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SUMMARY

When we listen to speech, we have to make sense of
a waveform of sound pressure. Hierarchical models
of speech perception assume that, to extract seman-
tic meaning, the signal is transformed into unknown,
intermediate neuronal representations. Traditionally,
studies of such intermediate representations are
guided by linguistically defined concepts, such as
phonemes. Here, we argue that in order to arrive
at an unbiased understanding of the neuronal re-
sponses to speech, we should focus instead on rep-
resentations obtained directly from the stimulus. We
illustrate our view with a data-driven, information
theoretic analysis of a dataset of 24 young, healthy
humans who listened to a 1 h narrative while their
magnetoencephalogram (MEG) was recorded. We
find that two recent results, the improved perfor-
mance of an encoding model in which annotated lin-
guistic and acoustic features were combined and the
decoding of phoneme subgroups from phoneme-
locked responses, can be explained by an encoding
model that is based entirely on acoustic features.
These acoustic features capitalize on acoustic edges
and outperform Gabor-filtered spectrograms, which
can explicitly describe the spectrotemporal charac-
teristics of individual phonemes. By replicating our
results in publicly available electroencephalography
(EEG) data, we conclude that models of brain re-
sponses based on linguistic features can serve as
excellent benchmarks. However, we believe that in
order to further our understanding of human cortical
responses to speech, we should also explore low-
level and parsimonious explanations for apparent
high-level phenomena.

INTRODUCTION

Speech perception is often conceptualized as a hierarchical pro-

cess [1, 2]. The human brain is assumed to extract semantic

meaning from a highly dynamic sound pressure signal via a
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cascade of transformations that create increasingly abstract

representations of speech. It is well established that perceived

speech sounds are first decomposed into a spectrally resolved

representation at the cochlea. Various structures along the

subcortical auditory pathway are believed to then undertake

further processing steps [3, 4]. However, considerable uncer-

tainty remains about exactly how sound is represented in the

auditory cortex (AC) [5].

One way to gain further insight into human speech processing

is to employ encoding models. These models aim to predict the

time series of recorded neural data from the waveform of the

presented stimulus. A popular framework for encoding models

organizes this in two steps [6, 7]. In the first step, the stimulus

material undergoes nonlinear transformations into various sets

or spaces of features. These features capture hypotheses

about the cortical computations that are performed on the input

signal. In the second step, a linear mapping of these feature

spaces onto the neuronal responses is obtained to evaluate

the utilized hypotheses in terms of out-of-sample prediction

performance. In this way, data-rich, naturalistic listening condi-

tions of a relatively long duration can be exploited, considerably

improving a model’s validity over isolated and artificial experi-

mental paradigms [8, 9]. Recent results demonstrate the appli-

cability of this approach across various neuroimaging modalities

and research questions [10–20].

A compelling finding obtained with this approach is that pre-

dictions of cortical responses as measured by electroencepha-

lography (EEG) [10] or functional magnetic resonance imaging

(fMRI) [12] using acoustic feature spaces can be improved by

additionally considering so-called articulatory feature spaces.

The latter originate from the linguistic concept of representing

a language with a set of minimal contrastive units, called pho-

nemes. However, superior temporal regions are known to

selectively respond to subgroups of phonemes rather than to in-

dividual phonemes [21]. Therefore, the full phoneme set is usu-

ally reduced by mapping each phoneme to its corresponding

vocal gestures (‘‘articulatory features’’), such as the voicing,

tongue position, or place and manner of articulation. Recently,

it was shown that these manners of articulation can also be

decoded from EEG data time-locked to phoneme onsets in

continuous speech stimuli [22]. Encoding and decoding analyses

based on articulatory feature spaces are thus interpreted as

concordantly capturing a faculty called ‘‘pre-lexical abstraction’’

[23], i.e., a transformation of continuous physical properties of
or(s). Published by Elsevier Ltd.
commons.org/licenses/by/4.0/).
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Figure 1. Study Concept and Design

(A) Magnetoencephalography (MEG) data were recorded while participants (n = 24) listened to a story of 1 h duration.

(B) The speech waveform was then nonlinearly transformed into various feature spaces.

(C) These feature spaces were used to predict neuronal responses using (multivariate) temporal response functions ((m)TRFs) in a nested cross-validation

framework. The majority of the data were used to fit the (m)TRFs.

(D) Hyper-parameters controlling the (m)TRFs (separately for each feature (sub-)space, hemisphere, and participant: temporal extent and L2 regularization) and

the MEG source reconstruction (sensor covariance matrix regularization and position of dipoles in source space) were optimized on separate validation data.

(E) The predicted responses of the encoding model (dashed lines) were evaluated on unseen test data by asking to which degree a benchmark feature space that

relied on articulatory features was redundant with competing, acoustic feature spaces using partial information decomposition (PID).

(F) Additionally, four classes of phonemes were decoded from phoneme-locked observed and predicted MEG responses. PID was used to determine to which

degree the predictions of the encoding models contained the same information about phoneme classes as the observed data.
the waveform to speech-specific, categorical, and invariant units

of perception.

However, the transformation of speech stimuli into articulatory

features comes with certain critical caveats. Most importantly,

this representational format of speech is based on concepts

that humans have agreed on to talk about language. And while

a match of such linguistic constructs with physiological re-

sponses is conceivable, it is a potentially biased and specific

hypothesis with a range of alternatives [1, 24–26].

Moreover, the partly arbitrarymapping of phonemes to articula-

tory featuresprovidesa lowdegreeofcomputational specification.

Assuch,models thatusearticulatory featurescouldbeconsidered

to be so-called ‘‘oracle models,’’ which rely on information that is

not available to the individual’s brain being modeled [27].

Additionally, current implementations of this transformation

rely on a semi-automated, forced alignment of a textual tran-

scription to the sound wave of the stimulus material. While

such alignment methods incorporate a high degree of computa-

tional sophistication, the task they solve is not a good model of

the task that the listening brain faces. This compromises the

usefulness of the intermediate representations generated by

such alignments to serve as candidate features to predict brain

responses, such that usually only the final output is used. It

thus remains unclear whether the level of complexity implied

by the final articulatory features is actually necessary.
These caveats thus raise an important question. Can the gain

in prediction performance that is reportedly provided by articu-

latory features be explained by alternative features that are

based on computationally more specified, physiologically plau-

sible, and possibly less complex transformations of stimulus

acoustics? The extent to which this were the case would indi-

cate how much of the predictive gain that is provided by artic-

ulatory features is attributable to the generic, feedforward pro-

cessing of an acoustic stimulus that is not specific to speech

processing.

When choosing such acoustic feature spaces, one can pro-

ceed in different directions. One possibility is that, in order to

explain the same variance as models based on articulatory fea-

tures, the characteristic spectrotemporal patterns that define the

phoneme subgroups are needed. Correspondingly, one could

extract such abstract information from the spectrogram with

suitable filters. A physiologically inspired candidate feature

space is the Gabor-filtered spectrogram, which interestingly im-

proves the performance of automatic speech recognition (ASR)

software when used as input features [28]. With this generic

class of spectrotemporal kernels, one can describe several

acoustic patterns that dissociate groups of phonemes. Exam-

ples include the spectral distance between formants, as

captured by filters of different spectral modulation, and formant

transitions, as captured by filters of joint spectrotemporal
Current Biology 29, 1924–1937, June 17, 2019 1925



Figure 2. Identification and Characteriza-

tion of Story-Responsive Regions in Source

Space

(A) Grand average story responsivity (variance

of source-reconstructed brain activity recorded

during first presentation explained by activity re-

corded during second presentation of the last

block). Each image shows different viewing angles

on the same data.

(B) (Left) Story responsivity using mutual informa-

tion (MI). Plot shows MI of activity in the first repe-

tition of the last block about activity in the second

repetition of the last block. (Right) Shared infor-

mation (redundancy) of activity at bilateral story-

responsivity peaks in the first repetition and activity

in the first repetition at each other grid point about

activity at these other grid points in the second

repetition. See Video S1 for further explanation.

Data from one exemplary participant are shown.

(C) Unique information added by sources addi-

tional to the bilateral story-responsivity peaks.

See also Figure S1.
modulation. Although this feature space is long established in

encoding and decoding models of the human and animal

midbrain and ACs [7, 13, 29–34], it has yet to be applied to

magneto- and electroencephalography (MEEG) data.

Another possibility is that the performance boost provided by

articulatory features is instead attributable to their correlation

with simpler acoustic properties. It has repeatedly been observed

that neuronal responses from bilateral superior temporal regions

are particularly sensitive to acoustic edges [35–40]. Features that

extract these onsets from envelope representations via a half-

wave rectification of the temporal gradient of time-varying energy

have been used in several studies [36, 41, 42]. Features that rely

on the temporal gradient also capture the relationship of neigh-

boring time points, which contain information present in MEEG

data across a range of different analyses [43]. It is thus interesting

to assess the degree to which the gain in prediction performance

that is provided by articulatory features can be explained by such

onset features.

In this study, we examined these two possible explanations

by comparing the predictive power of different acoustic feature

spaces to that of an annotated articulatory feature space. We

performed these investigations on an magnetoencephalogram

(MEG) story-listening dataset of 1 h duration per participant

in a rigorous, data-driven approach (see Figure 1). A nested

cross-validation framework [44] was used to delegate the

choice of model settings to a recent optimization algorithm

[45]. We thus allowed encoding models based on different

feature spaces the same chances to find optimal parameter

combinations with a minimum of a priori information, while mini-

mizing the risk of overfitting. We then applied partial information

decomposition [PID, 46] to assess the degree to which the

predictions of acoustic feature-based models shared informa-

tion about observed recordings with those of articulatory

feature-based models and to assess the degree to which these

feature spaces contained unique predictive information. This

flexible theoretic framework also allowed us to quantify to

what extent the information about manners of articulation de-

codable from phoneme-evoked responses could be accounted
1926 Current Biology 29, 1924–1937, June 17, 2019
for by the predictions of our encoding models. Lastly, since

MEG and EEG data can reflect different neuronal processes

[47, 48], we performed similar analyses on a publicly available

EEG story-listening dataset [49]. Using this approach, we found

that apparent encoding and decoding signatures of high-level

pre-lexical abstraction could be explained with simple low-level

acoustic models.

RESULTS

Speech Tracking in Bilateral ACs
First, we characterized where in MEG source space we could

find robust responses related to speech processing and also

the spatial resolution that these responses could be studied

at. To identify regions in source space where MEG responses

were repeatably activated by the stimulus (‘‘story-responsive’’

regions [12, 50]), we correlated source-reconstructed, full-brain

responses to one chapter of the story with the responses to its

repeated presentation. These correlations peaked in regions

that agree with the typical localization of the bilateral ACs

(Figure 2A).

Instead of falling off sharply, the story responsivity decreased

gradually with increasing distance from these peaks. However,

we expected that querying activity from different locations within

these story-responsive regions would yield highly similar (i.e.,

redundant) time series since the spatial resolution of MEG in-

verse solutions is inherently limited [51]. To avoid an unneces-

sary computational burden for the later modeling, we therefore

explored how much of the repeatable activity we could explain

with dipoles at the two bilateral story responsivity peaks and

also how much we could explain by considering further dipoles

at different locations. To do so, we implemented an iterative in-

formation theoretic approach based on PID (see Video S1 and

STAR Methods for a detailed description). This approach re-

vealed that indeed one source per hemisphere could account

for most of the spatial spread of the story responsivity. The indi-

vidual maps of story responsivity correlated highly with maps of

redundancy (average Pearson correlation across participants:



Table 1. Feature Spaces

Shorthand Name Dimensionality Description

Env envelope 1 sum across channels of Sg [36, 37, 52]

Sg log-mel spectrogram 31 spectral decomposition of time-varying stimulus

energy in 31 mel-spaced bands with logarithmic

compressive nonlinearity [3, 28, 53]

Sg & Deriv log-mel spectrogram and half-wave rectified

temporal derivatives of individual spectrogram

channels

31 + 31 Sg and positive temporal rate of change of power

in each channel of Sg [18, 36, 40, 42, 43]

Sg & Gabor log-mel spectrogram and Gabor-filtered

spectrogram

31 + 455 Sg and decomposition of Sg according to spectral,

temporal, and joint spectrotemporal modulations

[28–31, 33, 34, 53]

Sg & PhOn log-mel spectrogram and annotated phoneme

onsets

31 + 1 Sg and unit impulses at the beginning of each

annotated phoneme [18]

Sg & Art log-mel spectrogram and articulatory features

of each phoneme, ‘‘benchmark feature space’’

31 + 23 Sg and 23 channels with unit impulses at the

beginning of each phoneme characterized by

the corresponding vocal gesture [10, 12]

Control log-mel spectrogram, half-wave rectified temporal

derivatives of individual spectrogram channels

and articulatory features of each phoneme

31 + 31 + 23 combination of Sg, Deriv, and Art feature spaces
0.89; range: 0.80–0.97; Figure 2B). As such, the information that

activity at additional grid points carried about the activity re-

corded during the second presentation of the same chapter

largely overlapped with the information that could be obtained

from activity at the bilateral peaks. Correspondingly, the amount

of information contributed by sources additional to the bilateral

peaks fell off in a characteristic L-shaped curve (Figure 2C).

This was largely attributable to measures of leakage of the

spatial filters, such as their cross-talk and point-spread functions

(see Figure S1 for details).

Based on these results, we subsequently analyzed one source

location per hemisphere, since this single location could capture

the repeatable signal that stems from the bilateral ACs. Note,

however, that in the following modeling, the exact location of

these two sources was not fixed but instead was optimized inde-

pendently for each tested feature space.

Predictive Power of Feature Spaces
The main goal of this study was to compare the cross-validated

performance of linear models that were trained to predict rele-

vant parts of the MEG responses from different sets or ‘‘spaces’’

of features extracted from the speech stimulus. We assessed

this using the Pearson correlation between observed and pre-

dicted MEG time courses. The central question we investigated

was to what degree can purely acoustic feature spaces achieve

the performance of a benchmark feature space (namely, spec-

trograms and annotated articulatory features combined [10])?

Crucially, our modeling approach ensured that the settings of

our models (‘‘hyper-parameters’’) could flexibly adapt to each

different feature (sub-)space, individual participant, and to

each hemisphere (see STARMethods for a detailed description).

The hyper-parameters operated on the predictors, the model,

and also the MEG responses such that, for example, the exact

position of the dipole in source space was optimized for each

feature space (see Table 1 for an overview over all feature spaces

used in this study). This gave each feature space the same
chance to optimally predict the MEG responses within our bilat-

eral sources linear modeling framework.

The performances of ourmodels exhibited relatively large inter-

participant variability and comparatively low variability across

feature spaces (Figure 3A). To focus on the systematic differ-

ences across the feature spaces, we used Bayesian hierarchical

linear modeling [54] and separated the overall effects of different

feature spaces from effects attributable to participants, hemi-

spheres, and cross-validation folds. We extracted the samples

of the posterior distributions of the regression coefficients

(‘‘bs’’) of interest. We then subtracted the samples that referred

to the benchmark feature space from those referring to the other

competing feature spaces. From the resulting posteriors of

differences (Figure 3B), we could determine the fraction of sam-

ples above or below zero, i.e., in the direction of the correspond-

ing hypotheses (fh1). We repeated this for all other possible com-

parisons between the feature spaces (Figure 3C).

Initially, we were interested in whether we could replicate the

previously reported increase in prediction performance when

combining linguisticallymotivated articulatory featureswith spec-

trograms (Sg & Art, red vertical line; Figure 3B) over spectrograms

alone (Sg, blue) in our data. Indeed, we found a large fraction of

samples of the posterior of differences in favor of a successful

replication (mean of the difference in Pearson correlation D =

0.0093; fh1 = 0.9994). This allowed us to test whether various alter-

native feature spaces could achieve a similar gain in performance

in order to investigate the origin of the improved prediction

achieved using articulatory features.

We first investigated spectrotemporal Gabor patterns, which

can be used to dissociate several phonemic groups [28],

because the articulatory feature space might have benefitted

from describing responses that are specific to phoneme

subgroups. In combination with the spectrogram, which directly

accounted for time varying sound energy, this feature space (Sg

& Gabor, yellow) achieved a comparable gain in prediction per-

formance over the spectrograms alone (D = 0.0098; fh1 =
Current Biology 29, 1924–1937, June 17, 2019 1927



Figure 3. Evaluating the Performance of

Different Feature Spaces

(A) Raw test set performances in the left and right

auditory cortex (AC) for models based on different

feature spaces shown on the horizontal axis. See

Table 1 for an explanation of the feature spaces

and their shorthand notations. Each color codes

for a single participant (n = 24); each dot is one

test set. Pooled medians are indicated with black

lines.

(B) Samples from the posterior distribution of

differences of beta estimates (competing feature

spaces minus benchmark Sg & Art feature space,

results left of the red line thus reflect that the Sg&Art

feature space has a higher performance; results

right of the red line indicate that the competing

feature space has a higher performance). Feature

spaces are color coded as indicated.

(C) Percentage of samples in favor of hypotheses

of differences of beta estimates between all feature

spaces. Hypotheses are color coded according to

the same color mapping as in (B), which corre-

sponds to the bottom row and right column of the

matrix shown here.

(D) Samples from posterior distribution of differ-

ences of beta estimates of individual participant’s

right ACs minus left ACs. Color mapping is the

same as in (A).

See also Figures S2 and S3.
0.9994). Its performance was on par with the benchmark feature

space (Sg & Art), i.e., it was only negligibly better (D = 0.0006;

fh1 = 0.5960). This feature space thus achieved a similar perfor-

mance to that of the linguistically motivated feature space but

did sowithout requiring linguistic concepts. Instead, it was phys-

iologically motivated and computationally fully specified.

However, we also wanted to explore simpler models to deter-

mine the level of complexity that would be required to optimize

prediction. Sound onsets offer a promising candidate for a

neurally relevant, low-dimensional auditory feature [36, 39, 40,

43]. As a first test of this hypothesis, we reduced the articulatory

features to phoneme onsets (Sg & PhOn, pink). This model

outperformed the spectrograms in a similar way to Sg & Art

(D = 0.0081; fh1 = 0.9983), indicating that the performance in-

crease obtained with articulatory features originates from the

timings of the phoneme onsets, and not the identity of different

phoneme subgroups.

The phoneme onsets were, however, still an abstracted repre-

sentation of the stimulus resulting from transcription alignment,

with an unclear relation to the original acoustics. One way to

derive a signal representing sound onsets directly from speech
1928 Current Biology 29, 1924–1937, June 17, 2019
acoustics is by half-wave rectification of

the first derivative of the time-varying

stimulus energy [36]. This quantifies posi-

tive rates of change, i.e., increases in the

stimulus amplitude. We had found that

spectrally resolving the amplitude using

spectrograms (Sg, blue) outperformed

the broadband envelope (Env, black; D =

0.0152; fh1 = 1). We therefore computed

the positive rate of change of energy of
the individual channels of the spectrogram. Combined with the

spectrogram features, this model (Sg & Deriv, turquoise; Fig-

ure 3B) outperformed the benchmark feature space (D =

0.0073; fh1 = 0.9972). It also outperformed the combination of

spectrograms and Gabor-filtered spectrograms (D = 0.0067;

fh1 = 0.9958). Thus, a relatively simple acoustic feature space

that focused on acoustic edges not only equaled the benchmark

but surpassed it.

As a first test whether these best acoustic features could

account for the same information as the articulatory features,

we also tested a combination of them (Control, purple). The

improvement of this combination of three feature subspaces

over the best acoustic feature space was negligible (D =

0.0013; fh1 = 0.7078). This indicated that the articulatory features

are not needed for an optimal prediction of the MEG responses.

We also explored the lateralization of the performances by

evaluating within-participant differences across hemispheres in-

dependent of feature spaces (Figure 3D). We found that the pos-

terior distributions of hemispheric beta differences were narrow

for individual participants but exhibited a broad range of means

within our sample. Some participants’ responses were easier to



explain in the left AC, others were easier to explain in the right

AC, and for some there were no strong lateralization effects.

Taken together, these results demonstrate that the gain in

prediction performance obtained by combining articulatory

featureswith spectrograms can be replicated inMEGdata. How-

ever, a similar or even larger gain can be obtained by using algo-

rithmically specified and generic acoustic features that capitalize

on acoustic edges. Their performance in turn could not be

improved by combining them with articulatory features. Next,

we wanted to reveal in more detail how the precise information

about the MEG predicted by the competing feature spaces

was related to the information predicted by the benchmark artic-

ulatory features: were the similar levels of performance driven by

the same or by different predictive information?

Shared and Unique Information of Articulatory and
Acoustic Features
Even if two models have the same predictive power, both higher

than a reference model, each could offer improved performance

based on different information (i.e., by better predicting different

periods of the speech signal) or the same information (i.e., by

better predicting the same periods of speech). The PID informa-

tion theoretic framework [46, 55] (see STAR Methods for details)

provides a means to dissociate these situations. We used it to

address two questions: (1) to which degree is the information

carried by the acoustic-feature-based predictions shared

(redundant) with that carried by predictions based on the bench-

mark articulatory features? And (2) to which degree do the pre-

dictions from each feature space contain unique information?

If the benchmark features could be explained by the acoustic

alternatives, then the results would be characterized by (1) a

high degree of redundancy and (2) a low amount of unique infor-

mation left to the benchmark articulatory features. Such a finding

would suggest that the two feature spaces predict the same

parts of the response in the same way.

To investigate this question, we retrained all models with their

source-space-related hyper-parameters fixed to the values that

were found to be optimal for the benchmark articulatory features.

We then considered separate, pairwise PIDs, where each acous-

tic feature space was compared to the benchmark articulatory

feature space (Figure 4). To make the resulting quantities more

easily interpretable, we normalized the resulting redundant and

unique information by the marginal mutual information (MI [43]

a non-parametric measure of the relationship between variables)

of the benchmark features and the observed MEG. We then sta-

tistically analyzed these values using Bayesian hierarchical

models similar to our analyses of the rawperformances, focusing

again on the regression coefficients that modeled the effects of

feature spaces.

The acoustic features with the best prediction performance,

Sg & Deriv, were indeed also highly redundant with the bench-

mark articulatory features, reaching �100% of the marginal MI

provided by Sg & Art about the observed MEG (mean of the cor-

responding effect = 0.99; 95% credible interval [CI] = 0.98–1.01).

The same was the case when combining the best acoustic fea-

tures with the articulatory features (Control: mean = 1.01; 95%

CI = 0.99–1.02). Furthermore, we observed more unique infor-

mation present in the acoustic feature space (mean = 0.07;

95% CI = 0.06–0.09) than in the benchmark articulatory feature
space (fh1 = 1), in which the unique information was distributed

around 0 (mean = 0.01; 95% CI = �0.01 to 0.02). This means

that all of the predictive information of the benchmark Sg & Art

model was included in the predictions of the Sg & Deriv model.

There was no unique information available in the Sg & Art predic-

tion that a Bayesian optimal observer could not have extracted

from the Sg & Deriv model.

Last, the information about the MEG responses only available

from a joint consideration (i.e., synergy) of the benchmark artic-

ulatory features and the best acoustic features had a negligible

effect size that was two orders of magnitude lower than that of

the redundancy and failed to surpass a permutation-based noise

threshold (see Figure S5). These results agreed with the finding

that a combination of the best acoustic feature spaces and the

articulatory features did not have a better prediction perfor-

mance than the best acoustic features (see previous section).

A relatively high normalized redundancy close to 100% was

also achieved by Sg & PhOn (mean = 0.97; 95% CI = 0.96–

0.99). In addition, Sg & PhOn provided a weak amount of unique

information (mean = 0.03; 95% CI = 0.01–0.05) and left a very

similar amount of unique information to the benchmark articula-

tory feature space (mean = 0.03; 95% CI = 0.01–0.04). The

annotated onsets thus provide most of the information that the

benchmark features provide about the observed MEG.

A very similar pattern was found for the second-best acoustic

features, Sg & Gabor. These features also achieved a relatively

high redundancy (mean = 0.96; 95% CI = 0.95–0.97) but one

that was lower than that of the best acoustic features (fh1 =

0:9988). Sg & Gabor also provided a weak amount of unique in-

formation (mean = 0.04; 95% CI = 0.02–0.05) and left a very

similar amount of unique information to the benchmark articula-

tory features (mean = 0.04; 95% CI = 0.02–0.06). We conclude

that this high-dimensional acoustic feature space included both

relevant and many irrelevant dimensions. The increase in the

separability of the different spectrotemporal patterns that refer

to different phoneme subgroups [28] is thus less important than

the sound energy patterns that are contained in the best acoustic

feature space.

Finally, as expected from their comparably low prediction per-

formances, the remaining feature spaces (Env and Sg) exhibited

redundancies that were lower than that of the previously

mentioned feature spaces (both fh1 = 1). They also left consider-

able amounts of unique information to the benchmark feature

space while providing no substantial positive unique information

themselves (mean of Env = �0.03; 95% CI = �0.05 to �0.02;

mean of Sg = 0.00; 95% CI = �0.02 to 0.02).

On a group level, all of these patterns were highly similar be-

tween left and right ACs.

Thus, the best acoustic features achieve their improved pre-

diction performance over spectrograms alone by explaining

the same parts of the responses that the benchmark articulatory

features explain, and they additionally explain parts that the lin-

guistic features do not, while a joint consideration of both feature

spaces does not add meaningful extra information.

Phoneme-Evoked Dynamics of Observed and Predicted
Time Series
As recently demonstrated, four manners of articulation of pho-

nemes can be decoded from EEG data [22]. We next assessed
Current Biology 29, 1924–1937, June 17, 2019 1929



Figure 4. Shared and Unique Contributions of Articulatory and Competing Features

(A) Normalized redundancy in left and right auditory cortices (ACs). Each color codes for a single participant (n = 24). Each dot is one test set of one participant;

black and red lines show pooled medians.

(B) Normalized unique information of benchmark articulatory features and competing features in left and right AC. Colors code for a feature space, as shown. Each

dot is one test set of one participant; black and red lines show pooled medians.

(C andD)Modeling of redundancy and unique information results, respectively. Filled areas showdensity estimates of posterior distributions of estimates of betas

of feature spaces. Lines show density estimates of samples from posterior predictive distribution of the respective condition. Color coding of feature spaces is the

same as in (B).

See also Figure S5.
whether this decoding was possible in our MEG data and the

degree to which our encoding models could account for this

phenomenon.

For this decoding analysis, we re-optimized the dipole position

and sensor covariance matrix regularization parameters of the

spatial filters. We did this by using black-box optimization, as

before [45], only this time with respect to the MI between MEG

data epoched to phoneme onsets and the manner of articulation

of each phoneme (four discrete phoneme classes were used:

vowels, nasals, plosives, and fricatives; see Figure S7). The MI

was calculated separately for each time point in the extracted

phoneme epochs. For optimization, we subsequently summed

the MI across time points. In most cases, the positions found

in this re-optimization were very similar to those found before

(Figure S4A).

At the corresponding source locations, we found character-

istic responses to the four manners of articulation (i.e., the four

phoneme classes used; see Figure 5A). We then retrained our
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encoding models based on all feature spaces with the source-

level parameters fixed to the values found when optimizing for

MI between MEG data epoched to phoneme onsets and the

manners of articulation. In the cross-validated predictions of

these retrained models, we observed phoneme-locked re-

sponses that were very similar to those obtained with observed

MEG data (Figure 5A, right).

Correspondingly, we observed a sustained pattern of MI

following the phoneme onsets in bilateral ACs for the observed

data (Figure 5B). We found very similar patterns of MI between

manners of articulation and predicted phoneme-related fields,

with values roughly an order of magnitude higher for the predic-

tions. On average, this result pattern did not substantially differ

between either of the two hemispheres or between the different

feature spaces.

Together, our results thus show that the decoding of these

manners of articulation was replicable in the observed MEG

data and in the MEG data predicted by our models.



Figure 5. Phoneme-Related Fields Captured by Model Predictions

(A) Phoneme-related fields of a single participant in (left) observed and (right) predicted MEG (from Env feature space). Colors code for four different phoneme

classes that represent four manners of articulation.

(B) MI of observed (solid lines, left y axes) and predictedMEG (dashed and colored, right y axes) about the four phoneme categories in the left and right ACs. Color

coding of feature spaces is the same as in (C).

(C) Redundancy from PID (amount of information that observed and predicted MEG share about the four manners of articulation). Shown are medians across all

participants ± 95% (frequentist) confidence intervals (CIf), bootstrapped with 10,000 samples.

(D) Unique information of observed (solid) and predicted MEG about the manners of articulation. Maximum information uniquely available from observed MEG

across all participants, feature spaces, and time points are shown as black bars. Color coding of feature spaces is the same as in (C). Shown are medians across

all participants ± 95% (frequentist) CIf, bootstrapped with 10,000 samples.

See also Figure S4.
To assess the amount of information that is shared by the

observed and predicted time series about these manners of

articulation, and the amount of information that is unique to

them, we performed PIDs with observed and predicted time se-

ries as sources and the manners of articulation as targets. This

analysis should reveal whether the observed MEG contained in-

formation about these manners of articulation that is different

from that obtained, for example, from the speech envelope

when convolved with an encoding model temporal response

function (TRF).
The PIDs resulted in profiles of redundancy that closely resem-

bled the marginal MI profiles for both hemispheres and for all

feature spaces alike (Figure 5C). Most importantly, the informa-

tion that was unique to the predicted MEG exhibited the same

patterns (Figure 5D, dashed lines), while the information unique

to the observedMEG (solid lines) was negative; i.e., this informa-

tion represented misinformation with respect to the predicted

MEG source. This means that there were trials where an

observer predicting phoneme classes optimally from the

observed MEG would make a mistake (hence misinformation)
Current Biology 29, 1924–1937, June 17, 2019 1931



Figure 6. Analysis of EEG Data

(A) Test set performances of forward models. Left:

each dot shows the performance in one test set

averaged across electrodes. Colors code individ-

ual participants (n = 13), and black lines show

pooled medians.

(B) Samples from posterior distribution of differ-

ences of beta estimates of competing feature

spaces and the benchmark Sg & Art feature space.

Colors code feature spaces.

(C) PID results normalized by MI of predictions

based on Sg & Art features and observed EEG

signals. Each dot is one test set prediction of one

participant and electrode. Samples from posterior

distributions of effects of feature spaces are over-

laid as filled areas, and posterior predictive distri-

butions are shown as lines. (Left) Redundancy of

predictions based on benchmark articulatory fea-

tures and competing feature spaces about

observed EEG signals. Dot colors represent a

participant; filled area and line colors represent

feature spaces. (Right) Unique information of

benchmark articulatory features (red) and

competing feature spaces about observed EEG

signals. Colors of dots, filled areas, and lines

represent feature spaces.

(D) Phoneme related potential analysis. Colors

represent feature spaces, and shaded areasdenote

95% (frequentist) confidence intervals (CIf), boot-

strapped with 10,000 samples. All traces show av-

erages across participants and electrodes. (Left) MI

of observed (solid black line, left y axis of subplot)

and predicted (dashed colored lines, right y axis of

subplot) EEG about four manner of articulation

phoneme classes (‘‘phClass’’). (Middle) Redun-

dancy—information shared by observed and pre-

dicted EEG from different feature spaces about

phoneme classes. (Right) Unique information of

observed (solid lines) and predicted (dashed lines)

EEG about phoneme classes. Maximum of infor-

mation uniquely available from observed EEG

across all participants, feature spaces, and time

points, shown as black bar.

See also Figures S5 and S6.
that an observer of the predicted MEG would not make (hence

unique to observed MEG; see STAR Methods for more details

on negative unique information). Thus, there was no relevant in-

formation about these manners of articulation present in the

observed MEG that could not be retrieved from responses

modeled with a convolution of any of our feature spaces with

an encoding model filter. This pattern of results was also essen-

tially the same for both hemispheres and for all feature spaces.

Taken together, these results demonstrate that models based

on all of our feature spaces could fully account for the informa-

tion about these four manners of articulation that was decodable

from the observed MEG responses.

Replication Using a Publicly Available EEG Dataset
The original report of the effect of a performance gain provided

by articulatory features over spectrograms alone was derived

fromEEGdata [10]. SinceMEGand EEG are sensitive to different

sources [48], it is possible that the MEG sensors we used here

were blind to parts of the effect. We therefore investigated
1932 Current Biology 29, 1924–1937, June 17, 2019
whether we could replicate our MEG results using EEG data.

We analyzed 13 participants for whom data with 128 channel re-

cordings of approximately an hour are publicly available [20, 49].

On the stimulus side, we used the same analysis pipeline as for

the MEG dataset. However, due to the higher noise level of the

EEG data [47], we did not try to fit the high-dimensional Gabor

feature space. Instead, we concentrated on comparing the

benchmark articulatory feature space to the lower dimensional

acoustic feature spaces that had best explained the MEG

data. We fitted cross-validated encoding models to the scalp-

level EEG data and focused our modeling on the 12 electrodes

reported in the original publication [10].

Using the same Bayesian modeling approach, results derived

from the EEG data closely accorded with those derived from

the MEG data (Figure 6B). Our analysis replicated the gain in

performance of the benchmark articulatory feature space

compared to spectrograms alone (D = 0.0031; fh1 = 0.9712).

We again found that the benchmark articulatory feature space

was outperformed by the combination of spectrograms and their



rectified temporal derivatives (D = 0.0045; fh1 = 0.9963). Also, we

again found that combining the articulatory featureswith the best

acoustic features only led to a negligible increase in performance

(D = 0.0009; fh1= 0.7218). In addition, as before, the benchmark

articulatory feature space performance was not stronger than

that of the spectrograms and phoneme onsets combined (D =

0.0010; fh1 = 0.2577). Lastly, we found that all competing feature

spaces outperformed the one-dimensional envelope (D =

0.0128–0.0213, all fh1 = 1). These results thus show that—in

terms of prediction performance—acoustic features outperform

the more complex articulatory features, which perform on a par

with features that only describe the phoneme timing.

Note that when we replaced the log-mel spectrogram features

chosen in the present study with a spectrogram more closely

modeled after the one used in [10], we obtained generally lower

performances and also a different pattern of results. Crucially,

we found that this could be attributed to a compressive non-line-

arity as included in the log-mel spectrogram (see Figure S6 for a

more detailed explanation). Taken together, these results further

support the notion that simple and physiologically motivated

transformations of the auditory stimulus can make important

differences to the interpretation of more-complex annotated

features.

Next, we considered the results of a PID analysis that assessed

the degree to which the predictions of competing feature spaces

shared information about the observed EEG responses with that

of the benchmark feature space and the degree to which they

contributed unique information (Figure 6C). We again found that

the predictions based on the best acoustic feature space were

highly redundant with predictions based on the benchmark artic-

ulatory features (mean of the corresponding effect = 0.9776; 95%

CI = 0.9358–1.0167). The same was the case for the combination

of the best acoustic features and the articulatory features (mean =

0.9527; 95% CI = 0.9104–0.9945). We also again found that the

unique information contributed by the benchmark articulatory

features was close to 0 (mean of the corresponding effect =

0.0231; 95% CI = �0.0115 to 0.0657), while the unique informa-

tion contributed by the best acoustic feature space was weakly

positive (mean of the corresponding effect = 0.1575; 95% CI =

0.1121–0.2109). Lastly, the amount of information only available

when jointly considering the best acoustic features and the

benchmark articulatory features (i.e., the synergy) was an order

of magnitude lower than that of the redundancy and did not

exceed noise thresholds (see Figure S5), which agreed with the

finding that combining the best acoustic features and the articu-

latory features did not lead to an improvement over the best

acoustic features.

Similar to our results using MEG, the combination of spectro-

grams and phoneme onsets produced slightly lower levels of

redundancy compared to the best acoustic model (mean =

0.9317; 95%CI = 0.8902–0.9765), and even lower levels of redun-

dancy were obtained for spectrograms alone (mean = 0.8658;

95% CI = 0.8157–0.9118), and for the envelope (mean =

0.6714; 95% CI = 0.5956–0.7205).

Based on these results, we concluded that in both MEG and

EEG data, the increased performance provided by benchmark

articulatory features over spectrograms alone could be explained

by a combination of spectrograms and their rectified temporal

derivatives. This purely acoustic feature space achieved higher
overall performance in predicting EEG responses. It did so by ex-

plaining the same information as the benchmark articulatory fea-

tures. However, it also carried information that was not available

from the predictions based on the benchmark articulatory

features.

Finally, we also found a very similar pattern of results in an

analysis of phoneme-evoked responses (Figure 6C). The MI of

the observed EEG time series and the four phoneme classes

was mostly shared with that of the predicted time series based

on all feature spaces. The predicted time series could thus ac-

count for a substantial amount of positive unique information,

while the observed EEG time series could only contribute nega-

tive unique information, i.e., misinformation. The observed EEG

responses thus did not contain any more information about the

manners of articulation than did the EEG response predictions

based solely on the envelope.

DISCUSSION

In this study, we set out to investigate to which degree signatures

of ‘‘pre-lexical abstraction’’ in MEEG responses to speech can

be explained with simpler, purely acoustic models. Our results

suggest that care must be taken when interpreting the results

of encoding or decoding models that consider higher-order con-

structs, such as the articulatory features of phonemes. We

showed that the predictive information that can be derived

from articulatory features is rooted in the timing information of

these features rather than in a more-detailed characterization

of the phoneme. Similarly, the ability to reliably decode sub-

groups of phonemes from MEEG data can be explained by our

simplest feature model, i.e., it is a direct consequence of

MEEG speech envelope tracking. It should therefore not be inter-

preted as evidence of more complex speech processing being

reflected in the recorded signal. Based on these results, we

argue here for the consideration of algorithmically interpretable

and physiologically plausible models of sensory encoding, for

which annotated feature spaces can nevertheless serve as

excellent benchmarks.

An inevitable limitation of this study is that our results cannot

ultimately prove the absence of explanatory power unique to

the articulatory features. It is possible that analysis pipelines

exist that could carve out parts of the responses such that the

articulatory features could beat our best acoustic feature space.

However, in our analyses, the articulatory features were given

strong chances to predict response variance. And we could

indeed replicate the originally reported effect of a performance

gain over spectrograms alone, only to then find a more parsimo-

nious explanation for this gain. Moreover, our findings suggest

that if the articulatory features could better explain certain parts

of the responses, these parts would account for a relatively small

portion of the total response variance. Given the already small

effect sizes, it would then be possible that additional and simi-

larly simple transformations of the acoustics could compensate

for possible articulatory advantages. The same holds true for

recent demonstrations of more-sophisticated linguistic feature

spaces [18, 20]. Essentially, this line of reasoning thus drives

home our main point. Any invocation of exciting, high-level

feature spaces will always entail the heavy burden of proof of

the absence of simpler explanations [56]. This should by no
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means discourage inspiring investigations from using such high-

level feature spaces, but it should encourage researchers to

nevertheless continue to consider simpler explanations.

Similarly, the ability to decode high-level semantic or phonetic

properties of speech from evoked neural data tantalizingly

suggests that the measured neural response reflects high-level

processing. However, in general it is extremely difficult to control

properly for all possible low-level stimulus properties, which

could confound the interpretation of the high-level feature de-

coding. Applying decoding analyses to the predictions of for-

ward models as we suggest here provides one way to address

this issue. If, as we find here, the high-level feature can indeed

be decoded from the prediction of a forward model based on

low-level stimulus features, it suggests that the decoding results

should not be interpreted as strong evidence of high-level neural

processing.

We used in our study a source reconstruction approach that

used data derived from two sources in bilateral auditory cortices.

Source-level MEG data in Brodbeck et al. [18], for example, sug-

gest that multiple, superior temporal sources related to speech

processing are robustly separable. This could be explained by

the difference in source reconstruction algorithms. Given the

relatively coarse, spatial resolution of our source-level data, we

chose not to focus our analysis on modeling activity recon-

structed from multiple locations in source space. Instead, we

invested our computational resources in a detailed analysis of re-

sponses from a single point per hemisphere that accounted for

much of the speech-related variance. This allowed us to flexibly

optimize analysis parameters specific to participants, hemi-

spheres, and feature (sub-)spaces. We believe that this data-

driven approach to parameter settings [57] marks an important

step toward more-principled pipelines in neuroimaging [58],

and our approach was inspired by growing efforts to avoid

MEG analysis parameter settings based on tradition [59, 60].

Since forward-encoding models promise to inform theories of

neuronal computations, what are the potential implications of

this study? The central question of interest concerns the origins

of the response variance that is commonly explained by the best

acoustic and articulatory benchmark features. However, inter-

preting the results of encoding and decodingmodels with regard

to such a causal question is never trivial [61, 62]. The feature

spaces considered here reflect functional—not mechanistic—

models [63] of varying predictive performance. What they essen-

tially relate is the input of the waveform of a speech stimulus to

the output of MEEG responses. These responses are far from

reflecting the entire, drastically higher-dimensional cortical audi-

tory representation of the stimulus. It seems safe to conclude

that this part of brain activity cannot readily provide a window

to arbitrary high-level cognitive processes.

Furthermore, an algorithmic consideration of our best acoustic

feature space rather points to operations that occur relatively

early in auditory processing. A spectral decomposition of com-

pressed dynamic range is typically part of cochlear models

[3, 53]. An additional temporal derivative and half-wave rectifica-

tionmight possibly be implemented by the various stations along

the subcortical auditory pathway. The question then is why

cortical neuronal mass signals [64] are time-locked to this result

of very early auditory processing, and whether these low-fre-

quency cortical responses carry such information so that further
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cortical processes react to it. Deeper insights into this problem

will also have to consider proxies to what downstream neurons

are encoding, such as the final behavioral responses [65–71].

Despite these caveats, it is interesting to speculate how the

feature spaces considered here might reflect aspects of actual

neuronal computations. Unlike modern ASR systems that can,

with limitations, understand a speaker’s intention [72], the mid-

level feature spaces considered here are all far from this feat.

Nevertheless, they can be interpreted as contributing to this

goal. The information bottleneck framework [73], for example,

suggests that feature spaces should allow information compres-

sion, i.e., gradual decreasing stimulus fidelity, while retaining

relevant aspects of the input. The log-mel spectrograms allow

us to discard irrelevant spectral and dynamic ranges, and

Gabor-filtering can do the same for spectrotemporal patterns

relevant for ASR systems [28]. This decomposition seems to

be especially beneficial for speech in noise, when features

similar to the best acoustic feature space used here can be

used to exploit the rapid amplitude dynamics in speech signals

to the benefit of ASR systems [74]. It is thus conceivable that

the predictive performance of this feature space could be rooted

in a tuning of the auditory system to ubiquitous noisy listening

environments. Hypotheses about the processing of speech in

noise are, however, best examined in datasets that sample the

stimulus space correspondingly [42, 75].

Another interesting observation is that the edges of these rapid

amplitude dynamics coincide with transitions to the central

vowels of syllables [40]. A rich literature is available on the inter-

pretation of low-frequency signals as a signature of a chunking of

the speech signal into syllable-like units [36–38, 76–79]. An even-

tual goal would, however, be to treat mid-level representations

as less independent from the more-abstract aspects of speech

understanding. Extracting the intermediate representations

generated while embedding speech into fixed dimensional se-

mantic vectors [80] could be a promising step toward an unbi-

ased and context dependent description of speech signals.

Conclusion
In a data-driven approach, we have studied models that explain

cortical neuronal responses as captured by source-localized

MEG and sensor level EEG in a story-listening paradigm. Our

results underscore that annotated linguistic feature spaces are

useful tools to explore neuronal responses to speech and

serve as excellent benchmarks. We find their performance for

explaining neuronal responses of high temporal resolution to

be exceeded and explained by a simple low-level acoustic

feature space that capitalizes on spectrotemporal dynamics.

Thus, we conclude that the consideration of parsimonious, algo-

rithmically interpretable and physiologically plausible features

will eventually lead to clearer explanations of observed neuronal

responses.
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EXPERIMENTAL METHODS AND SUBJECT DETAILS

Participants
24 healthy young participants (native speakers of English, 12 female, mean age 24.0 years, age range 18 – 35 years) agreed to take

part in our experiment. They provided informedwritten consent and received amonetary compensation of £9 per hour. The studywas

approved by the College of Science and Engineering Ethics Committee at the University of Glasgow (application number:

300170024).

METHOD DETAILS

MEG recording, preprocessing, and spatial filtering
MEG recording

Participants listened to a narrative of 55 minutes duration (‘‘The Curious Case of Benjamin Button,’’ public domain recording by Don

W. Jenkins, librivox.org) while their brain activity was recorded with a 248 channel magnetometer MEG system (MAGNES 3600WH,

4D Neuroimaging) at a sampling rate of 1017.25 Hz (first 10 participants) and 2034.51 Hz (last 14 participants). Prior to recording, we

digitized each participant’s headshape and attached five head positionmeasurement coils to the left and right pre-auricular points as

well as to three positions spread across the forehead. The session was split into 6 blocks of equal duration and additionally included a

repetition of the last block. The last ten seconds of each block were repeated as a lead-in to the following block to allow listeners to

pick up the story. Prior to and after each block, we measured the positions of the coils. If the movement of any of them exceeded

5 mm, we repeated the block. Playback of the story and trigger handling was done using PsychToolBox [82], and sound was
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delivered via two MEG compatible Etymotic ER-30 insert earphones. After the recording, participants had to answer 18 multiple

choice questions with 3 options each, where the number of correct options could vary between 1 and 3 per question. The questions

referred to the entire story, covering three details per recording block. The average performancewas 0.95with a standard deviation of

0.05 and a range from 0.78 to 1.00.

MEG preprocessing

Most of our analyses were carried out within the MATLAB computing environment (v2016a, MathWorks, Natick, MA, USA) using

several open-source toolboxes and custom code. Deviations from this are highlighted. Preprocessing was done using the fieldTrip

toolbox [83]. Initially, we epoched the data according to the onsets of the full blocks including the ten seconds of lead-in. For noise

cancellation, we subtracted the projection of the raw data on an orthogonal basis of the reference channels from the raw data. We

manually removed and subsequently replaced artifactual channels with spherical spline interpolations of surrounding channels

(mean number of artifactual channels per block: 3.07, standard deviation: 3.64; pooled across participants), replaced squid jumps

with DC patches and filtered the signal with a fourth-order forward-reverse zero-phase butterworth high-pass filter with a cutoff-fre-

quency of 0.5 Hz and excluded the lead-in parts from the blocks. We downsampled the data to 125 Hz and found unmixing matrices

using the runica ICA algorithm.We identified artifactual components reflecting eye or heart activity (mean number of components per

block: 6.70, standard deviation: 5.01; pooled across participants). We then unmixed the data at the original sampling rate and back-

projected it using mixing matrices where the artifactual components were removed. Finally, we downsampled the data to a sampling

rate of 40 Hz.

MEG source space

We employed three different source modeling approaches for our analysis. First, we aimed to identify regions in source space whose

activity was in a repeatable relationship with our auditory stimulation (‘‘story-responsive’’ regions [12, 50]). Second, we wished to

visualize these results on a group-level. Lastly, for our main intention of modeling the story-responsive regions, we designed a frame-

work that would allow us to optimize parameters of our spatial filters as part of a cross-validation, similar to a recent proposal by

Engemann & Gramfort [60].

Volume conductor models

For all three approaches, we obtained common volume conductor models. We first aligned individual T1-weighted anatomical MRI

scans with the digitized headshapes using the iterative closest point algorithm. Then, we segmented the MRI scans and generated

corrected-sphere volume conductor models [87]. We generated grids of points in individual volumes of 5 mm resolution. For group-

level visualization purposes, we also generated a grid with 5 mm point spacing in MNI space, and transformed this to individual

spaces by applying the inverse of the transform of individual anatomies to MNI space.

Initial data exploration: identification and characterization of story-responsive regions

To identify story-responsive regions in MEG source space, we projected the time-domain sensor level data through rank-reduced

linearly constrained minimum variance beamformer spatial filters [88] with the regularization of the sensor covariance matrices

lsource set to 5%, using the dipole orientation of maximal power. We correlated the responses to the last block with those to its

repeated presentation within each participant to obtain maps of test-retest-R2. We repeated this using the grids in MNI space

we had warped into individual anatomies for a group-level visualization using the plot_glassbrain function of the Python module

Nilearn [84].

We then explored howmany dipoles would explain howmuch of the repeatable activity in story-responsive regions. It is known that

due to the non-uniqueness of the inverse problem, the spatial resolution of MEG source reconstructions is inherently limited. Neigh-

boring grid points are thus often highly correlated, rendering analyses on a full grid highly redundant [51]. To avoid such an unnec-

essary computational burden for our modeling, we used an information theoretic approach to characterize redundant and unique

regions in source space.

First, we computed Mutual Information [MI] [43] at each grid point in individual source spaces between activity in the first and the

second repetition, essentially repeating the initial identification of story-responsive regions. Next, we applied the framework of PID

[46] to the data of repeated blocks in an iterative approach. PID aims to disentangle redundant, unique and synergistic contributions

of two source variables about a target variable (see later section dedicated to PID for more details). As the first source variable, we

here used the two-dimensional activity at bilateral grid points of individual peak story-responsivity during the first repetition. We then

scanned the whole grid in parallel for both repetitions, using the activity recorded during the first repetition as the second source

variable and the activity recorded during the second repetition as the target variable of PIDs (see Video S1 for an intuitive visualiza-

tion). We were then interested in the resulting maps of redundancy and unique information. The former would allow us to infer to what

degree other grid points with high story-responsivity shared their information about the repetition with the grid points of peak story-

responsivity. The latter on the other hand would show us where information unexplainable by these two peaks could be found. After

this first iteration, we added the grid point of peak unique information to the then three-dimensional first source variable in the PIDs

and repeated the computation across the whole grid. We reran this approach for a total of ten iterations. Finally, we computed MI

between the two-dimensional activity at bilateral peaks of story-responsivity in the first and the second repetition and compared

this to the unique information found in each iteration of our iterative approach.

Optimization of source space coordinates and sensor covariance regularization

In order not to unnecessarily spend computational resources, we wanted to limit our main endeavor of modeling MEG responses to

parts of the signal which actually were in a systematic relationship with the stimulus. A straight-forward solution for a selection of

these parts would have been to directly use the grid points identified as story-responsive using the test-retest correlation. However,
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since it is likely that participants paid a lesser degree of attention to themore predictable repeated presentation of the last chapter, we

could not rule out that the test-retest-R2mapswould be biased toward low-level auditory processing. Furthermore, thesemaps could

be influenced by differences in the position of the participant’s head in the scanner as well as the amount of eye blinks and head

movements. The peak test-retest points are thus not guaranteed to be the optimal locations for any given feature space model fit,

tested over the whole experiment. Moreover, it was possible that different feature spaces would optimally predict distinct regions.

Finally, we did not know a-priori what level of regularization of the sensor covariance matrices would be ideal to capture the

responses of interest in each individual dataset.

To account for all of these considerations in a data-driven manner, we treated the coordinates of regions of interest as well as the

regularization of sensor covariance matrices as hyperparameters of our model, which we optimized by means of a black-box

optimization algorithm. We kept the other specifications of the spatial filter design as described above. As initial coordinates, we

used the maxima of test-retest-R2 maps within each hemisphere. The boundaries of the coordinate hyperparameters were defined

by the boundaries of the respective hemisphere of the individual brain volume which we shrunk by a factor of 0.99 for this purpose to

avoid instabilities of the forward models close to their boundaries (Table S1). In each iteration of the black-box optimization, we then

applied a given amount of regularization to the precomputed sensor covariance matrix and computed the leadfield for a given vector

c= ðX;Y ;ZÞ of coordinates in source space using the precomputed volume conductor model for each block. Since the orientation of

the resulting dipoles was then arbitrary, i.e., possibly flipped across blocks, we estimated themean axis of dipoles across blocks and

changed the sign of the orientations of dipoles whose dot products with the orientation of the dipole closest to the mean axis were

negative. We then recomputed the leadfields for these aligned dipole orientations. Finally, we projected the sensor level data through

these spatial filters and z-scored them within each block to account for differences in mean amplitude across blocks.

Stimulus transformations

The speech stimulus was transformed into various feature spaces. We used the GBFB toolbox [28] to obtain 31-channel Log-Mel-

Spectrograms (Sg, ranging from 124.1 Hz – 7284.1 Hz) and summed these across the spectral dimension to also obtain the amplitude

envelope (Env). Additionally, we filtered the spectrograms with a set of 455 2D Gabor filters (‘‘Gabor’’) of varying center frequencies

corresponding to those of the Sg as well as spectral modulation frequencies U (0, 2.9, 6 12.2 and 25 Hz) and temporal modulation

frequencies u (0, 6.2, 9.9, 15.7 and 25 Hz). Notably, this implementation of the toolbox only considers a subset of all possible

combinations of center frequency as well as spectral and temporal modulation frequencies to avoid overly redundant features. As

a last acoustic feature space, we computed half-wave rectified first derivatives of the individual channels of the spectrograms

(‘‘Deriv’’ [18, 36]).

To construct annotated feature spaces, we used the Penn Phonetics Lab Forced Aligner [86] to align the text material to the

stimulus waveforms, providing us with onset times of phonemes comprising the text. These were manually corrected using Praat

[85] and subsequently transformed into a 23-dimensional binary articulatory feature space (‘‘Art’’ [12]; see Figure S7). For this, we

generated 23 time-series of zeros at a sampling rate of 40 Hz and inserted unit impulses at the onset times of phonemes correspond-

ing to the respective articulatory feature. Finally, we discarded the information about phoneme identity to obtain a one-dimensional

binary feature space of phoneme onsets (‘‘PhOn’’).

Our set FMEG of employed feature spaces then consisted of the following combinations: FMEG = fEnv;Sg;Sg&Deriv;Sg&Gabor;

Sg&PhOn;Sg&Art;Controlg, where Control was a combination of Sg, Deriv and Art. We downsampled the acoustic feature spaces

to 40 Hz and z-scored all feature spaces prior to modeling.

Mapping from stimulus to MEG

To perform a linear mapping from our feature spaces to the recorded MEG signals, we used ridge regression [89] in a 6-fold nested

cross-validation framework [44]. This allowed us to tune hyperparameters controlling the temporal extent and the amount of L2

regularization of the ridge models as well as the amount of regularization of the sensor covariance matrices and the coordinates

of positions in source space for the beamformer spatial filters in the inner folds, yielding data-driven optimized models for each

feature space, hemisphere and participant.

Linear model

The single-subject linear model we employed can be formulated in discrete time as:

brc;lsourceðtÞ=X
n

XtMax

t = tMin

wðy; tÞsðy; t � tÞ

Here, br denotes the neuronal response as obtained with a spatial filter with maximum gain at the vector c of coordinates ðX;Y;ZÞ in
source space and a regularization of the sensor covariance matrix of lsource. Further, s is a representation of the stimulus in a given

feature space, possibly multidimensional with dimensions y. Finally,w describes the filter weights across these dimensions and time

lags t ranging from tMin to tMax, where negative values refer to samples in the future of t and positive values refer to samples in the past

of t.

To obtain these filter weights, we used the following closed-form solution:

w=
�
STS+ lL2I

��1
STrc;lsource

Here, S denotes the lagged time series of the stimulus representation, each column consisting of a particular combination of lags t

and feature dimensions y, organized such that neighboring feature dimensions populate neighboring columns within groups of
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columns corresponding to time lags. The identity matrix I is multiplied with lL2, a hyperparameter adjusting the amount of L2

regularization. Larger values of lL2 force the resulting weights w closer to zero and thus reduce overfitting.

For the joint feature spaces consisting of multiple subspaces, the temporal extent and L2 regularization was optimized individually

for each subspace to obtain the best possible prediction performance. This meant that the matrix Swas constructed as the column-

wise concatenation of multiple submatrices with different numbers not only of feature dimensions y but also of lags t. Additionally,

thismeant that lL2 herewas a vector instead of a scalar, with asmany elements as feature spaces in the joint space. Corresponding to

the concatenation of S, different sections of the diagonal of the identity matrix were multiplied with the dedicated regularization

parameters of the corresponding subspace.

We used an additional regularization for the Gabor feature space.We had observed that feature dimensions belonging to the group

of fastest temporal modulation frequencies u had noisy and small filter weights at long absolute temporal lags. Based on this, we

concluded that the temporal extents t chosen for this feature space were essentially a compromise of long optimal t for feature

dimensions of slow u (‘‘Gb-Low’’) and short optimal t for feature dimensions of fast u (‘‘Gb-Hi’’). To remedy this problem, we

assigned the usual t to the group of slowest u and added additional t hyperparameters for the group of fastest u. The t of the

central u were then spaced proportionally to the mean auto-correlation times (ACT) of the corresponding groups of feature dimen-

sions of this stimulus representation. We defined the ACT as the shortest lag where the normalized and absolute auto-correlation

dropped below a value of 0.05. This allowed the optimization algorithm to pick long t for feature dimensions of slow u and short t

for feature dimensions of fast u.

Nested cross-validation and hyperparameter tuning

To make data-driven optimal choices for the range of lags t defined by tMin and tMax, the amount of L2 regularization lL2, the coor-

dinates in source space as well as the amount of regularization of the sensor covariance matrices lsource, we used nested cross-

validation. Specifically, this means that we split our stimulus and response data in six portions of equal durations. Two loops then

subdivided the data into training, tuning and testing sets. In each iteration, an outer loop assigned each of the six portions to be

the testing set. Additionally, in each iteration of the outer loop, a full run of an inner loop was performed, assigning four portions

to be the training set and the remaining portion to be the tuning set. This resulted in a total of 30 different assignments of portions

to different sets. With this framework, we first picked a certain combination of hyperparameters and computed the corresponding

weights w, the elementary parameters, using the training set. The resulting filters were convolved with the stimulus of the tuning

set to obtain predictions br which we correlated with the observed responses r to obtain the tuning performance. This was repeated

200 times with different combinations of the hyperparameters.

These combinations were chosen by a recent black-box optimization algorithm, Bayesian Adaptive Direct Search [BADS] [45].

BADS uses Gaussian Processes to construct a computationally cheap internal model of the multidimensional performance

landscape using already available evidence and smoothness assumptions. As the computationally relatively costly linear models

are evaluated across iterations, more evidence about the true performance landscape builds up which is used to update the internal

model, i.e., assumptions about the smoothness and shape of the performance landscape at hyper-parameter combinations not yet

evaluated. The internal model is used to update an acquisition function, whose maximum determines which combination of hyper-

parameters would be most informative to evaluate next in order to find the global optimum of the performance landscape. While this

algorithm is not guaranteed to find the optimal combination, i.e., it is possible that it gets stuck in local optima, it has been shown to

outperform other black-box optimization algorithms on datasets typical for cognitive neuroscience [45]. The values at which the

hyperparameters were initiated as well as the ranges to which they were constrained are shown in Table S1.

Once all iterations of an inner loop were finished, we averaged the hyperparameter choices of all inner folds. We then retrained the

elementary model parameters with stimulus and response data corresponding to these averaged hyperparameters on all five

possible assignments of data portions to training sets in the current outer fold.We subsequently averaged the elementary parameters

across inner folds and used the resultingweights to perform a prediction on the test set of the current outer fold. This was repeated for

all outer folds to obtain a number of test set predictions corresponding to the number of outer folds.

As the optimization procedure was not guaranteed to find the optimal combinations of parameters, a crucial quality control of our

approach was to check the amount of variance across parameter choices. High degrees would e.g., reflect that the optimization

algorithm would get stuck in local optima, or that the respective parameter was of minor importance for the model performance.

Low degrees on the other hand would demonstrate that the black-box optimization would converge on the same choice.

For the positions in source space, we found the overall amount of variation to be rather small (Figure S2A). In the worst case (Fig-

ure S2B), the source locations were scattered within a range of 3.06 cm, the median of this range was 0.61 cm (Figure S2C), only

slightly above the amount we allowed the participants to move in the scanner. In the best case, the range was only 0.23 cm.

We were also interested if our optimization would consistently pick distinct locations in source space for different feature spaces.

To evaluate this, we computed the silhouette index. As a measure of the consistency of a clustering, it relates the similarity of data

within a given class to the similarity of data outside of that given class and is bound between �1 and + 1. For the optimized source

positions of each outer fold o of the set of outer folds O and each feature space f of the set of feature spaces F, we computed the

silhouette index sðof Þ using the following formula:

sðofÞ= bðofÞ � aðofÞ
maxðaðofÞ;bðofÞÞ
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Here, aðof Þ denotes the average Euclidean distance between the source position chosen in the outer fold o and the source positions

chosen in Oyfor that feature space f, while bðof Þrefers to the minimum of average distances between the source position chosen in

the outer fold o for feature space f and source positions chosen for all outer folds in O for all feature spaces in Fy f.

Across feature spaces and hemispheres, we found results that were mostly inconsistent across participants (Figure S2D). Specif-

ically, we observed participants for whom the assignment of chosen source positions to feature spaces was appropriate as reflected

by silhouette indices close to 1, but also participants for whom this assignment was inappropriate as reflected by silhouette indices

close to � 1. In sum, on a group level and across feature spaces, there was no clear relationship between the choices of positions in

source space and the feature space used to model the MEG responses. Overall, this suggests that while there was no direct and

robust mapping of feature spaces to source positions, the optimization of the source positions tended to converge on relatively small

regions within a participant.

The choices of optimal hyperparameters for the beamformer spatial filter did not differ substantially across feature spaces (Fig-

ure S2E). While we observed a relatively high degree of variance in optimal choices across participants, we found the choices to

be relatively consistent within one hemisphere of a participant and across feature spaces as indicated by relatively high intra-class

correlation coefficients across participants with outer folds and feature spaces as different measurements for the left ð0:96Þ and right

ð0:88Þ hemispheres. However, we observed a pronounced difference between left and right ACs, with a higher level of regularization

for the left AC. Here, in some cases the optimal values even bordered on the boundaries we chose for the hyperparameter, suggest-

ing that in some cases, even higher values could have been optimal.

For the temporal extent, we found that this optimization resulted in characteristic temporal extents for each feature (sub-)space

(Figure S3A). For example, for the combination of articulatory features and log-mel spectrograms the optimization algorithm consis-

tently found shorter temporal extents for the articulatory features than for the log-mel spectrogram. Pooled across participants, we

observed very similar patterns in left and right ACs.

For the L2 regularization, we again found that the optimization found characteristic values to be optimal for each feature (sub-)

space. Specifically, for lower dimensional feature (sub-)spaces the amount of L2 regularization seemed to be less critical, yielding

flat distributions. However, for higher-dimensional (sub-)spaces, a higher value of regularization seemed to be beneficial (Figure S3B).

This was especially the case for the combination of articulatory features and the log-mel spectrogram, for which the distributions for

the two subspaces clearly differ.

QUANTIFICATION AND STATISTICAL ANALYSIS

Model comparisons
Bayesian Hierarchical Modeling of performances

In an initial evaluation of the encoding models, we wanted to statistically compare the predictive performance from models

using different feature spaces, obtained from multiple participants. Similar situations often arise in neuroimaging and are usually

complicated by small raw effect sizes across conditions in the presence of much larger between subject variability. A promising

way to address this is provided by hierarchical models, which allow to maintain sensitivity to effects of interest in these cases.

To evaluate the model performances r in both hemispheres h for each outer fold b of all participants i and focus on the

differences between the m different feature spaces f, we used a Bayesian hierarchical model with a zero intercept, partici-

pant-independent and participant-specific effects for each feature space as well as effects specific to each combination of

participants and folds, participants and hemispheres as well as hemispheres and feature spaces. This allowed us to assess

posterior distributions of the beta estimates of the means of each level of the categorical variable feature space. To implement

this model, we used the brms package [54] within the R computing environment [81]. Specifically, the chosen package imple-

ments a user-friendly interface to set up Bayesian hierarchical models using stan [90]. We used Markov chain Monte-Carlo

sampling with four chains of 4000 iterations each, 1000 of which were used for their warmup. The priors for standard deviation

parameters were not changed from the default values, i.e., half-student-t distributions with 3 degrees of freedom, while we used

weakly informative normal priors with a mean of 0 and a variance of 10 for the effects of individual feature spaces. The model

can be described with the following formula:

rn � N �
mn; s

2
�

s � jtð3;0;10Þ j
mn � bi:f½n� + bi:b½n� + bi:h½n� + bh:f½n�

+ bf1 ½n�+.+ bfm ½n��
bi:f ½n�;bi:b½n�;bi:h½n�;bh:f ½n�

� � N
�
0; s2

bint

�
sbint � jtð3;0;10Þ j
bf1 ½n� � N ð0;10Þ

«
bfm ½n� � N ð0;10Þ
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To compare the resulting posterior distributions for several parameter combinations of interest, we evaluated the corresponding

directed hypotheses using the brms package: bfa � bfb > 0, for all possible pairwise combinations of feature spaces, and obtained

the ratio of samples of the posterior distributions of differences that were in line with the hypothesis.

Partial Information Decomposition

Besides directly comparing the raw predictive power of models across feature spaces, we were also interested in characterizing the

detailed structure of predictive information carried in the different feature spaces. Since wewere particularly interested in discovering

to what degree the contributions of the annotated feature spaces can be explained with contributions of acoustic feature spaces, we

thus asked to what degree their predictions contained the same information about the observed MEG (redundancy, or shared

information) or to what degree their contributions were distinct (unique information). In information theory, this is possible within

the framework of Partial Information Decomposition (PID) [55, 91]. This can be seen as a further development of the concept of inter-

action information [92] or co-information (defined equivalently but with opposite sign). Considering the case where we have two

source variables (for example test set predictions from different models, brM1 and brM2) and a single target variable (for example the

observed test set MEG time course, r), co-Information can be thought of as the set intersection of the two source-target MI values

(i.e., the predictive information common to the two considered models). It is calculated as the difference between the sum of the

individual source-target MIs and the full joint MI when considering both sources together:

CoI = MIðbrM1; rÞ+MIðbrM2; rÞ �MIð½brM1;brM2�; rÞ
If both sources provide the same information about the target then

CoI = MIðbrM1; rÞ=MIðbrM2; rÞ=MIð½brM1;brM2�; rÞ
which quantifies in this case fully redundant overlap in information content. However, it is possible that

MIð½brM1;brM2�; rÞ > MIðbrM1; rÞ+MIðbrM2; rÞ
This results in a negative value for co-information and this sort of super-additive predictive effect is termed synergy.

Crucially however, co-information measures only the difference between redundancy and synergy, i.e., a net effect [55]. In the

presence of equally strong synergistic and redundant contributions, co-information is zero. Therefore, co-information does not

provide a way to quantify information provided uniquely by a single source.

The PID framework provides a solution to this problem. We used a recent implementation based on common change in surprisal

(Iccs) [46] which has previously been applied within a neuroimaging context [93]. The crucial step in a PID is to quantify redundancy,

since once this is done, the other quantities (unique information and synergy) can then be inferred via a lattice structure [55]. For the

redundancy measure ICCS, pointwise co-information is considered.

MI can be quantified at the pointwise level (i.e., at specific values of the underlying variables): MI is defined as the expectation of

pointwiseMI (PMI) over all values of both variables and is non-negative. PMI on the other hand is a signed quantity. When it is positive

it indicates those two particular values of the considered variables are more likely to occur together than would be expected if the

variables were independent. When it is negative, it indicates that those two particular values are less likely to co-occur than in the

independent case. Positive PMI can be interpreted as redundant entropy, while negative PMI is synergistic entropy [94]. Negative

PMI values have also been termed misinformation [91], since they correspond to a case where a Bayes optimal gambler who was

betting on the outcome of one variable based on observation of the other would actually do worse (on that particular observation)

than if they ignored the observation.

In regression terms, negative PMI relates to values that, were they to occur in the data, would have large absolute residual from the

regression line (i.e., deviate from the overall relationship), while positive PMI occurs for values that would be close to the regression

line (i.e., following the overall relationship).

Similarly, pointwise co-information can be considered as quantifying the set theoretic intersection of PMI values from two sources.

Two conditions have to be fulfilled in order for a pointwise co-information term to contribute to ICCS redundancy: (I) both sources have

PMI about the target with the same sign and (II) the pointwise co-information of these three variables is of the same sign as the two

PMI values. This allows to quantify pointwise contributions of the sources about the target which can be unambiguously interpreted

as redundant or overlapping contributions. A crucial advantage of this redundancy measure as opposed to other PID implementa-

tions is that it measures the overlap at the pointwise level and therefore can be interpreted as a within sample measure of redundant

prediction, directly linked to the decoding interpretation of MI. This is essential for the comparison of predictive models as we

consider here, for which redundancy measures which ascribe redundancy to sources even when they predict the target on disjoint

sets of samples would be inappropriate [46].

This implementation of PID does not provide a non-negative decomposition. For example, negative unique information values are

possible and they reflect a situation where there are pointwise misinformation terms that are unique to one source-target relationship

[46; see Table 7]. In our application, negative unique information means there are time periods where one model mis-predicts, i.e.,

that combination of model prediction and MEG values is less likely to occur than if the model and prediction were shifted randomly,

while the second model does not. In other words, there is a time window where that model is uniquely unhelpful for predicting the

MEG signal, even though, of course, on average over time, it does have predictive value. In cases where there is negative unique

information in the predictions of one model whose marginal MI about the MEG values is being used to normalize the redundancy

values, it is therefore possible to obtain normalized redundancy ratios > 1.
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We here performed PIDs for each combination of outer fold predictions of the annotated feature space with those of the acoustic

feature spaces as sources and the recorded MEG as targets. Critically, we retrained all models with fixed hyperparameters of

regularization of sensor covariance matrices and coordinates in source space to those previously chosen as optimal in the inner folds

when training themodel based on the Sg&Art feature space. This way, we gave the Sg&Art feature space the best chances to achieve

maximal unique information. To compute the respective information theoretic quantities with these continuous variables, we

transformed the variables to be standard normal while preserving rank relationships by calculating the empirical cumulative density

function (CDF) value at each data point and applying the inverse standard normal CDF [43] prior to running ICCS PIDs for Gaussian

variables via Monte Carlo integration [46]. To interpret the raw values of the PIDs, we divided them by the marginal MI of the bench-

mark articulatory feature space prediction about the observed MEG. The normalized redundancy then represents the proportion of

the predictive information of the benchmark model which is available also from the tested acoustic feature model.

To evaluate the results across folds, hemispheres, participants and feature spaces, we used Bayesianmodels similar to those used

for the evaluation of the performances. The corresponding model can be described as follows:

redn

MIn
� N �

mn;s
2
�

s � jtð3;0;10Þ j
mn � bi:f½n� + bi:b½n� + bi:h½n� + bb:f½n�

+ bf1 ½n�+.+ bfm�1 ½n��
bi:f ½n�;bi:b½n�;bi:h½n�;bh:f ½n�

� � N
�
0; s2

bint

�

sbint � jtð3;0;10Þ j
bf1 ½n� � N ð0;10Þ

«

bfm�1 ½n� � N ð0; 10Þ
For the ratios of unique information, we concatenated the unique information of both competing sources x and y in all comparisons

to a single response variable and changed the modeling approach to include predictors for unique information of both sources in

all m� 1 comparisons.

unqn

MIn
� N �

mn; s
2
�

s � jtð3;0;10Þ j
mn � bi:f ½n� + bi:b½n� + bi:h½n� + bh:f ½n�

+ bunqxf1 ½n�+.+ bunqxfm�1
½n�

+ bunqyf1 ½n�+.+ bunqyfm�1
½n�

�
bi:f ½n�;bi:b½n�;bi:h½n�;bh:f ½n�

� � N
�
0; s2

bint

�

sbint � jtð3;0;10Þ j
bunqxf1 ½n� � N ð0;10Þ

«

bunqxfm�1
½n� � N ð0;10Þ

bunqyf1 ½n� � N ð0;10Þ
«

bunqyfm�1
½n� � N ð0;10Þ

The resulting values of synergywere very low.We thuswanted to assess towhich degree the observed synergy could only be obtained

with intact predictions from the benchmark articulatory features, or to which degree it could also be observed when the benchmark’s

predictions were randomly permuted.We performed circular shifts of the predictions based on the Sg&Art features by a random num-

ber of samples, where the randomnumberwas constrained to be at least 200 samples andmaximally the number of available samples

minus200samples toavoid temporal autocorrelation.WecomputedPIDsof 1000of thesepermutations.We thendefinednoise thresh-

olds as the 95th percentile of the 1000 maximum values found in permutations across feature spaces, sources and outer fold test sets

and calculated the fraction of data points (outer fold test sets, sources) within each participant and feature space. To also compare

unique information of both sources and redundancy values to such noise thresholds, we repeated this process, shuffling predictions
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based on the Sg&Art features for thresholds for the information unique to predictions based on the Sg&Art features and shuffling

observed MEG time series for redundancy and information unique to predictions based on the competing feature spaces.

Phoneme-evoked dynamics

A recent study reported that epoching EEG recordings from a story-listening paradigm according to the onsets of phonemes allowed

the decoding of four classes of phonemes, so-called manners of articulation, from the resulting event-related potentials [22]. We

aimed to first replicate this finding with our MEG data and second assess to which degree our linear encoding models could account

for this phenomenon.

We computed ‘‘Phoneme-Related Fields’’ (PRFs) using the 34562 phoneme presentations we had previously identified in our

stimulus material. For this, we mapped the set of phonemes to manners of articulation as specified by Khalighinejad et al. [22;

see Figure S7 for a mapping table]: Plosives, fricatives, nasals and vowels. We then epoched the continuous MEG data for a time

range from � 0:1s – + 0:6s around phoneme onsets, binned it across epochs for each time point using four equipopulated bins

and computed mutual information between the MEG data and the four manners of articulation.

To ensure that we would capture the maximum effect of the MI, we delegated the choice of source positions for the left and right

hemispheres as well as sensor covariance regularizations to the BADS algorithm similarly as before (Figure S4). However, this time

we optimized the source model parameters with respect to the sum of MI of observed MEG data about the phoneme classes across

time points. We then retrained our encoding models with the source model parameters fixed to these choices.

To assess the results of this optimization, we recalculated the maximum distance metric used in the assessment of the chosen

source positions during our modeling, this time also including the positions found for optimal phoneme class decoding and plotted

the difference to the previously obtained maximum differences (Figure S4A). The results reflected that still, all positions lay in STG,

while for some participants, the positions found to be optimal for the PRF analysis were different from those obtained during the

modeling.

Subsequently, we performed the samePRF analysis on the outer fold predictions of each feature space.Wewere then interested in

the redundant and unique contributions of observed and predicted MEG to the MI about manners of articulation. We thus performed

PIDs with observed and predicted PRFs as sources and the manners of articulation as the target, separately for each feature space,

yielding phoneme-related redundancy as well as unique profiles.

Analysis of EEG dataset

To assess towhich degree ourmain findings would generalize from ourMEG to EEGdata, we also performed an analysis of an openly

available EEG story listening dataset [49]. This dataset is part of the data onwhich the effect of a gain of prediction performance of the

combination of spectrograms and articulatory features over spectrograms alone was originally reported.

EEG preprocessing

We analyzed the 128 channel EEG recordings of a duration of 1 hour and 29 s of 13 participants. They had been acquired in 20 blocks

of approximately equal duration at a sampling rate of 512 Hz using a BioSemi ActiveTwo system and downsampled to 128 Hz. We

rereferenced the data to the average of two additional mastoid reference channels, spline interpolated noisy channels identified by

visual inspection (mean number of noisy channels: 3.29 standard deviation: 4.19, pooled across participants), applied a fourth order

forward-reverse butterworth high-pass filter with a cutoff frequency of 0.5 Hz and attenuated strong transient artifacts identified by

visual inspection with a hamming window to have an absolute amplitude of 90% of the maximum of the absolute clean signal. Next,

we z-scored individual blocks and winsorized the time series by replacing remaining artifacts with an amplitude stronger than ± 3

standard deviations by ± 3 and concatenated the individual blocks to single datasets. We then found unmixing matrices using the

runica ICA algorithm. We identified artifactual components reflecting eye or heart activity and backprojected the unmixed data using

mixing matrices where the artifactual components were removed. Finally, we downsampled the data to a sampling rate of 40 Hz.

Stimulus Transformations

In general, we reused the same pipeline to generate non-linear transformations of the stimulus as we had used for the stimulus of our

MEG dataset. However, due to the high noise level of the EEG data, we decided to omit the high-dimensional Gabor feature space

and focused on assessing if the acoustic feature space found to explain the performance gain of the benchmark articulatory features

over spectrograms alone in the MEG dataset could do so in the EEG data as well. Additionally, we were interested in more faithfully

reproducing the original results [10], where a spectrogram different from the log-mel spectrogram employed here had been applied.

To do so, we generated a bank of 16 fourth order zero-phase butterworth bandpass filters with mel-spaced center frequencies (250,

402, 577, 780, 1015, 1288, 1605, 1971, 2396, 2888, 3459, 4121, 4888, 5777, 6807 and 8001 Hz), where the cutoff frequencies were

defined as half of the distances to the neighboring center frequencies. The absolute values of the Hilbert transform of the output of

these filters served as an approximation to the spectrogram used in the original publication (‘‘Sg16’’). Moreover, wewere interested to

which degree possible differences between the performances achievedwith this spectrogram compared to our log-mel spectrogram

were attributable to a compressive nonlinearity [19] included in the latter. We therefore generated an additional spectrogram

(‘‘Sg16c’’) where we raised the values of Sg16 to the power of 0.3. This gave us a set of feature spaces FEEG = fEnv; Sg16;
Sg16c; Sg; Sg16&Deriv16; Sg16c&Deriv16c; Sg&Deriv; Sg16&PhOn; Sg16c&PhOn; Sg&PhOn; Sg16&Art; Sg16c&Art; Sg&Art;

Controlg
Forward Modeling

To keep the results comparable to the original publication, we performed ridge regressions to model responses at the 12 electrodes

whose performances were reported in the main result of the original publication (B28, B29, B30, C3, C4, C5, D3, D4, D5, D10, D11,

D12) using the function ‘‘mTRFcrossval.m’’ from themTRF toolbox [89]. However, we implemented a small change that allowed us to
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do a nested crossvalidation to tune the regularisation hyperparameter lL2. We trainedmodels on 18 of the 20 available blocks, picked

the lL2 that resulted in the best prediction performance on a validation block and evaluated the test performance on the remaining

block. This procedure was rotated such that each block served as the test set once. We specified the range of lL2 values as

f0:1 k j k e½ � 25.60�g, over which the function performed an exhaustive grid search where the extreme values were never chosen.

For the parameters of temporal extent, we used the same values as in the original publication, i.e., tMin = � 0:1 and tMax = 0:4

seconds.

Model Comparisons

The model comparisons employed here were largely the same as for the MEG data.

To evaluate the test set prediction performances of the forwardmodels, we used the sameBayesianmodeling approach aswe had

used for the analysis of the MEG data.

We also performed the same PID analysis with model predictions as sources and observed EEG time-series as targets and

evaluated its performances with the same Bayesian models as we had used for the MEG analysis. However, due to the higher noise

level, we only considered data points where the MI of predictions based on the benchmark articulatory feature space and observed

time-series surpassed a noise threshold defined as the 95th percentile of MI values obtained from time shifted permutations,

corrected across electrodes usingmaximum statistics. Additionally, to account for the skewed distributions of the ratios of PID quan-

tities normalized by themarginal MI of the predictions based on the benchmark articulatory feature space and the observedMEG, we

used a log-normal response family for the Bayesian modeling and considered the posterior distributions of themedians of the effects

of interest. We repeated the computation of noise thresholds as described for theMEGdata. Finally, we performed the same analysis

of phoneme evoked responses on the set of electrodes used for the modeling as we had performed on the MEG data.

DATA AND SOFTWARE AVAILABILITY

Anonymized MEG and structural MRI data as well as custom code are available on demand by emailing the Lead Contact.
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