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Abstract

With expanding knowledge of how neural circuitry is disrupted in substance use disorders (SUD), 

non-invasive brain stimulation (NIBS) techniques have emerged as potential strategies to directly 

modulate those neural circuits. There is some evidence supporting the two most common forms of 

NIBS, transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS), 

in the treatment of SUD. Yet results of recent studies have been mixed and critical methodological 

issues must be addressed before strong conclusions can be drawn. This review highlights recent 

evidence of NIBS for SUD, addressing the impact of stimulation on relevant clinical and cognitive 

outcomes in substance-using populations. Additionally, we aim to bring a clinical perspective to 

the opportunities and challenges of implementing neuromodulation in SUD treatment.
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1. Introduction

Improving treatment outcomes for substance use disorders (SUD) continues to be a public 

health priority. Neurobiological theories of addiction have implicated brain networks that 

subserve reward, motivation, negative affect, and cognitive control in SUD initiation, 

maintenance, and relapse [1]. With growing knowledge of how these brain networks underlie 

addictive behavior, approaches to modulating brain function directly with non-invasive brain 

stimulation (NIBS) have received attention as a way to enhance SUD treatment.

There is some early evidence supporting the use of neuromodulation to improve the 

treatment of addictive disorders by enhancing top-down control within mesocorticolimbic 
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circuits [2]. Yet this nascent field is at a critical moment when challenges and unanswered 

questions must be addressed if this technology is to be effectively implemented in clinical 

settings. This review aims to highlight current evidence and remaining methodological 

questions. In addition, we aim to bring a clinical perspective to the opportunities and 

challenges of implementing neuromodulation in SUD treatment.

2. NIBS methods

The most commonly used forms of neuromodulation are transcranial direct current 

stimulation (tDCS) and transcranial magnetic stimulation (TMS) [3]. For both methods, it is 

possible to administer active (verum) stimulation designed to produce specific alterations in 

brain function and behavior, or to administer sham stimulation, which mimics real 

neuromodulation but does not deliver sufficient energy to impact brain function.

2.1 Transcranial Direct Current Stimulation.

tDCS involves the flow of weak electrical current (typically 1-2 milliamps (mA)) applied 

directly to the scalp, which is hypothesized to change neuronal membrane resting potentials 

in the underlying brain tissue. In general, tDCS enhances or inhibits ongoing neuronal 

activity [4], with anodal tDCS depolarizing neurons and cathodal tDCS hyperpolarizing 

neurons [5]. The placement of electrodes influences the polarity and amplitude of current 

flow at specific anatomical locations. In addition, tasks performed by individuals during 

tDCS may also be important [6].

2.2 Transcranial Magnetic Stimulation.

In TMS, a coil positioned next to the head sends magnetic pulses through the skull, where 

they generate electric currents in brain tissue through electromagnetic induction [7]. 

Through variation of pulse rate, TMS can be excitatory or inhibitory. Low frequency TMS 

(Lf-TMS; <1 Hz) and continuous theta burst neuromodulation (cTBS) have been shown to 

decrease brain activity, while high frequency TMS (Hf-TMS; 5-20 Hz) and intermittent TBS 

(iTBS) increase brain activity [8,9].

3. Review of the efficacy of NIBS on clinical outcomes

Randomized, sham-controlled trials evaluating the efficacy of tDCS and TMS have focused 

on a range of addictive behaviors (e.g., tobacco dependence, alcohol use disorder, cannabis 

use, stimulant use disorder, etc.) and outcome measures (e.g., craving, cue reactivity, relapse, 

etc.) that vary in terms of practical, clinical relevance. A series of reviews [10–12] and meta-

analyses [13,14] show variable support for neuromodulation as a potential adjuvant 

treatment for addictive behaviors and no significant differences in effect by type of 

neuromodulation. Jansen and colleagues found a pooled standardized effect size of 0.476 

(Hedge’s g), which was stronger for studies stimulating the right dorsolateral prefrontal 

cortex (DLPFC; g=0.710) than the left DLPFC (g=0.375) [14]. Importantly, a third of 

studies included in this meta-analysis investigated craving for highly palatable foods, which 

may diminish the applicability of the results to SUD.
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3.1 Craving following tDCS.

Several recent reviews [15–17**] and one meta-analysis [14] have concluded that tDCS 

interventions are associated with greater reductions in self-reported craving and cue-induced 

craving, as compared to sham. However, there is variability in effect sizes across trials [10], 

and some studies have not identified significant differences between verum tDCS and sham 

[18,19], nor between differing numbers of tDCS sessions [20**]. Studies evaluating 

objective measures of cue reactivity have also demonstrated inconsistent results, including 

measures of heart rate variability [21], event related potentials [18,22,23], visual attention 

bias [24], and emotional startle response [25].

3.2 Substance use following tDCS.

Fewer studies have evaluated actual substance use outcomes following tDCS administration, 

and results of extant studies are equivocal. Among cigarette smokers, anodal tDCS, thought 

to increase neuronal excitability, (vs. sham) has been associated with increased latency to 

smoking and fewer cigarettes smoked immediately following neuromodulation [26], but 

prolonged effects, ranging from 24 hours to four weeks following neuromodulation, on 

smoking have not been consistently demonstrated [26,27], Sham-controlled trials of tDCS 

for alcohol use disorder have found reduced risk of relapse among those receiving bilateral 

tDCS [28,29*], and no significant differences in alcohol use/relapse between those receiving 

anodal tDCS [22,30] and sham neuromodulation.

3.3. Craving following TMS.

A meta-analysis of eight randomized controlled trials that focused primarily on TMS for 

craving found no overall differences between verum and sham TMS, but did find a 

significant effect for verum Hf-TMS versus sham specifically targeting the right DLPFC 

(g=1.48) [13]. These authors also caution that limitations included high heterogeneity of 

studies and evidence of publication bias [13]. A review of TMS for cocaine use disorder 

found similar methodological issues, limiting firm conclusions about the effect of TMS on 

craving [31]. A recent study by Sauvaget and colleagues [32] using one session of Lf-TMS 

over right DLPFC found no effect of verum Lf-TMS versus sham in reducing craving for 

gambling. While there is some emerging evidence to suggest that Hf-TMS over the right 

DLPFC might be the most efficacious target [13], other researchers hypothesize that 

individualized targeting of the left DLPFC using neuroimaging may improve TMS efficacy 

[33].

3.4 Substance use following TMS.

There is limited evidence to suggest that TMS has a reliable impact on abstinence rates, 

relapse rates, or consumption outcomes [10,34]. However, some of the most recent studies 

with stronger research designs found that excitatory Hf-TMS over left DLPFC reduced 

relapse and increased abstinence among smokers compared to sham [35**]; conversely, 

another demonstrated that cTBS, an inhibitory procedure, over right DLPFC was associated 

with increased alcohol consumption [36]. Taken together, these findings suggest that 

upregulation of DLPFC activity is associated with greater control over substance use, while 

downregulation is associated with greater substance use. Similarly, Martinez and coauthors 

Stein et al. Page 3

Curr Opin Psychol. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



demonstrated that multiple sessions of Hf-TMS over the medial prefrontal cortex (mPFC) 

decreased cocaine self-administration, as compared to Lf-TMS and sham TMS to the same 

sites [37].

3.5 Other clinical outcomes following NIBS.

Beyond assessment of craving and substance use, several recent studies have examined other 

clinically relevant outcome measures. Some trials have found promising associations 

between unilateral anodal and bilateral tDCS and secondary outcomes, such as reductions in 

depression and anxiety symptoms [19,38] and improvements in quality of life [22], but these 

outcomes have not been consistently evaluated, thus limiting strong conclusions. In a study 

of Hf-TMS over left DLPFC, individuals with methamphetamine use disorder who received 

verum Hf-TMS, but not sham, performed equivalently to healthy controls on an emotional 

attention task [39]. Hf-TMS over left DLPFC has also been shown to increase engagement 

with self-help treatment for tobacco compared to sham [35**].

4. Review of the efficacy of NIBS on cognitive outcomes

Predominant models of addiction involve dysregulation of prefrontal brain networks, 

impacting executive functioning, impulsivity, decision making, and attentional biases 

[40,41]. These cognitive functions are implicated in the initiation, maintenance, and relapse 

of SUDs, and thus are important processes to target in treatment. By modulating activity in 

certain prefrontal brain regions, neuromodulation techniques may be able to specifically 

enhance top-down control within corticostriatal circuitry [9]. However, several recent 

systematic reviews have concluded that, despite some promising studies, evidence as a 

whole is inconsistent [15,42*, 43**, 44]. Among recent studies examining the impact of 

neuromodulation on cognitive functioning in SUD, slightly less than half found positive 

effects of neuromodulation, with the remainder reporting either null or negative effects.

4.1 Risk decision making following tDCS.

Risk-taking has been the most frequently tested cognitive domain among studies evaluating 

NIBS for SUD. Some studies using anodal tDCS over left DLPFC have found reductions in 

risky decision making on the Balloon Analogue Risk Task [45] and Cold Columbia Card 

Task [46]. However, others found that left DLPFC anodal tDCS led to riskier decisions 

among heavy marijuana users, but not healthy controls [47], and fewer safe decisions among 

cocaine users [45]. Regulating risky decision making, particularly when reward is at stake, is 

critically important for reducing relapse and these potential negative findings should be 

carefully considered before widespread implementation.

4.2 Other cognitive outcomes following NIBS.

Additional cognitive domains have been studied as potential targets for neuromodulation, 

predominantly with mixed findings. Studies using Hf-TMS over left DLPFC have found 

modest support in improving response inhibition [48] and delay discounting [35**]. Studies 

have found no effect of anodal tDCS [19] or Hf-TMS on various measures of attention, with 

the exception of a reduction on intra-individual reaction time variability on a Go/No-Go task 

[49]. One recent study examining the effect of Hf-TMS in methamphetamine users found 
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positive effects on social cognition and verbal learning/memory tasks [50]. Presently, the 

majority of studies on neuromodulation and batteries of general executive functioning have 

found no statistically significant effect of neuromodulation in alcohol users [22,28].

5. Challenges and inconsistencies

Differences in methodology might explain inconsistent findings, including variability in: (1) 

duration of treatment (ranging from 10 to 30 minutes; e.g., [51]), (2) number of treatment 

sessions (ranging from one to ten sessions; e.g., [29*,51]), (3) time between treatment 

sessions (ranging from 24 hours to one week; e.g., [22,23]), (4) tasks completed during 

NIBS (neuromodulation at rest, during cue reactivity task, during cognitive bias 

modification intervention; e.g., [19,30]), (5) tDCS montage (cathodal vs. anodal, bilateral vs. 

unilateral DLFPC; e.g., [22,28]), (6) TMS target (left or right DLPFC, e.g., [13]), (7) within- 

vs. between-subjects designs (e.g., [19,38]), and (8) use as standalone intervention or in 

combination with evidence supported treatments [35**]. Few comparison studies have been 

conducted to optimize neuromodulation protocols.

Furthermore, study design considerations include small sample sizes, lack of double-blind, 

sham control groups, lack of follow-ups, and reliance on self-report craving scales rather 

than measures of behavior (e.g., substance use) [31] to assess outcomes. More recent studies 

have attempted to address some of these issues, and have emphasized an individualized 

precision medicine approach [33,52], the inclusion of sham controls, investigations of neural 

mechanisms of action [53,54], and examinations of how baseline differences might impact 

outcomes [55].

Prior to implementation of NIBS in treatment settings, important clinical issues must be 

considered. Neuromodulation effects might have limited generalizability to individuals 

seeking treatment for SUD. As with most clinical trials, individuals are excluded with 

treatment contraindications (e.g., epilepsy, neuropsychiatric medications, etc.) and co-

occurring psychiatric disorders, which might represent a majority of individuals in SUD 

treatment [29*]. Trials have also been characterized by substantial differences in populations 

enrolled vis-à-vis treatment-seeking status (ranging from non-treatment-seekers to patients 

in residential programs; e.g., [26,28]), duration of abstinence, and severity of substance use. 

It is unknown if any of these characteristics influence outcomes. Finally, many trials have 

examined acute (e.g., same-day; [18]) changes in craving and have employed single-item 

measures of craving. Future studies employing a wider range of reliable and valid outcome 

measures, including multimodal measures of craving, negative affect, quality of life, 

neurocognition, and verified substance use, are needed to assess the clinical significance of 

NIBS effects prior to implementation.

6. Conclusions

NIBS techniques have great appeal as a relatively simple way to enhance disrupted brain 

circuits in addiction. Despite methodological inconsistencies across studies that prevent firm 

conclusions, preliminary evidence exists and more research is currently in progress. The 

field must continue to grapple with the complexities of addictive disorders and the dynamic 
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neural systems supporting addictive behavior in order to understand how, for whom, and in 

what contexts neuromodulation may improve outcomes for SUDs.
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