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Abstract. 	This study was carried out to examine the effects of manganese (Mn) on the developmental competence of porcine 
oocytes during in vitro maturation (IVM) after parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT). 
Upon treatment of porcine oocytes with different concentrations (0, 3, 6, and 12 ng/ml) of Mn during IVM, PA was performed 
to determine the optimum concentration. Following PA, the rate of blastocyst formation was higher significantly in treated 
porcine oocytes at 6 ng/ml of Mn than in other groups (P < 0.05). However, there was no substantial difference in the 
cleavage rate and total blastocyst cell numbers among all groups. SCNT was performed using the optimal concentration of 
Mn from PA, which showed an improved blastocyst formation rate in treated oocytes compared to that in control group (P 
< 0.05). However, the cleavage rate and total cell numbers per blastocyst were not different between the control and the Mn 
treated groups after SCNT. Additionally, oocyte nuclear maturation, intracellular glutathione (GSH), and reactive oxygen 
species (ROS) levels were assessed. There was no significant difference observed in nuclear maturation among all the groups. 
However, enhanced intracellular GSH levels while lower levels of ROS were seen in the Mn treated group compared to the 
control group (P < 0.05). Thus, these results indicate that Mn supplementation can improve the developmental competence of 
porcine PA and SCNT embryos by increasing GSH and decreasing ROS levels.
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Humans and pigs share many common characteristics, including 
diet, body size, and brain size [1]. Pigs are believed to be the 

preferred disease model when compared with other species [2]. They 
are an ideal animal model for xenotransplantation, biomedical research 
[3, 4] and many other specific studies on human diseases [5, 6]. In 
vitro embryo production (IVP) is required to produce the animal 
models that can possibly reproduce the human pathology [7] such 
as cardiovascular diseases, cancers, diabetes mellitus, Alzheimer’s 
disease, cystic fibrosis, and Duchenne muscular dystrophy [2]. 
Therefore, IVP has gained so much importance in recent years. 
Although there have been many improvements in porcine IVP 
protocols, the efficiency of embryo production is still much lower 
than in vivo embryo production [8, 9]. The most important reason 
for this low efficiency is due to the oxidative stress [10] caused by 

excessive production of reactive oxygen species (ROS) [11] during 
in vitro oocyte maturation. Therefore, adding free radical scavengers 
is needed to protect oocytes and to limit the detrimental effects of 
ROS [12]. Various kinds of antioxidants, for example, melatonin 
[13], spermine, [14], resveratrol [15], zinc [16], and copper [17] 
have been used to improve the quality of in vitro produced embryos.
Manganese (Mn) is a trace mineral naturally present in food, 

especially in cereals, nuts, and vegetables [18]. This is required for 
many physiological processes [19] such as metabolism of lipids, 
proteins, and carbohydrates [20], bone growth, energy metabolism, 
reproduction, and antioxidant defenses [21]. Mn is an essential element 
required to increase the activity of manganese superoxide dismutase 
(MnSOD), a major antioxidant enzyme located in mitochondria. 
Moreover, MnSOD activity can be enhanced through the mitochondrial 
protein influx [22–24] and protects the mammalian cells from the 
damaging effects of ROS [25]. The MnSOD activity is not only 
related to levels of superoxide anion but also to the glucose and 
oxygen consumption in cells [26]. The superoxide dismutase (SOD) 
activity was increased in cumulus cells when the maturation media 
was supplemented with Mn [27]. Moreover, the DNA integrity can 
be preserved and developmental competence of bovine oocytes to 
blastocyst stage can be increased through the antioxidant effect of Mn 
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in cumulus oocyte complexes (COCs) [28]. Furthermore, the addition 
of Mn to maturation medium not only improved the competence of 
oocytes to be fertilized but also decreased the frequency of apoptotic 
cumulus cells [29]. Mn functions as a cofactor for several important 
enzymes such as arginase, pyruvate decarboxylase, and glutamine 
synthase [30], which are involved in DNA synthesis [31] and DNA 
protection [25]. Any abnormality in the Mn homeostasis can lead to 
the misregulation of cell cycle progression [32]. Recently, few studies 
have been conducted regarding supplementation of Mn in rat [33], 
cattle [34], and dog [35] in vivo and in vitro in bovine embryos [28]. 
It has been reported that the presence of micronutrient such as Mn, 
not only protects the DNA integrity but also improved the bovine 
oocyte quality and embryo development to blastocyst stage with 
increased intracellular levels of glutathione (GSH) [27]. However, no 
previous study has shown the effects of Mn supplementation during 
in vitro maturation (IVM) of porcine oocytes and their subsequent 
embryo development after parthenogenetic activation (PA) and 
somatic cell nuclear transfer (SCNT). Therefore, we designed this 
study to observe the effects of Mn supplementation during IVM of 
porcine oocytes on their nuclear maturation, GSH, and ROS levels in 
mature porcine oocytes, and to observe the development of embryos 
after performing PA and SCNT.

Material and Methods

Chemicals
All chemicals and reagents used in this study were purchased from 

Sigma-Aldrich (St. Louis, MO, USA) unless otherwise specified.

Oocyte collection and IVM
Ovaries were collected from a local slaughterhouse in collection 

vials containing normal saline kept at 32–35ºC and were transported 
to the laboratory. Aspiration of COCs from antral follicle (3–6 mm 
in diameter) was performed using an 18-gauge needle. The contents 
collected were poured into 50 ml conical tube and held at 37ºC until 
they settle down. The supernatant was discarded, and cellular contents 
were washed in tissue culture medium-199 (TCM-199; Invitrogen, 
Carlsbad, CA, USA) containing 2 mM sodium bicarbonate, 10 mM 
N-(2-hydroxyethyl) piperazine-Nˈ- (2-ethanesulfonic acid; HEPES), 
5 mM sodium hydroxide, 1% Pen-Strep (Invitrogen), and 0.3% 
polyvinyl alcohol (PVA). After washing, COCs with a homogeneous 
cytoplasm and at least three layers of cumulus cells were examined 
under a stereomicroscope. COCs were transferred into 500 µl of 
maturation medium comprising TCM-199 supplemented with 0.91 
mM sodium pyruvate, 5 µl/ml insulin-transferrin-selenium solution 
(ITS-A) 100X (Invitrogen), 0.57 mM cysteine, 10 ng/ml epidermal 
growth factor (EGF), 10 IU/ml human chorionic gonadotropin (hCG), 
10 IU/ml equine chorionic gonadotropin (eCG), 10% porcine fol-
licular fluid (vol/vol), and various concentrations (0, 3, 6, and 12 
ng/mL) of Mn (II) sulfate monohydrate (M7899) purchased from 
Sigma-Aldrich in the treatment groups, after diluting in TCM-199. For 
IVM, COCs were then cultured at 38.5ºC in 5% CO2 in humidified 
air for 44 h. Following first 22 h, COCs were cultured for further 
22 h in hormone-free IVM medium.

Evaluation of porcine oocyte maturation
After 44 h of culture in IVM medium, porcine oocytes were denuded 

by gentle pipetting using 0.1% hyaluronidase in Tyrode’s albumin 
lactate pyruvate (TALP) medium with HEPES buffer. The denuded 
oocytes were then stained using 5 µg/ml of bisbenzimide (Hoechst 
33342) in TALP-HEPES for approximately 10 min. A fluorescence 
microscope (Nikon, Tokyo, Japan) was used to evaluate the stained 
oocytes. We repeated the experiment for six times.

Measurement of intracellular ROS and GSH levels
Denuded oocytes at metaphase II (MII) stage were selected 

to determine intracellular levels of GSH and ROS after staining 
with CellTracker Blue CMF2HC (4-chloromethyl-6.8-difluoro-
7-hydroxycoumarin; Invitrogen), and H2DCFDA (2’, 7’-dichlo-
rodihydrofluorescein diacetate; Invitrogen), respectively. TALP 
containing 10 µM H2DCFDA and 10 µM CellTracker Blue was 
used as the incubation medium and 10 MII stage oocytes from each 
treatment group were transferred to these media and incubated in 
the dark for 30 min. After incubation, stained oocytes were washed 
three times in TALP and approximately four oocytes were placed 
into 4 µl droplet of TALP-HEPES and fluorescence was observed 
under an epifluorescence microscope (TE2000-S; Nikon) with UV 
filters (460 nm for ROS and 370 nm for GSH). Image J software 
(Version 1.49q; National Institutes of Health, Bethesda, MD) was 
used to observe the fluorescence intensities of oocytes and normalized 
to control embryos.

Parthenogenetic activation of oocytes
Denuded oocytes with homogeneous cytoplasm and an extruded 

first polar body (PB) were selected and gradually equilibrated to avoid 
the somatic shock [36] in the activation solution containing 0.28 M 
mannitol, 0.5 mM HEPES, 0.1 mM CaCl2, and 0.1 mM MgSO4. The 
activation chamber was placed on a heating stage and filled with 
an activation solution after connecting two electrodes spaced 3.2 
mm apart. Oocytes were placed in the chamber and activated with 
a single direct current (DC) pulse of 1.5 kV/cm for 60 µsec using a 
BTX Electro-Cell Manipulator 2001 (BTX, San Diego, CA, USA). 
After activation, oocytes were washed twice with porcine zygote 
medium-5 (PZM-5; Funakoshi, Tokyo, Japan) and approximately 
50–60 electrically activated oocytes were placed in 500 µl of PZM-5 
and cultured under a humidified atmosphere of 5% CO2, 5% O2, and 
90% N2 at 38.5ºC for 7 days.

Preparation of donor cell
Fibroblast cells derived from the skin of a pig were used as donors. 

Briefly, the skin was chopped into small pieces and washed in PBS 
three times. This was cultured in a humidified air atmosphere incubator 
with 5% CO2 at 38ºC in air in Dulbecco’s modified Eagle’s medium 
(DMEM; Gibco, culture medium) containing 10% fetal bovine serum 
(FBS; Gibco, culture medium; vol/vol), 1 mM sodium pyruvate, 
and 100 IU/ml each of penicillin and streptomycin. Cells between 
passages 5 and 7 were used for SCNT. Immediately before SCNT, 
single cell suspensions were prepared by standard trypsinization.

Somatic cell nuclear transfer
Denuded oocytes with clear perivitelline space, evenly distributed 
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cytoplasm, and an extruded PB were selected and washed twice in 
TALP medium. These oocytes were stained with 5 µg/ml of Hoechst 
33342 and kept in the dark for 10 min. Oocytes were transferred into 
TALP medium containing 7.5 mg/ml of cytochalasin B and observed 
under an inverted microscope equipped with epifluorescence. An 
oocyte was held in place with a holding micropipette and the zona 
pellucida was partially dissected with a fine glass needle to make a slit 
near the first PB. Then the first PB was aspirated with an aspiration 
pipette along with a small portion of cytoplasm containing MII 
chromosomes. After enucleation of an oocyte, a single trypsinized 
skin fibroblast with a smooth outline was injected into the perivitel-
line space. All these oocytes were equilibrated in a fusion solution 
consisting of 0.28 M mannitol solution with 0.5 mM HEPES and 
0.01 mM MgSO4 and then fused with a single DC pulse of 1.2 kV/
cm for 30 µsec using an electrical pulsing machine (LF101; Nepa 
Gene, Chiba, Japan). After 30 min, fused couplets were equilibrated 
in the activation solution (0.28 M mannitol solution containing 0.5 
mM HEPES, 0.1 mM CaCl2, and 0.1 mM MgSO4) for 4 min. After 
activation, they were transferred into a chamber with activation 
solution and two electrodes and were activated with a single DC 
pulse of 1.5 kV/cm for 30 µsec using a BTX Electro-Cell Manipulator 
2001 (BTX). Electrically activated embryos were washed in PZM-5 
and transferred to the culture medium at 38.5ºC in a humidified 
environment with 5% O2, 5% CO2, and 90% N2 for 7 days. Total 
blastocyst cell numbers were counted on day 7. Blastocysts were 
washed in TALP and stained with 5 µg/ml of Hoechst 33342 in 
TALP-HEPES for 10 min in the dark. After a final wash with TALP, 
the blastocysts were mounted on a glass slide in a drop of 100% 
glycerol, compressed gently with a coverslip and observed under a 
fluorescence microscope.

Experimental design
In experiment 1, we evaluated the effects of different concentrations 

(0, 3, 6, and 12 ng/ml) of Mn treatment during IVM on the oocyte 
nuclear maturation rate by measuring the frequency of first PB 
extrusion. In experiment 2, we added Mn during PA to explore the 
optimal concentration. In experiment 3, we determined the levels of 
GSH and ROS in the control group and Mn (6 ng/ml) treated groups, 
to examine the quality of oocytes. In experiment 4, we determined 
the effects of Mn during IVM on SCNT embryos.

Statistical analysis
Each experiment was repeated at least six times. The data are 

expressed as the mean ± standard error of the mean (SEM). Values 
were analyzed using univariate analysis of variance (ANOVA) 
followed by Duncan’s multiple range test using SPSS Statistics 17.0 
software (SPSS, Chicago, IL, USA). Differences in SCNT blastocyst 
rates were compared by Student’s t-test. P < 0.05 was considered 
statistically significant.

Results

Effect of Mn supplementation on nuclear maturation of 
porcine oocytes
A total of 720 oocytes were used in 6 replicates for the evaluation 

of nuclear maturation (Fig. 1). The nuclear maturation ranged from 

89.4% to 93.3% without showing any significant differences among 
the groups (Table 1).

Effect of Mn supplementation during IVM on developmental 
competence of parthenogenetic embryos
We attempted to find the optimum concentration of Mn after treating 

oocytes with different concentrations (0, 3, 6 and 12 ng/ml) of Mn 
during IVM. The blastocyst formation rate was significantly higher 
in the group treated with 6 ng/ml Mn compared with the control 
and 12 ng/ml Mn treated groups (25.85%, 17.78%, and 16.34%, 
respectively; P < 0.05; Table 2). However, no significant difference 
was found in cleavage rates and total blastocyst cell number among 
all the groups.

Effect of Mn supplementation on intracellular levels of GSH 
and ROS
The intracellular levels of GSH were significantly higher in the 

group treated with 6 ng/ml Mn compared with the control group 
(1.10 ± 1.01 pixels/oocyte vs. 1.00 ± 0.30 pixels/oocyte, P < 0.05). 
However, the levels of ROS were lower in the group treated with 6 
ng/ml Mn compared with control group (1.00 ± 0.03 pixels/oocyte 
vs. 0.78 ± 0.25 pixels/oocyte, P < 0.05) (Fig. 2).

Effect of Mn supplementation during IVM on embryonic 
development competence after SCNT
Based on the optimal concentration from PA, we treated oocytes 

with 6 ng/ml Mn during IVM and performed SCNT. The embryonic 
development rate was compared with the control group. As shown 
in Table 3, the blastocyst formation rate is significantly higher in 
the group treated with 6 ng/ml Mn than that of the control group. 
However, there was no effect on cleavage rates and total cell numbers 
per blastocyst.

Discussion

For successful in vitro production of embryos, the culture conditions 
during IVM play a significant role. In this study, we demonstrated that 
Mn treatment during IVM had beneficial effects on the developmental 
competence of porcine oocytes. GSH levels were increased while 
ROS levels were decreased by treating the oocytes with 6 ng/ml Mn 
during IVM. In addition, Mn also improved the in vitro developmental 
competence of PA and SCNT embryos.

In vitro culture systems require high oxygen concentration for their 
maintenance as compared to in vivo culture systems, resulting in an 
increased production of ROS [37]. Oxidative stress from excessive 
ROS production is the major hindrance to successful porcine embryo 
production [11]. There is a link between oxygen concentration in 
in vitro culture systems and oxidative stress induced by ROS such 
as superoxide anion (O2

.–) or hydrogen peroxide (H2O2) [12] that 
leads to the impairment of oocyte maturation [38]. Oocytes are 
sensitive to oxidative stress during maturation and the occurrence 
of oxidative stress is considered to be a very important parameter 
in evaluating the health of an oocyte [39].To protect oocytes from 
the damaging effects of ROS, the use of agents such as antioxidants 
[40] that can trap free radicles is a prerequisite [11]. Mn is a very 
important part of various metalloenzymes including MnSOD [41] 
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Fig. 2.	 Epifluorescent photomicrographic images of in vitro matured porcine oocytes. (A) Matured oocytes are stained with CellTracker Blue (a–b) and 
2’, 7’–dichlorodihydrofluorescein diacetate (H2DCFDA; c–d) to detect intracellular glutathione (GSH) and reactive oxygen species (ROS) levels, 
respectively. In vitro matured oocytes derived from the control (a and c) and 6 ng/ml of Mn treated group (b and d). (B) Effects of Mn on the 
intracellular levels of GSH and ROS during IVM of in vitro matured porcine oocytes. Bars with different letters (a and b) represent significant 
differences within the respective endpoint (GSH or ROS; (P < 0.05)). Scale bars indicate 100 µm. Error bars show the standard error of the mean.

Table 1.	 Effect of manganese treatment on nuclear maturation of porcine oocytes during IVM

Manganese concentration 
 (ng/ml)

No. of oocytes 
cultured 1

No. (mean ± SEM, %) of oocytes at the stage of

GV-GVBD 2 MI 3 Ana-Telo 4 MII 5

0 180 0 (0.0 ± 0.0) 9 (5.0 ± 1.1) 10 (5.5 ± 1.1) 161 (89.4 ± 2.0)
3 180 1 (0.1 ± 0.1) 8 (5.0 ± 1.1) 7 (3.8 ± 1.0) 164 (91.1 ± 1.4)
6 180 0 (0.0 ± 0.0) 10 (5.5 ± 0.7) 5 (2.7 ± 1.3) 165 (91.6 ± 1.6)
12 180 0 (0.0 ± 0.0) 6 (3.3 ± 1.7) 6 (3.3 ± 0.8) 168 (93.3 ± 2.2)

1 Experiment was replicated 6 times. 2 GV-GVBD, Germinal vesicle-Germinal vesicle breakdown. 3 MI, Metaphase I. 4 Ana-
Telo, Anaphase-Telophase I. 5 MII, Metaphase II.

Fig. 1.	 Chromatin configuration of porcine oocytes stained with Hoechst 33342 after 44 h of IVM. (a) Germinal vesicle. (b) Germinal vesicle breakdown. 
(c) Metaphase I. (d) Anaphase to Telophase I. (e) Metaphase II. Scale bar indicates 100 µm.
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and acts as a metal binding site [42]. Since Mn increases MnSOD 
activity, it caused a considerable reduction in ROS levels when 
porcine IVM media was supplemented with Mn. MnSOD is a very 
important enzyme that plays a key role in reducing ROS effects [25, 
43] and is active only in the presence of manganese [44]. It has been 
studied that Mn decreases the oxidative stress depending on the cell 
type and concentration used [43].
GSH is a nonproteinous sulfhydryl compound that plays an 

important role in protecting the mammalian cells from oxidative 
damage [45]; it has been shown to improve porcine embryonic 
development [46]. It is also the major intracellular free thiol that 
plays a key role in DNA and protein synthesis [47]. Abeydeera et 
al. observed increased fertilization and blastocyst development 
rate through an increased level of GSH in porcine oocyte during 
IVM [48]. The maturation competence of porcine oocytes can be 
predicted by measuring their GSH levels [14]. Porcine embryos 
are considered to be more sensitive to lipid peroxidation because 
of their high fatty acid content [49]; therefore, the beneficial effects 
of antioxidants are comparatively higher in porcine embryos than 
the other mammalian embryos. ROS generation during maturation 
of oocytes may lead to cell damage by promoting lipid peroxidation 
and inactivation of enzymes [50] while Mn lowers lipid peroxidation 
[51] and accelerates the enzyme activity of the ascorbate-GSH cycle 
[52]. All these findings indicate that there is a positive correlation 
between the level of GSH and blastocyst development. When we 
cultured COCs in IVM media supplemented with 6 ng/ml Mn, 
intracellular GSH levels in treatment group had increased compared 
with those in control group.
Besides, increasing levels of GSH, decreasing levels of ROS, 

and Mn treatment also improved the rate of embryonic develop-
ment to blastocysts after PA. Based on PA results, we treated the 
IVM media with Mn and performed SCNT, which resulted in the 
improved blastocyst formation rate. This showed that the effects 
of Mn are not limited only to parthenogenetic embryos. However, 
increase in GSH level improves cytoplasmic maturation in oocytes 

[14] though there is a link between the extrusion of first PB and 
nuclear maturation as it occurs during nuclear maturation (MII) 
[53]. Supplementation of Mn in IVM media did not improve the 
nuclear maturation but expressed its beneficial effects on oocytes 
by improving the cytoplasmic maturation, which in turn enhanced 
the blastocyst formation rates.
After treating IVM media with different concentrations of Mn, PA 

and SCNT embryos showed significantly higher blastocyst formation 
rates at 6 ng/ml of Mn. However, there was no significant differ-
ence in the cleavage rates and blastocyst cell numbers among the 
groups. Ability to develop to blastocyst stage is a good indicator 
of the developmental capacity of oocytes. Moreover, Mn treatment 
showed that it improved the capacity of embryos to develop to the 
blastocyst stage but did not influence the cleavage rate. The differential 
effects of Mn on cleavage and blastocyst rate might be the reason 
for zygote development to be dependent on the factors stored in the 
oocytes before cleavage, which activate the genome of the zygote 
[54]. Therefore, Mn treatment might show little influence on the 
cleavage rate. Cattle oocytes matured with Mn supplementation 
in IVM medium did not improve the cleavage rate [28] and other 
antioxidants used in porcine and bovine IVM medium showed the 
same result [16, 17]. Our results are consistent with the previous 
study with bovine oocytes showing that embryonic development 
was higher in Mn-treated IVM media [28].
Therefore, in this study, we found the optimal concentration of 

Mn required during IVM of porcine oocytes. We found that adding 
6 ng/ml Mn to porcine IVM media improved the rate of blastocyst 
formation after PA and SCNT by decreasing ROS levels and increasing 
the levels of GSH.
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