 tumor-only
sequencing calls against matched normal samples, ac-
curacy was 95% for somatic and 99% for germline calls.17

Enrichment was defined as the difference in GA frequency
betweenmetastatic and primary sites. Potentially targetable
GAs were defined by European Society for Medical On-
cology Scale for Clinical Actionability of Molecular Targets
criteria.18 The Appendix provides additional details on the
methods used in this study.

RESULTS

Patient Characteristics

CGP was performed in the course of routine clinical care on
tissue samples from 3,476 unique patients with prostate
cancer (median age, 66 years; range, 34 to 94 years),
including 1,660 samples from the prostate primary site and
1,816 samples frommetastatic sites of unmatched patients
(Appendix Fig A1).

GAs in Primary and Metastatic Site Tumors

Overall, there was an average of 4.5 GAs per tumor (pri-
mary, 3.5 GAs; metastatic, 5.5 GAs). Frequently altered
genes were TP53 (43.5%), PTEN (32.2%), TMPRSS2-ERG
(31.2%), AR (22.5%), MYC (12.3%), BRCA2 (9.8%), RB1
(9.7%), APC (9.3%), MLL3/KMT2C (7.8%), SPOP (7.7%),
PIK3CA (6.0%), and CDK12 (5.6%; Fig 1A). ETS fusions
were observed in 35.5% of cases. Activating BRAF or RAF1

fusions/rearrangements were observed in 1.2% of cases
(35 BRAF and seven RAF1; Appendix Fig A2).

The PI3K/AKT/mammalian target of rapamycin (mTOR)
pathway was frequently altered (40.8%; Figs 1B and 1C).
As expected, PTEN GAs were frequent, and we observed
activating mutations and amplifications in PIK3CA,
PIK3CB, AKT1/2/3, MTOR, and RICTOR and loss-of-
function alterations in PIK3R1/2 and TSC1/2. The G1/S-cell
cycle pathway was altered in 23.4% of cases, most fre-
quently RB1 loss-of-function alterations (9.7%), as well as
copy number alterations (CNAs) in CDK4/6, CCND1/2/3,
CCNE1, CDKN2A/B/C, and CDKN1B (Figs 1B and 1D). The
WNT pathway was altered in 16.2% of cases (Figs 1B and
1E). RAS/RAF/MEK pathway alterations (5.7%; Figs 1B and
1F) included oncogenic BRAF mutations (Appendix Fig
A2), BRAF/RAF1 rearrangements, activating mutations in
RAF1/ARAF, KRAS/NRAS/HRAS andMAP2K1/2, and NF1
loss-of-function alterations. Homologous recombination
repair (HRR)–related pathway alterations were observed in
23.4% of cases (Fig 1B), and other DNA repair pathway
alterations included Fanconi anemia/interstrand crosslink
repair (FA/ICL) genes (4.8%), CDK12 (5.6%), mismatch
repair (MMR) genes (4.3%), and the DNA polymerase gene
POLE (0.1%; Fig 1B).

Overall, 57% of cases harbored GAs that are investigational
biomarkers for targeted therapies with varying levels of
supporting clinical evidence18 (Appendix Table A2), in-
cluding candidate biomarkers for targeted therapies in
advanced phases of development in prostate cancer (eg,
PTEN, AKT1, BRCA1/2, ATM) and those that have been
successfully targeted in other tumor types, such as acti-
vating BRAF and ERBB2 GAs.

Distinct genomic subsets of prostate cancer have been de-
scribed, including those defined by ETS fusions, SPOP mu-
tations, IDH1 mutations,1 and CDK12 GAs.8 Consistent with
distinct subsets, ETS fusions were mutually exclusive with
SPOP/CUL3 GAs (P , .001; Fisher’s exact test, two-tailed),

CONTEXT

Key Objective
In this study, we use real-world data from routine prospective clinical genomic profiling to evaluate genomic alterations (GAs)

and genomic signatures in primary and metastatic prostate cancer.
Knowledge Generated
We evaluated the landscape of GAs in prostate cancer and identified those that are enriched in metastatic site tumors.

Approximately 3% of cases had high microsatellite instability and/or high tumor mutational burden status. Specific DNA
damage response alterations were associated with genome-wide loss of heterozygosity.

Relevance
Fifty-seven percent of cases harbored a GA associated with targeted therapy approaches. GAs enriched in metastatic site

tumors suggest therapeutic strategies for metastatic prostate cancer. Genomic signatures, including microsatellite in-
stability, tumor mutational burden, and genome-wide loss of heterozygosity, may further refine biomarker development for
poly (ADP-ribose) polymerase inhibitors and immunotherapies.
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CDK12 GA (P , .001), and BRAF rearrangements/muta-
tions (P , .001; Fig 1B).

To compare primary and metastatic site tumors, we
assessed relative enrichment in GAs (Fig 1G; Appendix
Table A3). GAs enriched by 2% or more in metastatic site
tumors included AR (36.0% enrichment), MYC (11.2%),
PTEN (10.9%), TP53 (7.1%), RB1 (6.3%), the 11q13
amplicon (CCND1 [3.8%], FGF19 [3.7%], FGF3 [3.3%],
FGF4 [3.3%]), LYN (3.6%), CTNNB1 (3.0%), MLL3
(2.9%), APC (2.6%), NCOR1 (2.3%), BRCA2 (2.2%), FAS
(2.1%), PIK3CB (2.0%), and CDKN2A (2.0%; all P, .05).
Of these, 10 were enriched in metastatic site tumors by
twofold or more (all P , .001), including AR (10.6-fold),
LYN (3.6-fold), 11q13 (CCND1 [2.5-fold], FGF19 [3.0-fold],
FGF3 [2.8-fold], FGF4 [2.9-fold]), MYC (2.7-fold), NCOR1
(2.1-fold), PIK3CB (2.7-fold), and RB1 (2.0-fold overall,
1.8-fold for homozygous deletions, 2.5-fold for mutations).
The fraction of tumor suppressor gene mutations predicted
to result in biallelic inactivation was not higher in primary
site tumors, which suggests that metastatic enrichments
were functionally relevant (Appendix Fig A3A). Collectively,
G1/S-cell cycle genes were altered in 30.7% of metastatic
site versus 15.4% of primary site tumors (Appendix Fig
A3B). The only gene enriched in primary site tumors was
SPOP (2.0%; 1.3-fold enrichment; P = .03).

DNA Repair Pathway GAs

HRR and FA/ICL pathway GAs have been associated with
responses to PARP inhibitors in prostate cancer,4 and
CDK12 has been implicated in HRR in preclinical studies
but also has distinct functions associated with DNA
replication-related repair.19,20 Collectively, these genes
were altered in 31.0% of cases (Figs 1B and 2A), and genes
altered in more than 1% of cases included BRCA2 (9.8%),
CDK12 (5.6%), ATM (5.2%), CHEK2 (1.8%), BRCA1
(1.4%), FANCA (1.3%), and ATR (1.1%). MMR pathway
GAs10 or POLE V411L,9 which have been associated with
increased TMB and responses to immunotherapy, were
observed in 4.3% and 0.1% of cases, respectively (Fig 2B).

Germline/somatic status predictions17 were made to esti-
mate the prevalence of germline DNA repair mutations;
933 of 1,261 of DNA repair mutations (74%) yielded an
available germline/somatic call of which 35.7% were

germline (Fig 2C). Predicted germline mutations were
identified in 57.8% of BRCA2-, 25.0% of BRCA1-, 35.8%
of ATM-, 80.0% of CHEK2-, 52.2% of FANCA-, 42.3% of
MSH2-, 20.0% of MSH6-, 25.0% of MLH1-, and 44.4% of
PMS2-mutated cases; only 9.2% of CDK12-mutated cases
harbored a predicted germline mutation (Fig 2C).

Genomic Signatures: gLOH

In addition to GAs in individual DNA repair genes, genomic
signatures represent the phenotypic readout of deleterious
DNA repair and are potential predictive biomarkers. For
example, gLOH is a measure of homologous recombination
deficiency (HRD) and is associated with PARP inhibitor
clinical benefit in BRCA1/2 wild-type ovarian cancer.21,22

We assessed the association between genomic signatures
and DNA repair GAs.

Percent gLOH was assessable for 2,624 cases, and the
median gLOH score was 8.5% (interquartile range, 5.8%-
12.2%). Overall, 447 of 2,624 cases (17%) were gLOH high
(gLOH-H; Fig 2D), of which 35.9% harbored an HRR or FA/
ICL pathway GA (Appendix Fig A4A). We evaluated the as-
sociation between gLOH and DNA repair GAs (Fig 2D).
Consistent with the established relationship between BRCA1/
2 and HRD,21 BRCA1/2-altered cases (both predicted
germline and somatic mutations) were more frequently
gLOH-H compared with the overall data set (Fig 2D).

To evaluate the potential relevance of non-BRCA1/2 DNA
repair genes as biomarkers for PARP inhibition, we
assessed their association with gLOH. gLOH-H frequency
was comparable between the overall data set and cases
with non-BRCA1/2 DNA repair GAs, although cases with
homozygous deletions in non-BRCA1/2 HRR pathway or
FA/ICL pathway genes were more frequently gLOH-H
(Appendix Fig A4B). While considering each gene in-
dividually, cases with ATR or FANCA GA (particularly
FANCA homozygous deletion) were more frequently gLOH-
H, whereas CDK12- or NBN-altered cases were signifi-
cantly less frequently gLOH-H (Fig 2D).

Genomic Signatures: TMB and MSI

MSI-H and TMB-H genomic signatures are biomarkers of
sensitivity to immunotherapies23,24; therefore, we evaluated
the association between MSI/TMB and MMR/polymerase

FIG 1. Genomic characterization of primary andmetastatic site prostate tumors. (A) The frequency of genomic alterations (GAs) identified in tumors from
3,476 patients with prostate cancer. Genes altered in 2% ormore of cases are shown. (B) Frequency of major pathway alterations, including ETS fusions,
BRAF rearrangements/mutations, SPOP/CUL3mutations, CDK12 GAs, IDH1/2mutations, AR GAs, phosphatidylinositol 3-kinase (PI3K) pathway GAs,
homologous recombination GAs, G1/S-cell cycle GAs, WNT pathway GAs, Fanconi anemia/interstrand crosslink repair (FA/ICL) repair pathway GAs,
RAS/RAF/MEK pathway GAs (other than BRAF), mismatch repair GAs, and POLE mutations (see Figs 1C to 1F for details). Each column represents
a single patient sample, and samples that harbored an alteration in each pathway are indicated in black. (C to F) GAs identified in each pathway,
including the (C) PI3K/AKT/mammalian target of rapamycin (mTOR) pathway, (D) G1/S-cell cycle pathway, (E) WNT pathway, and (F) RAS/RAF/MEK
pathway (NF1mutation, rearrangement, or copy number loss; BRAF orRAF1mutations or rearrangements; ARAF, K/N/H-RAS, orMAP2K1/2mutations
were included); percent of altered cases is indicated. (G) Comparison of alteration frequencies for each gene in primary site samples versus metastatic
site samples. The dotted line represents a 1:1 relationship. Genes that were enriched (difference between primary site vmetastatic site frequency) by at
least 2% are indicated (all P, .05 by Fisher’s exact test [two-tailed]), with genes enriched at least twofold indicated in red (all P, .001 by Fisher’s exact
test [two-tailed]). Details are listed in Appendix Table A3. indel, insertion/deletion.
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pathway GAs. MSI status was assessable for 3,326 cases,
and overall, 87 of 3,326 of cases (2.6%) were MSI-H (2.0%
primary site, 3.1% metastatic site tumors). MSI-H status
significantly co-occurred with MMR GA, with 78.2% MSI-H
cases also harboring a GA in the MMR pathway. For cases
with an MMR GA, 48.6% were MSI-H; for the subset of
MMR mutations resulting in biallelic inactivation, 69.5%
were MSI-H (Appendix Fig A5A).

Deleterious MMR or POLE GAs can cause an accumulation
of mutations that can be quantitatively measured by TMB.
Median TMB was low overall (2.6 mutations/Mb) and low
for primary site and metastatic site tumors; a subset of
cases (3.3%) was TMB-H (≥ 20 mutations/Mb), including
2.5% of primary site and 4.0% of metastatic site tumors
(Appendix Fig A5B). At a lower TMB threshold,25 5.1% of
cases overall had 10 mutations/Mb or more (Appendix Fig
A5B). TMB was significantly increased for cases with MMR
GA (median, 24.4 mutations/Mb) andMSI-H (median, 37.4
mutations/Mb); median TMB for POLE V411L–mutated
cases was 285 mutations/Mb (Fig 2E). As expected, me-
dian TMB was low for cases with GA in other DNA repair
pathways (Fig 2E). For cases with an HRR GA, the fre-
quency of TMB-H was higher (9.3%) than the overall data
set (3.3%); however, homozygous deletions in HRR
pathway genes and gLOH-H score were not associated with
TMB-H, which suggests that HRD is likely not causal for the
TMB-H phenotype.

For 111 TMB-H cases with assessable MSI status, the
TMB-H phenotype was explained by concurrent MSI-H
status for 71.2% of cases and by POLE V411L mutation for
3.6% of cases (Appendix Fig A5C). For the remaining
cases, TMB-H phenotype was not attributed to MSI-H
or POLE.

Landscape of ETS Fusions and AR GAs

In total, 1,236 ETS fusions were detected (one sample
harbored two ETS fusions; Fig 1B). TMPRSS2-ERG com-
prised themajority (87.7%) of ETS fusions (Fig 3A), with the
remaining consisting of ETV1 (8.5%), ETV4 (2.6%), and
ETV5 (1.2%) with diverse fusion partners, including several
not previously described (Fig 3B). Consistent with previous
studies, breakpoints were most frequently in ERG intron 326

(Fig 3C). We also identified breakpoints that juxtaposed
TMPRSS2 with the intergenic region upstream of ERG (0.1

to 75 kb upstream; Fig 3C); similar upstream intergenic
breakpoints were observed for TMPRSS2 fusions with ETV4
(10 of 32 cases) and ETV5 (two of 15 cases).

AR GAs are associated with castration-resistant disease
and weremost enriched in metastatic site tumors (39.7% of
metastatic site and 3.7% of primary site tumors; Fig 1G). In
total, 905 AR GAs were observed in 783 cases (557 CNAs,
303 mutations, and 45 rearrangements; Fig 4A). CNAs
were observed in 16.0% of cases (2.4% primary site and
28.5% metastatic site). Five hundred fifty-five of 557 CNAs
were amplifications (median copy number, 24; range, six to
366); two homozygous deletions that encompass exons 5 to
7 or exons 5 to 8 are likely activating.27 AR missense
mutations were observed in 6.9% of cases (1.3% primary
site and 11.9% metastatic site), and most were ligand-
binding domain antiandrogen resistance mutations (Fig
4B).28 Finally, AR rearrangements were observed in
1.3% of cases (0.4% primary site and 2.2% metastatic
site); however, because the sequencing strategy was not
explicitly designed to detect AR rearrangements and does
not fully cover AR intronic regions, the true frequency of AR
rearrangements is difficult to establish. The 45 rear-
rangements included 18 duplications, 17 deletions, six
inversions, and four translocations that were predicted to
result in a truncated AR gene retaining exons 1 to 3 that
encode the DNA binding domain (Fig 4C); such alterations
are likely activating.27,29

DISCUSSION

CGP of 3,476 prostate tumors identified frequent GAs in the
PI3K, cell cycle, HRR, and WNT pathways and diverse GAs
that are investigational biomarkers for targeted therapies in
57% of cases (Appendix Table A2). GAs that co-occur with
targetable GAs (Fig 1B) and their impact on response to
therapy warrant consideration in biomarker-driven trials.
MSI-H and TMB-H have been associated with immuno-
therapy benefit,10,24,25 and gLOH-H has been associated
with PARP inhibitor benefit21; therefore, assessment of
signatures of genomic instability potentially expands the
population of patients addressable with immunotherapy or
targeted therapy.

We identified a subset of TMPRSS2 rearrangements fused
to upstream intergenic regions of ERG, ETV4, or ETV5 as
well as novel ETS fusion partners. However, the assay is

FIG 2. (Continued). polymerase (POLE) V411L genes. (C) Mutations in DNA repair genes were assessed for germline or somatic status. For each gene, the
number of cases with a germline mutation or somatic-only mutation is shown. (D) Genome-wide loss of heterozygosity (gLOH) score was evaluated for the
overall data set (blue) and for association with each DNA repair gene altered at 0.5% or greater frequency. The frequency of cases with a gLOH-high score for
each subset is shown. The term “all GAs” represents the association with any reportable GA (short variant mutation, homozygous deletion or rearrangement) in
the specified gene. Homozygous deletions (homdel) were individually assessed for BRCA1/2, ATM, and FANCA. Germline (g) and somatic (s) mutations were
individually assessed for BRCA1/2 and ATM. Each subset was individually compared with the overall data set, and unadjusted P values are shown (Fisher’s
exact test [two-tailed]). (E) Tumor mutational burden (TMB) was evaluated for the overall data set and compared with various genomic subsets, including
those harboring anHRR pathway GA, an FA/ICL pathway GA, a CDK12GA, anMMRGA, amicrosatellite instability-high (MSI-H) genomic signature, or a POLE
V411L mutation. Box and whisker plots: Boxes span first and third quartiles, the median is denoted by the horizontal line in the box, and whiskers indicate
maximum and minimum values within 1.5× the interquartile range.
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limited to common breakpoints and may incompletely identify
rare ETS fusions with novel breakpoints. Consistent with
distinct molecular subsets of prostate cancer,1,8 ETS fusions
were mutually exclusive with SPOP/CUL3, CDK12mutations,
or BRAF rearrangements/mutations that may potentially
comprise a clinically relevant genomic subset.30,31

Diverse AR GAs can mediate androgen axis inhibitor
resistance28,29 and were strongly enriched in metastatic site
tumors. AR rearrangements that disrupted the ligand-binding

domain can mediate resistance to current AR inhibitors.29

Development of novel AR inhibitors that target the diverse
spectrum of AR alterations is needed. AR GAs commonly
co-occurred with alterations in other targetable pathways
(Fig 1B); such concurrent alterations may present an op-
portunity for targeted therapy in androgen axis inhibitor–
resistant tumors.

In addition to metastatic enrichment in AR GAs, we identified
first that CCND1/FGF3/FGF4/FGF19 (11q13) amplifications
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were enriched in metastatic sites. Of note, 11q13 ampli-
fication is associated with endocrine resistance in breast
cancer and potentially targetable by fibroblast growth
factor receptor inhibitors32-34 and, therefore, warrants in-
vestigation in prostate cancer. Second, CDKN2A GAs were
enriched in metastatic site tumors (1.9-fold), and although
not previously described in primary versus metastatic
studies,1-3 acquired CDKN2A alterations were described in
enzalutamide-resistant tumors.15 Metastatic enrichment of
cell cycle GAs suggests that CDK4/6 inhibitors could be
explored. Third, NCOR1 GAs were enriched in metastatic
site tumors. Downregulation of NCOR1, which encodes
a negative regulator of AR, is associated with androgen axis

inhibitor resistance.35 Finally, we independently confirmed1-3

metastatic site enrichment of MYC, PTEN, TP53, RB1,
CTNNB1, MLL3, APC, BRCA2, and PIK3CB and primary
site enrichment of SPOP.

DNA repair pathway GAs are associated with responses to
PARP inhibitors or immunotherapy in many solid tumor
types.4,10 Collectively, HRR, FA/ICL, CDK12, or MMR/DNA
polymerase genes were altered in 32.6% of cases. On the
basis of a germline/somatic prediction algorithm,17 we
estimate that 35.7% of DNA repair gene mutations were
germline. Current guidelines (National Comprehensive
Cancer Network version 4.2018)36 recommend testing for
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certain HRR genes, MMR genes, or MSI status; identifi-
cation of such DNA repair GA by tumor sequencing war-
rants follow-up germline testing and genetic counseling. A
limitation of tumor-only sequencing is that germline/so-
matic calls are not definitive and require confirmation by
dedicated germline testing. However, compared with a re-
cent study,3 we identify similar relative proportions of
germline/somatic mutations for frequently mutated HRR
genes (BRCA2, ATM, CHEK2). Furthermore, another study
of prostate cancer similarly identified germline mutations
for many of the DNA repair genes evaluated here.37 We also
describe potential CDK12 germline mutations (four of 12
were rs138292741). Although not identified in one recent
study of CDK12 in prostate cancer,8 germline truncating
CDK12 mutations were described in other studies, in-
cluding prostate cancer,38-40 and in germline databases.40

Although preclinical studies have identified non-BRCA1/2
HRR genes, their association with HRD phenotype in
clinical samples is unclear. As expected, BRCA1/2 was
associated with gLOH-H. Beyond BRCA1/2, associations
with gLOH-H were observed for ATR and FANCA. CDK12 is
a candidate biomarker for PARP inhibition4 on the basis of
preclinical studies19,20; however, gLOH-H was significantly
less frequent for CDK12-altered cases; this finding is
consistent with recent studies suggesting that CDK12 GAs
are associated with a focal tandem duplication phenotype
that is distinct from HRD.8,41,42 In trials for metastatic
prostate cancer, germline or somatic BRCA1/2 alterations
were associated with response to PARP inhibitor
monotherapy.4,43 In contrast, non-BRCA HRR genes have
been less consistent in predicting response4,43,44 and re-
quire further refinement in clinical trials.

The evaluation of both individual GAs and genomic signatures
together may be important when exploring predictive bio-
markers. Identification of gLOH-H cases lacking DNA repair
GAs (Appendix Fig A4A) may have clinical value, but further
investigation in PARP inhibitor trials is required to assess the
clinical utility of gLOH as a biomarker in prostate cancer.

Similarly, DNA repair GAs were associated with MSI-H or
TMB-H genomic signatures that are associated with benefit
from immunotherapy (Fig 2; Appendix Fig A5). A subset of
MSI/TMB-H cases do not harbor corresponding DNA repair
GAs potentially because GAs may occur in genes involved in
DNA repair that have not yet been discovered, complex
rearrangements with intronic breakpoints may be challenging
to detect, or genomic instability can occur through mecha-
nisms such as gene silencing or extrinsic DNA damage.

Limitations of this study should be acknowledged. First,
limited access to patient-level clinical data prevented fur-
ther subclassification of primary and metastatic samples by
castration resistance status. Furthermore, because sam-
ples were collected for routine clinical testing, primary
samples in this cohort may be biased toward patients who
have received prior treatment or developed metastatic
disease that resulted in a distinct genomic landscape from
untreated primary tumors. In contrast, metastatic samples
may not all represent castration-resistant disease. There-
fore, sensitivity to identify genomic associations with pri-
mary/aggressive disease may be reduced. However, many
findings in this study recapitulated those described in
previous studies of smaller cohorts with better clinical
annotation that compared metastatic castration-resistant
tumors with noncastrate primary site tumors.2,3,13 Partic-
ularly, the low AR GA frequency in primary site samples is
consistent with mostly noncastrate disease, and the high
AR GA frequency in metastatic site samples is consistent
with mostly castration-resistant disease.2 Second, in con-
trast to whole-exome sequencing studies of prostate
cancer, this study uses an assay that is used in routine
clinical practice and was therefore limited to the 395
genes assessed.

In this study, routine CGP for prostate cancer identified
frequent alterations in genes and pathways as well as in
genomic signatures. These findings may suggest routes to
targeted therapy or immunotherapy for patient’s refractory
to current therapies.
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APPENDIX

Methods

Approval for this study, including a waiver of informed consent and
Health Insurance Portability and Accountability Act waiver of autho-
rization, was obtained from the Western Institutional Review Board
(protocol 20152817). Comprehensive genomic profiling (CGP) results
were reported clinically by prospective sequencing of tissue samples
from 3,476 unique patients with prostate cancer (August 2014 to
February 2018) using a validated hybrid capture-based CGP assay
(FoundationOne [baitset version T7 was used during this period])16 in
a Clinical Laboratory Improvement Amendments–certified, College of
American Pathologists–accredited, New York State–approved labo-
ratory (Foundation Medicine, Cambridge, MA). For patients with
multiple submitted samples, only a single sample was included, and
the sample with the highest sequencing quality metrics was included.
Age and site of specimen collection were abstracted from the ac-
companying pathology reports, clinical notes, and requisition forms
submitted by the treating physician. Specimens included 1,660 pri-
mary site tumors and 1,816 metastatic site tumors (Appendix Fig A1).
The pathologic diagnosis of each case was confirmed on routine
hematoxylin and eosin–stained slides, and all samples forwarded for
DNA extraction contained a minimum of 20% tumor nuclei. CGP was
performed on hybridization-captured, adaptor ligation-based libraries
to a median coverage depth of 743× for 395 cancer-related genes plus
select introns from 31 genes frequently rearranged in cancer (Ap-
pendix Table A1). For ETS fusions, targeted regions were TMPRSS2
(introns 1 to 3), ERG (all exons), ETV1 (introns 3 to 4), ETV4 (intron 8),
and ETV5 (introns 6 to 7).

Results were analyzed for base substitutions, short insertions/de-
letions, rearrangements, and copy number alterations (amplification
and homozygous deletion). Custom filtering was applied to remove
benign germline events as previously described (Hartmaier et al:
Cancer Res 77:2464-2475, 2017). Genomic alterations (GAs) were
called as reportable if the specific variant was present in the Catalog of
Somatic Mutations in Cancer database (Forbes et al: Nucleic Acids
Res 45:D777-D783, 2017), if the variant has been characterized as

pathogenic, or if the variant had likely functional status (disruptive
alterations in tumor suppressor genes); all other variants were clas-
sified as variants of unknown significance.

To compare relative enrichments in primary site and metastatic site
tumors, genes altered at a 2% or greater frequency were assessed for
enrichment. Enrichment was defined as the difference in frequency of
gene alteration between metastatic site and primary site samples.

To determine microsatellite instability status, 114 intronic homopol-
ymer repeat loci on the FoundationOne panel were analyzed for length
variability and compiled into an overall microsatellite instability score
through principal components analysis (Chalmers et al: Genome Med
9:34, 2017). Tumor mutational burden was calculated as the number
of somatic base substitutions or insertions/deletions per megabase of
the coding region target territory of the test (1.1 Mb) after filtering to
remove known somatic and deleterious mutations and extrapolating
that value to the exome or genome as a whole (Chalmers et al: Genome
Med 9:34, 2017). Tumor mutational burden was categorized as low
(fewer than six mutations/Mb), intermediate (six to 20 mutations/Mb),
or high (20 mutations/Mb or more; Chalmers et al: Genome Med 9:34,
2017). Germline, somatic, and zygosity statuses for mutations were
determined without matched normal tissue as previously described17;
in validation testing of 480 germline/somatic calls from tumor-only
sequencing with matched normal reference samples, accuracy was
95% for somatic calls and 99% for germline calls. Biallelic inactivation
was defined as mutations under loss of heterozygosity (LOH) as de-
termined by zygosity status.17 Percent genome-wide LOH (gLOH) was
used as a marker of homologous recombination deficiency and cal-
culated as described, and a gLOH score of 14% or greater was defined
as gLOH-high.21 Potentially targetable GAs were defined as those that
have been associated with response to targeted therapy in prostate
cancer, homologous recombination repair GAs that have been asso-
ciated with responses to poly (ADP-ribose) polymerase inhibitors, or
GAs associated with response to targeted therapy in multiple other
tumor types and were ranked according to modified European Society
for Medical Oncology Scale for Clinical Actionability of Molecular
Targets criteria.18

Metastasis
(n=1,816)

LN (D)

LN (L)

Liver

Bone
Lung
Other

Acinar
(93%)

Neuroendocrine (4%)

A

B

LN (unk)
Prostate
(n=1,660)

Undifferentiated (3%)

FIG A1. (A) Distribution of sites of sample collection (prostate, 47.8%;
distant lymph node [LN (D)], 12.4%; regional LN [LN (R)], 3.7%;
unspecified LN [LN (unk)], 0.3%; liver, 13.2%; bone, 10.0%; lung,
2.7%; other metastatic, 9.9%). (B) Distribution of prostate
histologic types.
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TABLE A1. Genes Sequenced Using the FoundationOne Assay (Version T7)
Exonic Capture (395 genes), HUGO Symbol

ABL1 BRD4 CRLF2 FANCF GLI1 KDM5A MST1R PHLPP2 RB1 SYK

ABL2 BRIP1 CSF1R FANCG GNA11 KDM5C MTOR PIK3C2B RBM10 TAF1

ACVR1B BTG1 CTCF FANCI GNA13 KDM6A MUTYH PIK3C2G REL TBX3

AKT1 BTK CTNNA1 FANCL GNAQ KDR MYC PIK3C3 RET TEK

AKT2 C11orf30
(EMSY)

CTNNB1 FANCM GNAS KEAP1 MYCL
(MYCL1)

PIK3CA RICTOR TERC

AKT3 CARD11 CUL3 FAS GPR124 KEL MYCN PIK3CB RNF43 TERT (promoter
only)

ALK CASP8 CUL4A FAT1 GREM1 KIT MYD88 PIK3CG ROS1 TET2

ALOX12B CBFB CUL4B FAT3 GRIN2A KLHL6 NBN PIK3R1 RPA1 TGFBR2

AMER1
(FAM123B)

CBL CYLD FBXW7 GRM3 KMT2A
(MLL)

NCOR1 PIK3R2 RPTOR TIPARP

APC CCND1 CYP17A1 FGF10 GSK3B KMT2C
(MLL3)

NF1 PLCG2 RUNX1 TNF

APCDD1 CCND2 DAXX FGF12 H3F3A KMT2D
(MLL2)

NF2 PMS2 RUNX1T1 TNFAIP3

AR CCND3 DDR1 FGF14 HGF KRAS NFE2L2 PNRC1 SDHA TNFRSF14

ARAF CCNE1 DDR2 FGF19 HLA-A LMO1 NFKBIA POLD1 SDHB TNKS

ARFRP1 CD274 DICER1 FGF23 HLA-B LRP1B NKX2-1 POLE SDHC TNKS2

ARID1A CD79A DIS3 FGF3 HLA-C LRP6 NOTCH1 PPARG SDHD TOP1

ARID1B CD79B DNMT3A FGF4 HNF1A LTK NOTCH2 PPP2R1A SETD2 TOP2A

ARID2 CDC73 DOT1L FGF6 HOXB13 LYN NOTCH3 PRDM1 SF3B1 TP53

ASXL1 CDH1 EGFR FGF7 HRAS LZTR1 NOTCH4 PREX2 SH2B3 TP53BP1

ATM CDH2 EP300 FGFR1 HSD3B1 MAGI2 NPM1 PRKAR1A SLIT2 TRRAP

ATR CDH20 EPHA3 FGFR2 HSP90AA1 MAP2K1 NRAS PRKCI SMAD2 TSC1

ATRX CDH5 EPHA5 FGFR3 IDH1 MAP2K2 NSD1 PRKDC SMAD3 TSC2

AURKA CDK12 EPHA6 FGFR4 IDH2 MAP2K4 NTRK1 PRSS1 SMAD4 TSHR

AURKB CDK4 EPHA7 FH IGF1 MAP3K1 NTRK2 PRSS8 SMARCA4 TYRO3

AXIN1 CDK6 EPHB1 FLCN IGF1R MAP3K13 NTRK3 PTCH1 SMARCB1 U2AF1

AXL CDK8 EPHB4 FLT1 IGF2 MCL1 NUDT1 PTCH2 SMARCD1 VEGFA

BACH1 CDKN1A EPHB6 FLT3 IGF2R MDM2 NUP93 PTEN SMO VHL

BAP1 CDKN1B ERBB2 FLT4 IKBKE MDM4 PAK3 PTPN11 SNCAIP WISP3

BARD1 CDKN2A ERBB3 FOXL2 IKZF1 MED12 PAK7 PTPRD SOCS1 WT1

BCL2 CDKN2B ERBB4 FOXP1 IL7R MEF2B PALB2 QKI SOX10 XPO1

BCL2A1 CDKN2C ERCC4 FRS2 INHBA MEN1 PARK2 RAC1 SOX2 XRCC2

BCL2L1 CEBPA ERG FUBP1 INPP4B MERTK PARP1 RAD50 SOX9 XRCC3

BCL2L2 CHD2 ERRFI1 GABRA6 INSR MET PARP2 RAD51 SPEN ZBTB2

BCL6 CHD4 ESR1 GALNT12 IRF2 MITF PARP3 RAD51B
(RAD51L1)

SPOP ZNF217

BCOR CHEK1 EZH2 GATA1 IRF4 MKNK1 PARP4 RAD51C SPTA1 ZNF703

BCORL1 CHEK2 FAM175A GATA2 IRS2 MKNK2 PAX5 RAD51D
(RAD51L3)

SRC ZNRF3

BLM CHUK FAM46C GATA3 JAK1 MLH1 PBRM1 RAD52 STAG2

BMPR1A CIC FANCA GATA4 JAK2 MPL PDCD1LG2 RAD54L STAT3

BRAF CRBN FANCC GATA6 JAK3 MRE11A PDGFRA RAF1 STAT4

BRCA1 CREBBP FANCD2 GEN1 JUN MSH2 PDGFRB RANBP2 STK11

(Continued on following page)
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TABLE A1. Genes Sequenced Using the FoundationOne Assay (Version T7) (Continued)
Exonic Capture (395 genes), HUGO Symbol

BRCA2 CRKL FANCE GID4
(C17orf39)

KAT6A
(MYST3)

MSH6 PDK1 RARA SUFU

Select Intronic Capture for Rearrangement Analysis (31 genes), HUGO Symbol

ALK BRCA1 EGFR ETV5 FGFR1 KIT MYB NTRK1 RAF1 ROS1

BCL2 BRCA2 ETV1 ETV6 FGFR2 KMT2A
(MLL)

MYC NTRK2 RARA RSPO2

BCR BRD4 ETV4 EWSR1 FGFR3 MSH2 NOTCH2 PDGFRA RET TMPRSS2

BRAF

Abbreviation: HUGO, Human Genome Organisation.
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BRAF Mutation No.

K601E
3

21

43

G469A
A489_Q493del
T488_P492del
V487_P492>G

2
1
1

Activating

Activating
Activating

D594G
2

2

1
1
1

1

1
1
1

1

N581I
E586K

S465_G469del

R444Q
L597R

1
D594H
D594A
G596R

T599_V600insDFGLAT
V600_W604del

Activating

Activating

Activating

Activating

Unknown
Unknown

1V600E
1K601Q

Total

1 CDCA7L -BRAF (e1:e11)
HDLBP-BRAF (e28:e9)1-28

LOC100505532-BRAF (e2:e8)
MSI2-BRAF (e5:e11)
N4BP2L2-BRAF (e6:e10)

21
54321

54321 6

RBM33-BRAF (e14:e9)1-14

SLC45A3-BRAF (e1:e10) (n = 2)1

SND1-BRAF (e10:e9)1-10

SND1-BRAF (e9:e9) (n = 2)

SND1-BRAF (e11:e9)1-11

54321 6 87 9

TMPRSS2-BRAF (e1:e10)1
21 TMPRSS2-BRAF (e2:e10)

UBN2-BRAF (e14:e11)1-14

ZC3HAV1-BRAF (e3:e10)21 3

SND1-BRAF (e9:e11)54321 6 87 9

ZKSCAN5-BRAF (e2:e9)21

BRAF deletion exon 2-8 (n = 2)
BRAF deletion exon 4-8
BRAF deletion exon 4-10

Kinase domain exon 11-18RAS binding domain

BRAF KDD exons 10-18 (n = 2)
BRAF KDD exons 9-18

ZNF827-BRAF (e1:e9)1

AGAP3-BRAF (e1:e10)1

AGAP3-BRAF (e11:e10)1-11

BRAF 

Kinase domain exon 10-17

RAF1
1-18 ATG1-RAF1 (e18:e8)

1-14 ZFYVE20-RAF1 (e14:e10) (n = 2)
SNX22-RAF1 (e7:e8)54321 6 7
KTN1-RAF1 (e5:e8)54321

RAF1 KDD exons 7-17

Oncogenic, kinase activity uncharacterized
Kinase activity impaired
Kinase activity impaired
Kinase activity impaired

Kinase activity impaired

Uncharacterized

Kinase activity impaired

Functional Characterization

FIG A2. Details of the BRAF rearrangements, RAF1 rearrangements, and BRAF short variant mutations. The diagram illustrates BRAF (top) and RAF1
(bottom) rearrangements, including fusions, N-terminal deletions, and kinase domain duplications. Exons are numbered. For fusion, exons (e) are
annotated with the last exon included in the 5′ partner and the first exon included in the 3′ partner. In addition, BRAF rearrangements at intron 9 (n = 6)
and intron 7 (n = 1) and RAF1 rearrangement at intron 7 with no clear fusion partner were identified (data not shown). The table lists the 43 BRAF
mutations identified.
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TABLE A3. Relative Enrichment of Genomic Alterations Between Primary Site and Metastatic Site Tumors

Gene

Case Frequency, %

Short Variant
Mutations

Copy Number
Alteration Rearrangements

All Genomic
Alterations

Enrichment
Fold

Change P*Primary Metastasis Primary Metastasis Primary Metastasis Primary Metastasis

TP53 36.7 42.2 1.9 3.3 1.6 1.6 39.8 46.9 7.1 1.2 , .001

PTEN 7.6 8.1 17.7 28.6 1.7 1.5 26.5 37.4 10.9 1.4 , .001

AR 1.3 11.9 2.4 28.5 0.4 2.1 3.7 39.7 36.0 10.6 , .001

MYC 0.1 0.0 6.1 17.3 0.2 0.3 6.4 17.6 11.2 2.7 , .001

BRCA2 6.4 7.1 2.0 3.2 0.6 1.0 8.7 10.9 2.2 1.3 .0302

RB1 2.5 6.1 3.1 5.7 0.8 0.9 6.4 12.7 6.3 2.0 , .001

APC 7.0 9.3 0.5 0.9 0.6 0.8 8.0 10.6 2.6 1.3 .0085

MLL3 5.2 8.2 0.0 0.0 1.1 1.1 6.3 9.2 2.9 1.5 .0015

SPOP 8.8 6.8 0.0 0.0 0.0 0.0 8.8 6.8 −2.0 1.3 .026

CTNNB1 3.7 6.4 0.0 0.0 0.1 0.4 3.7 6.8 3.0 1.8 , .001

CCND1 0.1 0.0 2.5 6.3 0.0 0.0 2.5 6.3 3.8 2.5 , .001

FAS 0.2 0.2 2.7 5.0 0.2 0.1 3.1 5.2 2.1 1.7 .0021

FGF19 0.0 0.0 1.9 5.6 0.0 0.0 1.9 5.6 3.7 3.0 , .001

FGF3 0.1 0.1 1.7 5.1 0.0 0.0 1.9 5.2 3.3 2.8 , .001

FGF4 0.0 0.0 1.7 5.1 0.0 0.0 1.7 5.1 3.3 2.9 , .001

NCOR1 1.6 3.1 0.1 0.6 0.4 0.9 2.0 4.4 2.3 2.1 , .001

LYN 0.0 0.0 1.4 5.0 0.0 0.0 1.4 5.0 3.6 3.6 , .001

CDKN2A 0.9 0.9 1.1 3.1 0.1 0.1 2.1 4.1 2.0 1.9 , .001

PIK3CB 0.6 0.7 0.5 2.4 0.0 0.0 1.1 3.1 2.0 2.7 , .001

*All primary site versus metastatic site genomic alterations by Fisher’s exact test (two-tailed).

CGP of Primary and Metastatic Prostate Tumors

JCO Precision Oncology 23


	Prospective Comprehensive Genomic Profiling of Primary and Metastatic Prostate Tumors
	INTRODUCTION
	METHODS
	RESULTS
	Patient Characteristics
	GAs in Primary and Metastatic Site Tumors
	DNA Repair Pathway GAs
	Genomic Signatures: gLOH
	Genomic Signatures: TMB and MSI
	Landscape of ETS Fusions and AR GAs

	DISCUSSION
	REFERENCES
	Appendix


