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Abstract

The recognition that only a small percentage of known human gene products are druggable using 

traditional modes of non-covalent ligand design, has led to a resurgence in targeted covalent 

inhibitors. Covalent inhibitors offer advantages over non-covalent inhibitors in engaging otherwise 

challenging targets. Reactive cysteine residues on proteins are a common target for covalent 

inhibitors, whereby the high nucleophilicity of the cysteine thiol under physiological conditions 

provides an ideal anchoring site for electrophilic small molecules. A chemical-proteomic platform, 

termed isoTOP-ABPP, allows for profiling cysteine reactivity in complex proteomes and is one of 

many techniques that can aid in two aspects of the covalent-inhibitor development process: (1) to 

identify novel functional cysteines that lead to modulation of protein function through covalent 

modification; and, (2) to determine cellular targets and evaluate promiscuity of electrophilic 

fragments, small molecules, and natural products. Herein, we discuss recent advances in 

isoTOPABPP and potential applications of this technology in the drug-discovery pipeline.

1 Introduction

Of the 20 proteogenic amino acids, cysteine is unique in its elevated nucleophilicity and 

redox sensitivity. Despite its low abundance, cysteine is highly conserved at functionally 

important sites [1,2]. The high nucleophilicity and redox sensitivity of the cysteine thiolate 

facilitates key roles in several aspects of protein function [3]: (1) active-site nucleophiles in 

catalysis, or resolving residues in cellular redox buffering systems [4]; (2) protein structure 

stabilization through disulfide bonds, and metal coordination; and, (3) regulation of protein 

function through post translational modifications (PTMs), such as oxidation, nitrosation, and 

glutathionylation [5]. Diverse protein classes, including proteases, oxidoreductases, kinases, 

and acyltransferases, contain reactive and functional cysteine residues [3]. Thus, the high 

nucleophilicity and functional importance of cysteine render this amino acid an attractive 

chemical handle for the development of targeted and selective covalent ligands to modulate 

the function of diverse proteins.
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Covalent inhibitors can be categorized as reversible or irreversible depending on the target 

residence time. Covalent irreversible inhibitors can be further classified as either residue-

specific reagents, affinity labels, or mechanism-based inhibitors, as recently described by 

Fast et al. [6]. Residue-specific reagents are reactive compounds with minimal noncovalent 

affinity to a particular binding site. General cysteine alkylating agents, such as 

iodoacetamide (IAA) and methylmethanthiosulfinate (MMTS), fall into this category. The 

potency of residue-specific reagents is generally dictated by the inherent reactivity of the 

electrophile, as protein modification does not rely on formation of an initial non-covalent 

encounter complex. As a result, these compounds generally lack selectivity and inactivate 

multiple targets. By contrast, affinity labels typically form an initial non-covalent complex, 

which increases the effective molarity of the reactive group proximal to the nucleophilic 

residue, and are generally more selective [7]. Potency of affinity labels is defined by the 

second order rate constant of inactivation, i.e., kinact/KI, which incorporates the affinity of 

the initial encounter complex. Optimizing the potency of an affinity label therefore involves 

maximizing non-covalent interactions and positioning an appropriate electrophile for 

optimal reaction with the nucleophilic residue on the protein. It is important to note that non-

covalent interactions can contribute to the binding of some residue-specific reagents, and in 

a similar vein, affinity labels can display off-target effects driven solely by reactivity and not 

non-covalent affinity.

Covalent inhibition as a therapeutic strategy has been shown to demonstrate: (1) a long 

residence time and duration of action, which has been associated with efficacy [8]; (2) 

ability to target shallow binding pockets that are recalcitrant to non-covalent ligands [6]; 

and, (3) potential to circumvent resistance mechanisms, as well as the ability to selectively 

target disease-associated mutants as has recently been shown for KRAS G12C [9]. It is 

important to note that non-covalent inhibitors can also achieve the latter, as demonstrated for 

vermurafenib [10]. Disadvantages of covalent compounds include irreversible inhibition of 

off-targets leading to toxicity, as well as potential immune-related idiosyncratic adverse drug 

reactions [11]. Cysteine-targeted inhibitors have been approved or are in various stages of 

the drug-discovery pipeline including, Tecfidera (dimethyl fumarate (DMF)) [12,13], kinase 

inhibitors (Afatinib, Ibrutinib, Osimertinib, and Neratinib) [14], and, inhibitors of KRAS 

G12C [15–17].

A reactive-cysteine profiling method, known as isoTOP-ABPP, has the potential to aid in 

two key aspects of covalent irreversible inhibitor discovery: (1) to identify novel ligandable 

cysteines for covalent modulation of protein function; and, (2) to evaluate both on and off-

target cysteine engagement so as to minimize risks associated with off-target drug toxicity 

[18]. This review will discuss recent advances in cysteine-targeted isoTOP-ABPP, followed 

by an overview of potential applications of isoTOP-ABPP to covalent drug discovery.

2 Methods for the identification of reactive cysteines

Numerous chemical-proteomic methods currently exist for identifying reactive and 

functional cysteine residues. These include probes specific for cysteine PTMs, including S-

sulfenylation [19–21], S-sulfination [22–24], S-nitrosation [25,26], and electrophilic lipid 

modifications [27], as well as probes selectively targeting cysteine residues on a defined 
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protein class, including kinases [28], and cysteine proteases [29]. Here, we focus on a 

platform known as isoTOP-ABPP, which identifies a subset of reactive and functional 

cysteine residues independent of protein class or susceptibility to a particular PTM [1].

2.1 The isoTOP-ABPP platform for reactive-cysteine profiling

IsoTOP-ABPP is a derivative of activity-based protein profiling (ABPP), a pioneering 

technology for interrogating protein activity directly in complex biological systems. In 

general, ABPP probes contain three elements: (1) a reactive warhead for covalently labeling 

target proteins; (2) a reporter tag for affinity purification or fluorescence detection; and, (3) a 

linker to minimize steric hindrance between the reporter and reactive groups [30,31]. Early 

ABPP methods utilized reactive warheads targeting a specific enzyme family, such as the 

fluorophosphonate probe for the serine hydrolases [32]. In latter iterations, more reactive 

and promiscuous electrophiles were utilized [33], culminating in the use of an 

iodoacetamide-alkyne (IA-alkyne) probe for modification of reactive cysteines in the 

proteome. The isoTOP-ABPP platform couples an IA-alkyne probe with an isotopically 

tagged cleavable linker, enabling the selective enrichment, release, and mass-spectrometry 

(MS) relative quantification of IA-labeled peptides from two samples. The isoTOP-ABPP 

platform involves the following steps: (1) treatment of lysates with IA-alkyne to label 

reactive cysteines; (2) conjugation of IA-labeled cysteines in control and experimental 

samples to isotopically differentiated cleavable azide-biotin tags using copper-catalyzed 

azide-alkyne cycloaddition (CuAAC) [34]; (3) enrichment of IA-labeled proteins on 

streptavidin beads, followed by on-bead tryptic digestion, and linker cleavage to release IA-

labeled peptides; and, (4) analysis of the resulting isotopically heavy and light peptide pairs 

using LC/LCMS/MS to quantify reactivity differences in two samples using light:heavy 

isotopic ratios [1] (Figure 1).

Limitations in the current isoTOP-ABPP platform include the low coverage of the cellular 

cysteinome. Since low concentrations (100 uM) of IA-alkyne are used for proteome 

labeling, only 1000–2000 cellular cysteines are identified in a typical analysis. The subset of 

cysteine residues identified are those that demonstrate high reactivity with the IA 

electrophile, and have been shown to be enriched in functional cysteines [1]. However, some 

classes of functional cysteines remain intractable to IA labeling, and are therefore not 

typically captured in an isoTOP-ABPP analysis. Furthermore, reduced coverage of cysteine 

residues from low-abundant proteins, particular those localized within subcellular 

organelles, could limit the potential utility of isoTOP-ABPP for certain applications. 

Furthermore, cell lysates for isoTOP-ABPP are not typically treated with reducing agents, 

thereby limiting access to proteins that are highly susceptible to oxidation or aggregation. As 

discussed below, the development of new cysteine-reactive electrophiles, analytical methods, 

and cell-based profiling approaches, can serve to overcome some of these current 

limitations.

2.2 Recent advances in isoTOP-ABPP methods

Since the initial development of the isoTOP-ABPP platform, various iterations to the initial 

workflow have been reported, including variations to: (1) the cysteine-reactive electrophile; 
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(2) the cleavable biotin-azide tag; and, (3) the mode of heavy isotope incorporation. These 

recent advances are summarized herein.

IA-alkyne is widely used as reactive warhead in ABPP [1,35,36], however other 

electrophiles have also been incorporated into the isoTOP-ABPP workflow. A photocaged 

bromomethyl ketone (CBK) [37], and iodomethyl ketone (CIK4) [38] were shown to have 

lower cytotoxicity compared to IA-alkyne and were used to profile reactive cysteines in live 

cells with high spatial and temporal control. CBK was used to monitor changes in cysteine 

reactivity in A431 cells in response to the epidermal growth factor (EGF) stimulated release 

of reactive oxygen species [37]. Alternatives to halo acetamide electrophiles have also been 

developed, including aryl halides such p-chloronitrobenzene [39], and hypervalent iodine 

regents, such as ethynyl benziodoxolone (EBX) [40].

The initial isoTOP-ABPP platform utilized isotopically labeled, protease-cleavable 

biotinazide tags for CuAAC-mediated conjugation to probe-labeled proteins. Due to the 

advent of a wide-variety of cleavable chemistries, isotopically tagged variants of chemically 

cleavable [41] and photocleavable [42,43] biotin-azide tags have been developed and shown 

to be compatible with the isoTOP-ABPP workflow.

Lastly, approaches to incorporate isotopic labels into the isoTOP-ABPP workflow have been 

explored, including: (1) stable incorporation of amino acids in cell culture (SILAC) to 

incorporate isotopes into the proteomes under evaluation; (2) isotopically tagged cysteine-

reactive probes; (3) isotopically light and heavy biotin-azide linkers; and, (4) post-digest 

peptide labeling using reductive demethylation (ReDiMe) or isobaric tags (iTRAQ, TMT). 

Incorporation of isotopic labels into the cysteine-reactive probe was accomplished through 

synthesis of isotopically differentiated iodoacetamide-alkyne probes containing a 12C6 or 
13C6 benzyl moiety, termed IA-alkyne light (IAL) or IA-alkyne heavy (IAH), respectively 

[44]. IAL and IAH can be obtained through a more facile synthesis, and using less expensive 

starting materials compared to the isotopic biotin-azide tags [44]. IAL and IAH also support 

the profiling of reversible cysteine modifications within the same sample in a work flow 

similar to the OxICAT method [45]. Combining TOP-ABPP with reductive dimethylation 

(ReDiMe) results in a method called rdTOPABPP [42]. rdTOP-ABPP was shown to be 

comparable to several commercially available linkers for site of identification, and has the 

added benefit of supporting triplex quantitative experiments [42]. Multiplexed thiol 

reactivity profiling (MTRP) cysteine profiling with isobaric tags for relative and absolute 

quantization (iTRAQ) labeling allows for quantitative site of labeling to be performed with 

up to eight samples in parallel [43]. Although MTRP reagents are more expensive than those 

used for rdTOP-ABPP, MTRP requires less sample input when highly multiplexed 

comparisons are required for an experiment.

The availability of multiple chemical probes, linkers and quantification methods, allow for 

tailoring the isoTOP-ABPP workflow for each desired application. Further advancements in 

chemical-probe and linker development, coupled with improvements in MS instrumentation 

and data-analysis software, will serve to increase the number of cysteine identifications from 

a complex proteome.
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3 Applications of reactive cysteine profiling in drug discovery

To expand the protein targets amenable to covalent inhibition, it is necessary to globally 

interrogate the proteome for reactive cysteines that upon covalent modification, afford a 

functional outcome. Furthermore, given the toxicity risks associated with covalent and 

irreversible modification of off targets, it is imperative to extensively evaluate target 

engagement of covalent ligands within physiologically relevant proteomes. As described 

below, isoTOP-ABPP can aid in both these aspects of covalent ligand development.

3.1 Identification of reactive and functional cysteines for covalent targeting

Despite the wealth of genetic information acquired from genome sequencing efforts, only 

~2% of predicted human gene products are currently targeted by small-molecule drugs, and 

only 10–15% percent of human gene products are thought to be druggable [46]. ABPP, and 

associated technologies, can be powerful tools to identify functionally important and 

ligandable sites present in different disease states [43]. In particular, isoTOP-ABPP has been 

utilized to identify reactive cysteines that modulate protein function upon covalent 

modification. One of the first applications of the isoTOP-ABPP platform was to identify and 

rank cysteines by reactivity, thereby demonstrating that cysteine reactivity is highly 

predictive of functionality [1]. Although active-site cysteines on proteases and 

oxidoreductases are well annotated, allosteric regulatory cysteines within proteomes are 

poorly characterized. IsoTOP-ABPP has been applied to identify non-active-site cysteines 

that are susceptible to PTMs, including oxidation [47], S-nitrosation [48], modification by 

lipid derived electrophiles [36], and zinc chelation [35]. Biochemical characterization of 

these non-catalytic cysteine residues has shown that modification results in modulation of 

protein function. The ability of these cysteines to regulate protein function render them 

putative target sites for designing covalent inhibitors. However, since modification with a 

small molecule is not a direct mimic of a specific cysteine PTM, covalent binding may not 

necessarily phenocopy the function of the endogenous PTM.

IsoTOP-ABPP can also identify cysteine residues whose reactivity is elevated under disease 

conditions. For example, Bar-Peled et al. applied isoTOP-ABPP to identify druggable 

cysteines in KEAP1-mutant non-small-cell lung cancers [49], and Martell et al. applied 

isoTOPABPP to identify changes in cysteine reactivity associated with impaired insulin 

signaling in C. elegans. These studies lay the groundwork for future applications of isoTOP-

ABPP to compare cysteine-reactivity changes in healthy and diseased systems and aid in 

identifying upregulated cysteine residues that could be explored as potential targets for 

covalent inhibitor development.

3.2 Screening the potency and selectivity of covalent ligands

Covalent ligands of various modalities have been reported, including: (1) low-molecular 

weight reactive fragments; (2) drug-like small molecules with embedded electrophiles; and, 

(3) structurally complex electrophilic natural products. IsoTOP-ABPP provides a potential 

tool to evaluate the protein targets of covalent ligands.
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3.2.1 Covalent fragment-based screening—Fragment-based ligand discovery 

(FBLD) utilizes low-molecular weight fragments that generally conform to the rule of three 

[50]; molecular mass > 300 Da, up to three hydrogen bond donors and acceptors, and 

calculated logP ≤ 3. Early covalent FBLD screens used covalent tethering approaches in 

which a target protein containing a reactive cysteine reacts with a library of disulfide-

containing fragments [51]. This disulfide-tethering approach was recently used to identify 

covalent ligands for the oncogenic KRAS G12C mutant, which allosterically attenuates GTP 

affinity [15]. In a more global and untargeted approach, Backus et al. used isoTOP-ABPP to 

assess the proteome reactivity of a 52-member fragment library containing chloroacetamide 

and acrylamide electrophiles [52]. The analysis was performed in a competitive format, 

whereby a proteome is treated with a covalent fragment prior to treatment with IA-alkyne, 

and a decrease in IA-alkyne labeling is indicative in ligand binding. Of the 700 ligandable 

cysteines identified, 535 were found on proteins which had no known ligands in DrugBank, 

representing classes of proteins classically considered to be undruggable, including 

transcription factors, and adaptor proteins [52]. Among the ligands screened were two 

fragments that covalently modified pro-caspases [52] (Figure 3). Although the identified 

fragments are typically promiscuous and show low affinity, further chemical elaboration has 

the potential to yield potent and selective small molecules for these traditionally 

undruggable targets.

3.2.2 Drug-like small-molecule screening—Competitive isoTOP-ABPP has also 

been applied to drug-like electrophilic compounds. Dimethyl fumarate (DMF) is an 

electrophilic, immunomodulatory drug believed to function by covalently modifying 

cysteine residues. Blewett et al. found that DMF covalently modified conserved cysteines in 

the non-catalytic domain of protein kinase Cθ (PKCθ) and disrupted PKCθ-CD28 

association during T-cell activation [12]. T-cells expressing a cysteine mutant of PKCθ 
showed impaired activation, however, DMF treatment of these mutant-expressing cells 

showed a further reduction in activation, suggesting that DMF exhibits polypharmacology, 

and likely acts by concurrently targeting multiple cellular cysteines. Similarly, isoTOP-

ABPP was used to demonstrate the high selectivity of a chloroacetamide-bearing 

quinazolinone for the vacuolar H+ ATPase (V-ATPase) [53]. In a variation of competitive 

isoTOP-ABPP, a desthiobiotin-linked IA probe was used to determine target engagement of 

a quinazoline-based KRAS G12C inhibitor [16] (Figure 3). Lastly, Whitby et al. used 

isoTOP-ABPP to investigate proteome labeling by reactive metabolites generated in vivo 
upon treatment with the hepatotoxic drugs, acetaminophen, troglitazone, clozapine, and 

tienilic acid [54]. These studies demonstrate the utility of isoTOPABPP to investigate both 

target occupancy and promiscuity of drug-like small molecules.

3.2.3 Electrophilic natural-product screening—Natural products (NPs) exhibit 

structurally complex scaffolds that often demonstrate exquisite target selectivity [55], and 

often contain cysteine-targeting electrophilic motifs, including Michael acceptors and 

epoxides [43]. Typically, an alkyne variant of a covalent ligand can be used to assess target 

occupancy, however, the complexity of NP total synthesis and limited information of 

structure activity relationships, complicate the use of alkyne-tagged natural product analogs. 

Competitive isoTOP-ABPP, whereby proteome treatment with the unmodified NP is 
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subsequently followed by addition of IA-alkyne, has been applied to identify putative 

protein targets of several natural products including licochalcone A, celastrol, and curcumin 

[40,56,57] Grossman et al. assessed the proteome reactivity of withaferin A, an electrophilic 

natural produce known to exhibit cancer anti-proliferative activity [58]. Withaferin A was 

shown to activate the tumor suppressor phosphatase PP2A, and a covalent fragment screen 

was used to identify a more synthetically tractable small molecule that recapitulates the anti-

proliferative activity of withaferin A (Figure 3) [58]. Similarly, MTRP was used to map sites 

of labeling of several electrophilic natural products, including gambogic acid, diverse α,β-

unsaturated γ-lactones, and acetylbritannilactone [43].

4 Conclusions

The unique properties of cysteine, including nucleophilicy, redox susceptibility and 

polarizability, facilitates a central role for this amino acid in protein structure, function and 

regulation. Targeting disease-relevant cysteines can be a fruitful strategy to overcome some 

of the limitations of non-covalent drugs, including in the targeting of classically undruggable 

sites. IsoTOP-ABPP is one of many chemical-proteomic platforms that can aid in 

identifying novel ligandable and functional cysteines, revealing reactive cysteines 

upregulated in disease, and elucidating the selectivity of electrophilic fragments, drug-like 

molecules, and natural products. Limitations in current isoTOP-ABPP approaches include 

the following: (1) only a subset of cellular cysteines are identified, thereby limiting the 

ability to assess compound selectivity across the entire cellular cysteinome; and, (2) 

typically cell lysates are treated under non-reducing conditions, which could result in 

oxidation or aggregation of a subset of proteins with highly reactive cysteines. Therefore 

isoTOP-ABPP techniques need to continue to mature in order to provide important 

exploratory tools for the drug-development process.
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Figure 1: 
(A) General isoTOP-ABPP workflow. Reactive cysteine residues on two proteome samples 

are labeled with IA-alkyne, followed by CuAAC with an isotopically heavy or light biotin-

azide cleavable linker. The two lysates are combined, biotinylated proteins are enriched on 

streptavidin-agarose beads, and subjected to an on-bead trypsin digestion. The IA-labeled 

peptides are released and analyzed by LC/LC-MS/MS. Heavy and light peptide pairs are 

quantified by their extracted MS1 peaks. (B) IA-alkyne structure and cysteine-labeling 

scheme. (C) The tobacco-etch virus (TEV) protease cleavable biotin-azide tag for isoTOP-

ABPP.
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Figure 2: 
Recent modifications to the isoTOP-ABPP platform (A) New cysteine reactive chemical 

probes. Electrophiles are highlighted in red, reporting handles in blue, and isotopic labels in 

orange. (B) Triplex rdTOP-ABPP workflow.
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Figure 3: 
Covalent ligand discoveries aided by isoTOP-ABPP (A) covalent fragments targeting 

procaspases (B) drug-like small-molecules targeting V-ATPase and KRAS G12C, and (C) 
electrophilic natural products. Electrophiles are highlighted in red.
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