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Abstract
Microfluidic cellular models, commonly referred to as “organs-on-chips,” continue to advance

the field of bioengineering via the development of accurate and higher throughput models, cap-

tivating the essence of living human organs. This class of models can mimic key in vivo features,

including shear stresses and cellular architectures, in ways that cannot be realized by traditional

two-dimensional in vitro models. Despite such progress, current organ-on-a-chip models are

often overly complex, require highly specialized setups and equipment, and lack the ability to

easily ascertain temporal and spatial differences in the transport kinetics of compounds translo-

cating across cellular barriers. To address this challenge, we report the development of a three-

dimensional human blood brain barrier (BBB) microfluidic model (μHuB) using human cerebral

microvascular endothelial cells (hCMEC/D3) and primary human astrocytes within a commer-

cially available microfluidic platform. Within μHuB, hCMEC/D3 monolayers withstood physio-

logically relevant shear stresses (2.73 dyn/cm2) over a period of 24 hr and formed a complete

inner lumen, resembling in vivo blood capillaries. Monolayers within μHuB expressed phenotypi-

cal tight junction markers (Claudin-5 and ZO-1), which increased expression after the presence

of hemodynamic-like shear stress. Negligible cell injury was observed when the monolayers

were cultured statically, conditioned to shear stress, and subjected to nonfluorescent dextran

(70 kDa) transport studies. μHuB experienced size-selective permeability of 10 and 70 kDa dex-

trans similar to other BBB models. However, with the ability to probe temporal and spatial evo-

lution of solute distribution, μHuBs possess the ability to capture the true variability in

permeability across a cellular monolayer over time and allow for evaluation of the full breadth of

permeabilities that would otherwise be lost using traditional end-point sampling techniques.

Overall, the μHuB platform provides a simplified, easy-to-use model to further investigate the

complexities of the human BBB in real-time and can be readily adapted to incorporate additional

cell types of the neurovascular unit and beyond.
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1 | INTRODUCTION

The blood–brain barrier (BBB) is the prominent barrier at the interface

of the blood stream and the central nervous system (CNS) and is pri-

marily responsible for maintaining brain homeostasis and protecting

the CNS from harmful foreign entities.1 As the brain's first line of

defense against solutes and particulates in the blood, the brain micro-

vascular endothelial cells form a tight barrier that limits the transport

of nutrients and other molecules into and out of the CNS space. Com-

bined with pericytes and astrocytes, these cells collectively form a

neurovascular unit, contributing to the overall BBB phenotype. The

brain endothelium is characterized by expression of tight junction

complexes lack of fenestrations, and low pinocytic activity.2,3

Although these characteristics are imperative for normal brain func-

tion, the BBB limits the penetration of therapeutics into the brain.4 As

a result, there is a clear need for the development of adequate models

to further investigate the mechanisms of transport across the BBB in

order to design better brain delivery strategies.

Assessing transport of nanoparticles, proteins, and other thera-

peutics across the BBB can be challenging; nonetheless, researchers

have designed various in vivo models to investigate this transport in

both heathy and diseased BBB.5–8 Animal models inherently include

all contributing factors that dictate the transport across the BBB.

However, translating findings from rodent models to humans remains

a challenge.9,10 Further, the complexity of the in vivo environment

also poses a challenge for interpreting the results. For example, trans-

port of nanoparticles into the brain in vivo is a combined outcome of

immune clearance and permeation across the BBB, thus making it dif-

ficult to deconvolute the contributions of each factor from the mea-

sured experimental outcome. Common techniques to investigate BBB

transport of therapeutics in vivo include single carotid injections,

internal carotid artery perfusion, and intravenous injections.11,12 Using

intravenous injections can be disadvantageous for investigating BBB

transport due to the potential rapid metabolism of the therapeutic,

resulting in metabolism-induced artifacts and greater likelihood of

clearance before reaching the brain microcirculation. Alternatively,

single carotid injections and internal carotid artery perfusions can

reduce the likelihood of clearance while also limiting metabolic events

within the brain microcirculation. Unfortunately, these techniques are

labor-intensive, requiring significant training and expertise to properly

implement.13 As a result, there continue to be strong interests in

developing simple yet physiologically relevant in vitro models of the

human BBB that are also highly tunable and customizable to be used

as tools to further investigate brain-related phenomena.

To date, the primary in vitro tool of choice for researchers studying

human BBB permeability is the static transwell migration assay, also

referred to as the Boyden chamber assay. These assays offer the flexibil-

ity to conduct both monolayer14 and coculture experiments,15–17 can

noninvasively estimate barrier permeability using transendothelial electri-

cal resistance (TEER) measurements, and are convenient for acquiring

permeability information across a monolayer, including disease

models.18–20 However, transwell inserts can be subject to increased, arti-

ficial paracellular diffusion at the monolayer perimeter by a phenomenon

known as “edge effects,” especially for highly hydrophilic compounds.21

This erroneous effect results from incomplete coverage of the porous

inserts at the monolayer perimeter due to the inability of the endothelial

cells to form tight junctions along the inner wall of the apical chamber.22

Typically, analyte concentrations are sampled from the apical or basolat-

eral chamber over time without the ability to actively monitor transport.

Additionally, depending on the cell culturing conditions and experimental

setup, TEER values can vary significantly.23 To confound these reported

values further, reports often misrepresent the TEER value by describing

it in terms of total resistance or area-dependent resistance.

Hemodynamic shear stress experienced by endothelial cells is an

important mechanotransduction regulator not present in static trans-

well migration assays. Depending on the blood vessel geometry and

condition, endothelial cells can experience a range of shear stresses.

In vitro studies report shear stresses between <1 and 85 dyn/cm2

induce a variety of biological responses.24 For instance, shear stress

acts as a pleiotropic modulator of the endothelial cell physiology, reg-

ulating genes involved in cell division, differentiation, migration, extra-

cellular matrix protein secretion, cell–cell adhesion, and apoptosis.25

As a result, shear stress contributes to an overall polarized brain endo-

thelium, influencing such properties as asymmetric expression of

localized enzymes and carrier-mediated transport systems, production

of vasoactive substances and cell adhesion molecules, cell survival,

and energy metabolism.26–28 The maintenance of brain microvascular

endothelial cells is directly impacted by this hemodynamic shear

stress, influencing tight junction formation and multidrug resistance

transporter expression.29 Unlike endothelium in other organs of the

body, brain microvascular endothelial cells resist elongation in

response to both curvature and shear stress.30–32 Interestingly, a

report by Garcia-Polite et al. demonstrates cerebrovascular function

(i.e., expression of tight junction proteins ZO-1, Claudin-5, and efflux

pump P-gp) can be directly correlated to the magnitude and nature of

shear stress. Higher than physiologically relevant (40 dyn/cm2) and

pulsatile shear stresses resulted in downregulation of ZO-1, Claudin-

5, and P-gp; however, tight junction marker expression recovered

when physiological shear was reestablished,33 further suggesting the

importance of maintaining hemodynamic shear stress among in vitro

systems to more accurately represent the BBB microenvironment.

Recent developments in this field have resulted in a diversity of

three-dimensional cell culture models and several dynamic systems

with the ability to incorporate hemodynamic shear.34,35 Still, simulta-

neous visualization of the BBB and the associated transport through

the barrier in real-time remains a challenge.36–39 Direct visualization

at a cellular level provides real-time monitoring of the cellular mor-

phology and can be used as a proxy for cell behavior. This allows for

measurement of protein localization information in addition to expres-

sion levels. With the ability to directly capture transport, one can col-

lect more complex information, such as the precise interactions of a

particulate of interest (e.g., monocyte, virus, nanoparticle) before, dur-

ing, and after interacting with the BBB, which otherwise would be

impossible. This capability also simplifies the measurement of trans-

port kinetics while simultaneously offering higher temporal resolution

than would be possible using a traditional sampling-type approach.

Some models have attempted to visualize transport across the

BBB in real time;40,41 however, the shear stresses applied in these

experiments (3.8 × 10−3 to 0.15 dyn/cm2) are often orders of
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magnitude lower than what are considered physiologically relevant

within the brain microvasculature (1–30 dyn/cm2).24,42–44 Maintaining

the culture under higher shear stress for prolonged periods of time in

a microfluidic environment poses a significant challenge.45 This limita-

tion is especially significant given that previous reports indicate low

shear stresses may be insufficient to induce the proper morphological

and biochemical changes. For example, studies performed using a

bovine aortic endothelial cell model have shown that expression of

p53, a tumor suppressing protein, was upregulated when the cells

were subjected to 3 dyn/cm2 but not 1.5 dyn/cm2. The mechano-

transduction effects of shear stress are believed to mediate several

cellular functions, including the inhibition of cellular proliferation by

the activation of p53 expression with the potential of arresting endo-

thelial cell apoptosis.46 Furthermore, in the absence of laminar flow,

static monolayers can be subject to uncontrolled growth, resulting in

formation of multiple layers, if allowed to proliferate.47 Therefore, a

model with the ability to incorporate physiologically relevant shear

stresses is essential to effectively capture biologically relevant trans-

port across any barrier in direct contact with the bloodstream. Addi-

tional limitations of existing models to probe human brain

permeability include the use of rodent brain endothelial cells,36,40

which do not exhibit the same anatomical and molecular complexities

as their human counterparts.48,49 Alternatively, while the use of pri-

mary human brain endothelial cells may have significant

advantages,37,50 these cells can be difficult to acquire, variable in

nature, and challenging to culture and maintain, especially in a micro-

fluidic environment.51

Herein, we report the development of a microfluidic human BBB

model (μHuB) with the ability to directly monitor both the barrier and

associated transport in the presence of physiologically relevant shear

conditions. This model leverages a commercially available chip with

low required volumes and a well-characterized, immortalized cell line

to provide a convenient and effective research tool for investigating

the human BBB and its permeability. Because of the transparent

nature of the glass and polydimethylsiloxane (PDMS) μHuB structure,

temporal and spatial permeability data across the BBB can be easily

acquired using a conventional or confocal fluorescent microscope. We

further demonstrate that μHuB is modular and can be readily adapted

for more complex, coculture experiments to further bridge the gap

between existing tools for investigating the human BBB and underly-

ing biology.

2 | RESULTS

2.1 | Culture of hCMEC/D3 cells in μHuB device

The scaffold for μHuB is a commercial microfluidic device (SynVivo

Inc.) possessing a central disk-shaped chamber surrounded by vascular

channels. The interface between the central channel and the vascular

channel possesses 3 μm slits. The vascular channel has 50 μm travel

distance (Figure 1). This design was chosen to facilitate comparisons

with other transwell models with a pore size of 3 μm, which are com-

monly used to study transport across static in vitro models.52 Initially,

devices were coated with a variety of basement membranes, including

rat tail collagen Type 1, human fibronectin, and laminin, which have

been used to promote cell adhesion in the literature.40,53,54 Optimal

cell adhesion was observed with a thin coating of human fibronectin

and was used for all studies reported. Consistent cell attachment to

the upper portion of the PDMS channel proved challenging using

standard injection techniques. Therefore, we adopted a two-step

seeding protocol as described by Herland and coworkers50 wherein

the device is inverted after initial seeding and reseeded in the upright

position. This resulted in confluent monolayers being reproducibly

present on every surface of the channel. Confluent monolayers were

formed over 24 hr, creating a well-defined lumen, and were main-

tained under static conditions for a period of 3 days before being sub-

jected to shear stress.

hCMEC/D3 cells are a commercially available, immortalized cell

line that has phenotypic characteristics of human brain endothelial

cells. Studies have demonstrated that hCMEC/D3 is a promising cell

line for in vitro BBB experiments, often used to elucidate the func-

tional roles of the neurovascular unit. This cell line has shown

to restrict permeability to paracellular tracers, express functional

P-Glycoprotein (P-gp) and other efflux transporters (e.g., ATP-binding

cassette transporters), undergo receptor-mediated transport, respond

to inflammatory cytokines and flow-based shear stresses, form vascu-

lature with an inner lumen, and express tight junction proteins

(e.g., JAM-A, Claudin-5, ZO-1), similar to in vivo human BBB.55–59

Thus, hCMEC/D3 exhibits the desired BBB characteristics to be used

for a model of the BBB.

Sudden exposure of hCMEC/D3 cells to physiologically relevant

shear stresses after monolayer formation under static conditions caused

severe morphological changes, including cell shrinkage and detachment

from substrate, indicating cell stress, and ultimate death. Previous reports

have suggested shear stress inhibits cell proliferation and at high levels

leads to death of mammalian cells.60–62 Therefore, we chose to initially

allow the monolayers to grow statically before gradually and linearly

increasing the shear stress applied to the monolayers via fluid flow over

an extended period of time to condition the hCMEC/D3 cells to shear

stress. To our knowledge, such an approach has not been reported as a

method for ensuring brain endothelial cells can be cultured under physio-

logically relevant flow. The cells were first grown statically in the μHuB

for a period of 3 days (Figure 2a,b). Cells were then exposed to a low

shear stress (0.05 dyn/cm2) which was increased linearly over 12 hr to

a physiologically relevant shear stress of 2.73 dyn/cm2 for 6 hr

(Figure 2c,d). hCMEC/D3 cell morphology does not change significantly

after 18 hr of being cultured in this manner (12 hr of ramping and an

additional 6 hr of flow at 2.73 dyn/cm2). Cells retain this morphology for

over 24 total hours under flow, demonstrating the effectiveness of this

ramping protocol in conditioning the monolayers to survive realistic flow

conditions, thereby recapitulating an essential aspect of the BBB in vitro.

2.2 | Characterization of μHuB structure

hCMEC/D3 cells form both a confluent monolayer and complete

lumen in the μHuB, as would be expected in vivo. Monolayers were

fixed after ramping and stained with an actin stain and nuclear dye

prior to being imaged with a confocal microscope (Figure 3). Cells

formed a complete lumen lined by a confluent monolayer on the
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bottom, sides, and top of the microfluidic channels, resembling an

in vivo BBB (Figure 3b). This is exemplified by the three-dimensional

reconstructions of the μHuB, where one section of the complete vas-

cular compartment (Figure 3c) is sectioned in half (Figure 3d). Mono-

layers line the complete inner channels of this microfluidic device,

forming an inner lumen which allows for media and other components

to flow through (Figure 3e,f ). Expression of tight junction proteins is

critical for a realistic model of the BBB. Previous work has shown that

the hCMEC/D3 cell line expresses two of the most relevant tight

junction proteins, Claudin-5 and ZO-1 in traditional cell culture condi-

tions.55,57,63 Therefore, antibody staining for Claudin-5 and ZO-1 was

performed after culturing 3 days statically (Figure 4a) and after

conditioning to physiologically relevant fluid flow (2.73 dyn/cm2)

(Figure 4b). The diffuse expression profiles of these tight junction

markers were characteristic of other traditional static reports.64

Within the μHuB, the magnitude of the expression of these proteins,

however, increased dramatically in response to fluid flow as compared

to its static counterpart.

The impact of shear stress on cell viability was investigated with a

live/dead assay. Cell viability was measured by the reduction of C12-

resazurin to red-fluorescent C12-resorufin. SYTOX Green was used as a

counterstain to identify cells with compromised cell membranes. This

green-fluorescent nucleic acid stain cannot penetrate intact cell mem-

branes and remains non-fluorescent until bound to the nucleus. Relative

FIGURE 1 Schematic of μHuB device. μHuB consists of 2 outer, apical compartments (blue) and 1 central, basolateral compartment (red). (a) An

overview of the entire μHuB layout with appropriate dimensions. Apical compartments are 200 μm (width) by 100 μm (height). Basolateral
compartment is 1.8 mm (diameter) by 100 μm (height). Interconnecting channels connecting the basolateral to the apical compartments are
spaced by 50 μm (width). (b) Zoomed-in region of the apical and basolateral compartments connected by 3 μm (width) by 3 μm (height) by 50 μm
(depth) pores (black)

FIGURE 2 hCMEC/D3 monolayer can withstand physiological shear stresses in μHuB. Brightfield micrographs of hCMEC/D3 cells grown under

static conditions for 3 days (a and b) and after conditioning to physiologically relevant shear stress (2.73 dyn/cm2) using a linear ramp
conditioning protocol overnight (c and d). All images depict the same μHuB device at different points in time. b and d represent zoomed-in
regions of a and c, respectively, demonstrating hCMEC/D3 resistance to elongation under flow conditions and its ability to withstand these flow
conditions. (scale bar for a and c = 400 μm; for b and d = 200 μm)
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intensities of red and green fluorescence can be used to identify live cells

from injured or dead cells, respectively. hCMEC/D3 cells grown in the

microfluidic device exhibited high cell viability and negligible cell death or

injury both before (Figure 5a) and after (Figure 5b) conditioning to shear

stress, indicating the monolayers are viable for extended periods of time

under shear stress using the described ramping protocol.

FIGURE 3 hCMEC/D3 forms a complete inner lumen in μHuB. (a–f ) Confocal images of hCMEC/D3 monolayers in the μHuB after conditioning

to flow stained with ActinRed™ 555 ReadyProbes™ (actin, red) and Hoechst 33342 (nucleus, blue). (a) Onward-looking view of μHuB device
consisting of two vascular (apical) compartments lined with hCMEC/D3 monolayers. (b) Cross-sectional view of hCMEC/D3 monolayers in μHuB
forming a complete inner lumen approximately 200 μm (width) by 100 μm (height). (c) Onward-looking view of one quadrant of the μHuB model
as outlined in yellow in (a). (d) Lower half of (c), lined with a complete hCMEC/D3 monolayer. (e) Cross-sectional view of inner lumen. (f ) Same
cross-section as (e) at 90� viewing angle

FIGURE 4 Phenotypic expression of tight junction proteins in μHuB. The hCMEC/D3 monolayers in μHuB express tight junction proteins (ZO-1,

green & Claudin-5, red) under (a) static culture for 3 days and (b) when conditioned to physiologically relevant flow (2.73 dyn/cm2) using a linear
ramp conditioning overnight protocol. Expression of both ZO-1 and Claudin-5 increased in response to the fluid flow. (scale bars = 200 μm)

BROWN ET AL. 5 of 13



FIGURE 5 hCMEC/D3 monolayers remain viable during dynamic culture before and after analyte transport. hCMEC/D3 monolayers in μHuB

remain metabolically active as demonstrated by high levels of red, C12-resazurin (alive) fluorescence with negligible expression of green, SYTOX
fluorescence (injured) after (a) static culture for 3 days (b) after conditioning monolayers overnight using the linear ramping protocol to
2.73 dyn/cm2 and (c) after conducting a transport experiment using nonfluorescent dextran 70 kDa. (scale bars = 200 μm)

(a) (b)

(f)
(e)(d)(c)

FIGURE 6 Real-time permeability assessments of FITC-dextran with μHuB. (a) Representative images of 70 kDa dextran penetration through the

microfluidic BBB. (b) Calculated cellular permeability (Pe) of various molecular weight dextrans through the microfluidic BBB model. Permeability
of the acellular scaffold (Pscaffold) was subtracted from the overall permeability observed (Ptotal) to determine the permeability of the cellular
barrier (Pe). Error bars represent 95% confidence interval. (c) Example normalized intensity profiles of transport for a single device with 10 kDa
dextran tracer. Error bars represent SD. (d) Example normalized intensity profiles of transport for a single device with 70 kDa dextran tracer. Error
bars represent SD. (e) Analyzed regions of interest for (c and d). (f ) Permeabilities calculated from (d) based on the inclusion of different temporal
regions of the intensity profile as well as the R2 value of the fit
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2.3 | Permeability of FITC-Dextrans across μHuB

To quantitatively assess the barrier permeability from the apical to

basolateral side of the μHuB model, fluorescently labeled dextrans of

different molecular weights (10 and 70 kDa) were used as probes hav-

ing approximate Stokes' radii of 23 and 60 Å, respectively, as provided

by the manufacturer. Constant molarity (312.5 nM) of the tracers

within the apical chamber was maintained for all experiments to inves-

tigate how size directly impacted the permeability of the μHuB model.

For acellular scaffolds devoid of a cellular barrier, 10 and 70 kDa

FITC-dextrans experienced high permeabilities (Pscaffold) of 5.0 × 10−5

and 3.1 × 10−5 cm/s, respectively. By subtracting the acellular scaffold

permeability (Pscaffold) from the total permeability observed when the

cellular barrier was present (Ptotal) as described by Equation 2, the per-

meability of the endothelial barrier (Pe) was determined for 10 kDa

FITC-dextran (15 × 10−6 cm/s) and 70 kDa FITC-dextran (3.7 ×

10−6 cm/s). Overall, the relatively high Pscaffold values combined with

the low Ptotal values indicate that transport of the FITC-dextrans in

the μHub was limited by diffusion through the cellular barrier rather

than the scaffold architecture. The reported Pe values correlate well in

both trend and magnitude with in vivo transport modeling of macro-

molecules across the BBB.65

With the added ability to observe transport in real time within the

μHuB, localized permeabilities can be calculated for precise temporal

regions of interest. Using the representative data in Figure 6d, the

intensity profile could exhibit three regions with different slopes: a

relatively rapid increase at early time points, a more gradual increase

at later time points, and a final plateau region. By calculating the

inflection points with higher order fits, the described transitions

between these regions occur at approximately t = 60 min and t = 90

min for the inflection and plateau, respectively. Fitting different slopes

on either side of the inflection point results in a more precise fit of the

data compared to using a single slope for the profile (Figure 6f ).

To assess the vitality of the monolayers in the μHuB after a trans-

port experiment, cell viability of the monolayers in the μHuB was

investigated on shear stress-conditioned cells after 6 hr of constant

flow with cell culture medium and after an additional 3 hr of constant

flow with a nonfluorescent 70 kDa dextran solution (312.5 nM) to

ensure no fluorescence interference with the viability assay resulted.

As demonstrated in Figure 5c, monolayers continued to exhibit high

cell viability and low cell toxicity, indicating the largest molecular

weight dextran solution had no significant impact on the viability of

the μHuB model over the observed time periods and at this

concentration.

2.4 | Expansion of the μHuB model with astrocytes

As the neurovascular unit comprising the BBB contains additional cell

types beyond the brain endothelium, μHuB can be expanded by cocul-

turing additional cells in the central compartment to further investi-

gate how transport and other cellular functions are affected in the

presence and/or absence of specific cell types. As proof of concept,

primary human astrocytes were seeded into the central compartment,

lined with a thin coating of Matrigel to facilitate the cellular attach-

ment. This coculture device (Figure 7) was maintained over the same

time period with the brain endothelial cells and cultured as described

for the simpler, endothelial cell only μHuB model. Several connecting

channels between the apical and basolateral compartments of the

device appear to have astrocyte end-feet protruding through the

basolateral compartment and interacting with the hCMEC/D3 mono-

layer, regions highlighted by white arrows (Figure 7b).

2.5 | Discussion

We have presented the design and characterization of a realistic yet

simple in vitro model of the human BBB: μHuB. Importantly, the μHuB

recapitulates several of the most critical aspects of the in vivo BBB,

specifically the incorporation of appropriate brain endothelial cells59

into a vessel-like architecture that exposes the cells to shear.66 More-

over, by combining a commercially available, immortalized cell line

with a straightforward, commercially available microfluidic chip, we

have developed a highly accessible model that can be readily adopted

and utilized as an experimental tool and analysis method for dynami-

cally visualizing particulates of interest in future studies.

FIGURE 7 Coculture of hCMEC/D3 and primary human astrocytes in μHuB. hCMEC/D3 monolayers (green) were cultured in the vascular

(apical) compartments with primary human astrocytes (red) in the tissue (basolateral) compartment (nuclei, blue). (a) Onward-looking view of
complete, three-dimensional reconstruction of the coculture μHuB. (b) Zoomed-in yellow region of (a) with arrows pointing to regions where
astrocyte end-feet are protruding to hCMEC/D3 monolayer. (scale bar for b = 20 μm)
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An essential, functional participant of the neurovascular unit is

the basement membrane. Basement membrane in the brain is primar-

ily composed of laminins and collagen IV.67 We found, however, that

hCMEC/D3 cellular morphology and adherence to the internal glass

and PDMS surfaces were optimal when coated with human fibronec-

tin. This may be partially attributed to the structural support provided

by the chip itself, as collagen IV has been implicated to have a primar-

ily structural, scaffold-like function.68 Future studies should investi-

gate how different basement membranes and combinations thereof

contribute to overall barrier integrity and function.

Immortalized cells are imperfect mimics of their primary cell pre-

cursors. Prior work,40,69 as well as the work reported herein, demon-

strate the ability of immortalized cells to withstand shear stresses for

extended periods of time. We therefore hypothesize these cells have

not completely lost their ability to survive under shear. Thus, by grad-

ually increasing the shear in a linear manner, the hCMEC/D3 cells

were able to survive under increased shear well over 12 hr. Cells

remain adhered to the surface and retain their morphology (Figure 2).

For further validation of cell survival under physiologically relevant

shear, cell viability was assessed both before (Figure 5a) and after

(Figure 5b) the conditioning protocol. Negligible injured signal in both

cases indicated cell membranes have not been compromised while the

live signal remained strongly expressed. As the dead or injured signal

comes from C12-resazurin reduction, which occurs in the mitochon-

dria, this reduction directly correlates to metabolic activity and can be

quantitative (i.e., a higher signal is indicative of more metabolic activ-

ity). As a result, the metabolic rates of the monolayers are not nega-

tively impacted while under shear in such a manner to cause

significant cellular toxicity.

Confirming the formation of a cellular model with a complete

inner lumen is challenging using a conventional light microscope.

Therefore, the flow-conditioned model was fixed, stained, and imaged

via confocal microscopy. Cells completely lined the bottom, sides, and

top of the apical channel in the device without any regions devoid of

cells (Figure 3). These images further indicate the effectiveness of the

conditioning protocol and the structural integrity of the monolayer,

clearly forming a cellular barrier between the outer and inner compart-

ments. Complete coverage of the apical compartment surface is vital

to accurately quantify the transport through an intact barrier, which

can be challenging for transwell models due to “edge effects.”70

A prominent characteristic of the blood brain barrier is the high

expression of specific tight junction markers (e.g., Claudin-5 and ZO-

1), forcing most particulates to undergo a transcellular route of trans-

port.71 hCMEC/D3 monolayers grown statically and flow-conditioned

within the device were stained for Claudin-5 and ZO-1. Protein

expression remained intact both before and after flow-conditioning,

indicating that our flow-conditioned model conserved tight junction

expression similar to an in vivo BBB (Figure 4).

The functional properties of our model were investigated by con-

ducting permeability experiments using dextrans of varying molecular

weights. These and other tracer compounds, like Evans blue and

horseradish peroxidase, are commonly used to assess the permeability

of the BBB. 72,73 The tight intercellular junctions between brain endo-

thelial cells has been shown to exclude passive transport of molecules

having Stokes' radii >10 Å. 74–76 As in vitro models do not fully

recapitulate all of the necessary components for such a “tight” BBB,

researchers often use dextrans with varying Stokes' radii to determine

the relative “leakiness” due to passive diffusion around the endothelial

cells. As expected, a size-dependent trend was observed in the perme-

ability (Pe), where molecules with a larger Stokes' radii crossed the bar-

rier at a reduced rate (Figure 6).

Overall, transport of the tracers reported were comparable in

magnitude to those measured in prior experimental work using neona-

tal rat brain endothelial cells on a similar scaffold design (15 × 10−6

cm/s for a 10 kDa dextran reported here versus 40 × 10−6 cm/s for a

larger 40 kDa dextran reported by Deosarkar and coworkers).40 Our

permeability data also agree with mathematical modeling to calculate

permeability values for macromolecules with similar Stokes' radii

across an endothelial barrier.65 Yuan et al. measured permeabilities for

FITC-dextrans (10 and 70 kDa) in vivo. Both dextrans were found to

exhibit low, but detectable permeabilities of 0.31 × 10−6 cm/s for

10 kDa and 0.15 × 10−6 cm/s for 70 kDa.77 These values are much

lower than our reported findings as well as for other in vitro models.

One explanation for this could be that as hCMEC/D3 cells are an

immortalized cell line, tight junction expression may be reduced as

compared to their primary counterparts. Researchers have developed

a variety of different human brain endothelial cell lines, including

BB19, hBMEC, hCMEC/D3, and TY10. Eigenmann and coworkers

report dramatic differences between the tight junction protein expres-

sions between these immortalized cell types.63 Theoretically, the use

of primary human brain microvascular endothelial cells in the μHuB

model would lead to a reduction in the permeability. Inclusion of addi-

tional cellular components (e.g., astrocytes and pericytes) may also

enhance the barrier properties. Sajja and coworkers78 as well as Her-

land and coworkers50 have shown that the addition of these other cell

types caused a reduction in the permeability values. Modeling by Li

and coworkers suggests that the astrocytes contribute significantly to

the diffusive barrier properties of the BBB.65

The permeabilities reported in our study were calculated based

on our current understanding of small macromolecule translocation

across the BBB, namely that the transport of dextran tracers through

the BBB should remain constant with time. The transport data

acquired using the μHuB can also be used to investigate potential

temporal differences in permeability. As seen in Figure 6f, different

temporal regions of a single experiment can have apparent permeabil-

ities that differ over twofold but are still comparable to previously

reported literature. To our knowledge, these differences are unlikely

to be captured using other tools. With the dynamic visualization capa-

bility of the μHuB, heterogeneities originating from spatial biological

variability can also be assessed in a single experiment by analyzing the

local permeability at different azimuthal locations along the semiper-

meable barrier. To our knowledge, investigations into this type of vari-

ability have not been reported to date. As a result, the μHuB can be a

powerful tool for developing a deeper mechanistic understanding of

any type of particulate transport through the BBB both in time and

space.

As the blood–brain barrier consists of various cell types in addi-

tion to brain endothelial cells, including astrocytes, pericytes, and glial

cells, a coculture of primary human astrocytes and hCMEC/D3 was

successfully cultured using a similar protocol for the hCMEC/D3 only
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models to achieve complete lining of the central compartment with

primary astrocytes. Different cell types can easily be incorporated into

the central compartment to further investigate the functional roles of

BBB components and how specific cell-to-cell interactions affect

transport of molecules across the brain endothelium. Additionally

μHuB can be easily expanded to incorporate additional components

of interest, including the use of differentiation factors (e.g., 8-CPT-

cAMP and Ro 20–1,724),79 primary human brain endothelial cells

instead of the immortalized line, modification of cell type ratios to rep-

resent different regions of the brain,80 and modulation of the applied

shear stress, to create a holistic model of a healthy BBB. μHuB can

also be readily modified to further investigate how transport is

affected in a diseased state, such as when there is inflammation

caused by a traumatic brain injury or as the result of an invasive

glioblastoma.

2.6 | Conclusions

We have reported the development of μHuB, an easy-to-use human

microfluidic blood–brain barrier model. The ability of endothelial

monolayers in the μHuB to mimic the lumen of the BBB depends criti-

cally on a newly developed protocol to condition the cells to physio-

logically relevant shear conditions. Using this conditioning protocol,

monolayers can be maintained at physiologically relevant shear stres-

ses to spatially and temporally resolve the transport of particulates

across the BBB in real-time. We anticipate that experiments in the

μHuB can easily be expanded to quantify and mechanistically investi-

gate transport of molecular and particulate species across various

states of the BBB.

3 | MATERIALS AND METHODS

3.1 | μHuB device architecture

The idealized coculture microfluidic devices used in this study were

obtained from SynVivo, Inc. (Huntsville, AL). The devices consisted of

a central (basolateral) compartment, encompassed by an outer (apical)

compartment. The central and outer compartments were separated

by PDMS pillars with 3 μm slits, creating a barrier region between the

outer and inner compartments (See Figure 1 for device schematic).

The outer compartment was lined with brain endothelial cells and

experienced perfusion similar to physiological fluid flow conditions.

3.2 | Cell culture

The immortalized human cerebral microvascular endothelial cell line

(hCMEC/D3) was obtained from Millipore Sigma and maintained with

EndoGRO-MV Complete Culture Media Kit supplemented with

1 ng/mL human animal-free basic fibroblast growth factor (bFGF-AF)

and 1% Penicillin–Streptomycin. Cells were cultured on collagen-

coated tissue culture flasks coated with 1:20 dilution of Corning® Col-

lagen Type I, Rat Tail, which was allowed to coat in the incubator for

1 hr prior to use. Cells were incubated at 37 �C, 95% humidity and 5%

CO2 until confluent. Cells were used between passage 27 and 36.

For coculture experiments, primary human astrocytes (Catalog

#1800) were obtained from ScienCell and maintained astrocyte

medium (Catalog #1801) also obtained from ScienCell. Cells were cul-

tured on poly-L-lysine coated tissue culture flasks (2 μg/cm2), which

were allowed to coat in the incubator overnight prior to use. Cells

were incubated at 37 �C, 95% humidity and 5% CO2 until confluent.

3.3 | Culture of hCMEC/D3 and primary astrocytes
in μHuB

To facilitate endothelial cell attachment, human fibronectin (300 μg/

mL) was injected in the outer compartment and allowed to incubate

for 1 hr at 37 �C and 5% CO2. The entire device was perfused with

complete cell culture media. To devoid the device from any residual

entrapped air, the device was primed using inert N2 gas at 6 PSI for

30 min. Devices were placed inside cell culture incubator prior to use.

For coculture experiments, the device was first perfused with a thin-

coating of Matrigel (1:5) in the central compartment for 1 hr at 37 �C

and 5% CO2 prior to coating the outer channels with human fibronec-

tin (300 μg/mL) as described previously.

hCMEC/D3 grown to 70 to 80% confluency were trypsinized and

resuspended in cell culture media with increased serum concentration

(10%). Cell suspension at ~5 × 107 cells/mL was injected into the

outer compartment at 6 μL/mL using a Harvard Apparatus Pump

11 Pico Plus Elite and placed inside the incubator upside down to

facilitate attachment to the upper PDMS regions of the channel. After

sufficient cellular attachment, an identically seeded flask of hCMEC/

D3 cells was trypsinized, and cells were seeded with the device in the

upright position. Following cellular attachment, μHuB was perfused

with complete cell culture media at 5 μL/min. Cells were fed daily by

perfusion of the device with cell culture media containing 10% FBS

for the first day after seeding, and 5% FBS media for each

subsequent day.

For coculture seeding, after replenishing media in the outer com-

partments containing endothelial cells, primary human astrocytes

were injected into the central compartment and allowed to attach.

To condition cells to physiological shear stresses, 10% FBS

containing media was injected according to a linear ramp profile

(100 μL/min–5 μL/min) over 12 hr using a Harvard Apparatus PHD

ULTRA™ with a 6 × 10 MultiRack attachment for multi-syringe perfu-

sion. Constant 5 μL/min injection rate was maintained for at least 6 hr

prior to use. Devices were inspected for any bubble formation and

immediately used for further studies.

3.4 | Visualization and inner lumen characterization
of μHuB with actin stain

After flow conditioning of model, DPBS was perfused to replace the

cell culture media. 4% PFA was injected into all device compartments

and allowed to remain at room temperature for 15 min. The device

was again perfused with DPBS to move any residual PFA. Fixed cells

permeabilized using 0.2% Triton X-100 in DPBS for 10 min. The

device was again perfused with DPBS to move any residual Triton X-

100. Thermofisher ActinRed™ 555 ReadyProbes™ Reagent was used

to stain for cytoskeleton, using two drops per mL of DPBS for 30 min
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at room temperature. The device was perfused with DPBS one final

time prior to imaging.

For coculture μHuBs, the same actin staining procedure described

above was used with slight modifications. ThermoFisher ActinGreen™

488 ReadyProbes™ was used to stain hCMEC/D3 cytoskeleton in the

vascular compartment and Thermofisher ActinRed™ 555 Ready-

Probes™ Reagent was used to stain primary human astrocyte cyto-

skeleton in the tissue compartment. For each dye solution, two drops

per mL of DPBS was used and allowed to remain in the respective

compartment for 30 min at room temperature prior to perfusing with

DPBS and imaging.

3.5 | Cell viability analysis of μHuB

LIVE/DEAD™ Cell Vitality Assay Kit, C12 Resazurin/SYTOX™ Green

was used to assess cell viability under static culture, after conditioning

to flow, and after dextran transport. Briefly, 10 nM of Sytox green

and 500 nM of C12-resazurin was injected in the device. The device

was allowed to incubate at 37 �C, 5% CO2 for 15 min prior to imaging

directly. To determine brain endothelial cell monolayer viability of

μHub at the desired probe concentrations, cell vitality assays were

performed on post-ramped cells after 6 hr of constant flow with cell

culture media and after an additional 3 hr of flow with 70 kDa non-

fluorescent dextran solution (312.5 nM).

3.6 | Tight junction protein characterization in μHuB
(ZO-1, Claudin-5)

After flow-conditioning, μHuB was perfused with DPBS to replace the

cell culture media. 4% PFA was injected into all device compartments

and allowed to remain at room temperature for 15 min. The device

was again perfused with DPBS to remove any residual PFA. Fixed cells

were then permeabilized using 0.2% Triton X-100 in DPBS for 10 min.

The device was again perfused with DPBS to move any residual Triton

X-100. The device was blocked with 5% donkey serum and 5% goat

serum for 30 min at room temperature. ZO-1 (1:100) and Claudin-5

(1:200) primary antibodies were diluted in antibody diluting buffer

(0.1% Tween-20 and 0.1% BSA) at 4 �C overnight. Corresponding

fluorescently labeled secondary antibodies Anti-Goat and Anti-

Donkey (1:1000) was allowed to incubate for 1 hr at room tempera-

ture prior to perfusing with DPBS and was immediately imaged.

3.7 | Acquisition of transport information in μHuB

Following flow-conditioning, 312.5 nM of FITC-Dextran (10 and

70 kDa) was injected into the apical channel at 5 μL/min over 2 hr.

Device was maintained humidified and at 37 �C and 5% CO2 using a

Zeiss environmental enclosure. Images were acquired using a 5X

objective in 1 min intervals for the duration of the experiment.

3.8 | Quantification of FITC-dextran permeation
using fluorescent microscopy

Acquired fluorescent image stacks from transport experiments were

imported into MATLAB and analyzed using a custom code. Briefly, the

average pixel intensity and standard deviation within the apical

channel and the basolateral chambers were calculated for each frame.

Intensity in the basolateral chamber was normalized to the equilibrium

intensity of the apical channel, resulting in a normalized intensity pro-

file (Figure 6c). Frames collected prior to the apical chamber reaching

an equilibrium intensity were excluded from the analysis. Permeability

was calculated from the normalized intensity profiles using:

P ¼ V
S

� �
dI
dt

ð1Þ

where V/S is the ratio of apical volume to surface area. The linear

portion of the resulting intensity over time curve was fit to a line using

the MATLAB fit function and weighting with the standard deviations

of the intensity. The slope of this line was then used to calculate the

permeability as shown in Equation 1 and as described in previous

work.40,81 Stationary and inflection points were identified using qua-

dratic and cubic fits, respectively, with identical weighting. The perme-

ability of the analyte was assessed by using frames acquired before

the intensity profile plateaued. For example, Figure 6d shows a nor-

malized intensity profile for 70 kDa dextran. As before, frames col-

lected prior to the apical chamber reaching its equilibrium value are

not included. The profile plateaus between t = 50 min and t = 100

min. Based on the fitting inflection points, this curve changes slopes

at t = 60 min. Only frames before t = 60 min were used for the per-

meability calculations. Permeability of the acellular scaffold (Pscaffold)

was subtracted from the overall permeability observed (Ptotal) to calcu-

late the true permeability of the endothelial cell barrier (Pe) for a given

tracer (Equation 2).82

1
Pe

¼ 1
Ptotal

−
1

Pscaffold
ð2Þ

3.9 | Statistical analysis

Experiments were run in triplicate, and permeability error bars repre-

sent a 95% confidence interval based on the linear fitting.
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