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Patient-specific orthopaedic implants are emerging as a clinically promising treatment option for a growing number of
conditions to better match an individual’s anatomy. Patient-specific implant (PSI) technology aims to reduce overall
procedural costs, minimize surgical time, and maximize patient outcomes by achieving better biomechanical implant
fit. With this commercially-available technology, computed tomography or magnetic resonance images can be used in
conjunction with specialized computer programs to create preoperative patient-specific surgical plans and to develop
custom cutting guides from 3-D reconstructed images of patient anatomy. Surgeons can then place these temporary
guides or “jigs” during the procedure, allowing them to better recreate the exact resections of the computer-generated
surgical plan. Over the past decade, patient-specific implants have seen increased use in orthopaedics and they have
been widely indicated in total knee arthroplasty, total hip arthroplasty, and corrective osteotomies. Patient-specific
implants have also been explored for use in total shoulder arthroplasty and spinal surgery. Despite their increasing
popularity, significant support for PSI use in orthopaedics has been lacking in the literature and it is currently uncertain
whether the theoretical biomechanical advantages of patient-specific orthopaedic implants carry true advantages in
surgical outcomes when compared to standard procedures. The purpose of this review was to assess the current sta-
tus of patient-specific orthopaedic implants, to explore their future direction, and to summarize any comparative pub-
lished studies that measure definitive surgical characteristics of patient-specific orthopaedic implant use such as
patient outcomes, biomechanical implant alignment, surgical cost, patient blood loss, or patient recovery.
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Introduction

Surgical implant devices have been used worldwide in
orthopaedic surgery for over 100 years1. Today, modern

implants are commonly used in joint arthroplasties, spine
fixation, tissue reconstruction, as well as for fracture fixa-
tion2. The clinical need for such orthopaedic implants will
continue to increase, as projections have demonstrated that
the demand for total knee arthroplasties (TKAs) in the
USA will grow by 484%, from 719,000 annual TKA proce-
dures in 2015 to 3.48 million by 2030, while the demand
for total hip arthroplasties (THAs) will grow by 172%, from
332,000 to 572,000 annual THA procedures over the same
time period3. This is in part due to THAs and TKAs
becoming increasingly common in younger patients, as
joint arthroplasty procedures in patients under 65 years
increased by 109% between 2000 and 2007, compared to an
increase of just 46% over the same time period for patients
over 65 years4.

This rise in joint arthroplasty coupled with a trend
toward younger patients is noteworthy, as Harrysson et al.
cite that over a preliminary 10-year period, younger patients
face a significantly higher risk of implant failure in under-
going a total joint arthroplasty (TJA)5. Several factors con-
tribute to this joint arthroplasty failure, most notably
micro-motions of the implant due to uneven stress distribu-
tion on the bone surface6. This is primarily a concern in the
increasingly prevalent younger and more active patient
populations. The uneven stress distribution existing at the
bone–implant interface is a result of the rigid bone prepara-
tion at the implant site in a conventional TJA7. In a tradi-
tional total joint arthroplasty, bones are uniformly prepared
for implant component fit, resulting in a “squared-off” bone
end that lacks the roundness of the natural periarticular osse-
ous anatomy7. This bone contouring can have a dramatic
effect on weight distribution and can lead to the “corners” of
the bone–implant interface taking on a disproportionate
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amount of stress, resulting in harmful bone remodeling and
eventual loosening of the implant7.

In light of these insights, there has been increased
attention paid to patient-specific implants (PSIs) in an
attempt to increase implant durability, while maintaining or
decreasing associated implant costs8. PSIs utilize magnetic
resonance imaging (MRI) or computed tomography
(CT) scans of a joint or bone to create an alignment guide
for each component of the implant that is specific to a
patient’s unique anatomy8. This improves implant fit and
load distribution while minimizing the inefficiency and cost
associated with sizing implants in the operating room7. Stress
concentrations shown in Fig. 1 demonstrate the dispropor-
tionately localized stress along the sharp edges of a bone sur-
face prepared for conventional implant (Fig. 1A), while bone
surfaces of a PSI showed a more uniform stress distribution
due to the pre-planned surgical cuts, which better recreate
the patient’s natural contoured anatomy (Fig. 1B)7. The bal-
anced load distribution of PSIs is consistent across implant
types when compared to their conventional standardized
counterparts. Despite this evidence for improved fit and load
distribution, the assumed efficacy of patient-specific implants
is still controversial. According to a 2014 survey of nearly
15,000 AAOS (American Academy of Orthopaedic Surgeons)
orthopaedic health professionals, only 47% of them see a
benefit to using patient-specific implants over traditional
implants in orthopaedic surgery9. Given this divide in opin-
ion in the field, further investigation into the biomechanics,
patient recovery, cost, and true efficacy of PSI surgical
options is essential.

Methods

For this review of the literature, related published reports
were found via searches of PubMed using the following

subject terminology: “Orthopaedic PSI,” “patient-specific
orthopaedic implants,” and “patient-specific orthopaedic
instruments”. In total, these searches returned 397 published
articles. Of these, 11 non-English articles were preliminarily

excluded. Then, abstracts of all remaining articles were
browsed for relevancy to the study and 279 non-related pub-
lications were excluded. This left 107 articles for final review.
Each article was strictly screened for quality via review of
proper methodology, acceptable research design, and the
reputability of its journal. Twenty-seven articles were
screened out due to unclear or improper study methodology,
leaving 80 research articles for inclusion in this review. This
entire process is depicted in Fig. 2.

Current Applications

Total Knee Arthroplasty
With the increasing popularity of TKA treatment for debili-
tating knee osteoarthritis and loss of joint function, investi-
gating methods to improve the efficacy, accuracy, and
reproducibility of TKAs has become an important goal in
contemporary orthopaedic research, with patient-specific
TKA holding potential10. Biomechanical analysis cites correct
implant component alignment as one of the most important
features of a successful TKA11. TKA implant malpositioning
relative to a patient’s natural knee anatomy can lead to patel-
lofemoral pain, knee instability, stiffness, inferior function,
inferior range of motion, and wear and loosening of compo-
nents: all precursors for implant failure (Fig. 3)13–15. Simi-
larly, proper anatomical alignment correlates with better
knee function, faster rehabilitation and recovery, less pain,
increased TKA implant longevity, and improved quality of
life12,14,16–20.

Despite the importance of proper TKA implant align-
ment, conventional TKA surgical techniques have been asso-
ciated with a high incidence of implant malalignment
(20%–30%) independent of surgeon experience or US News
and World Report hospital ranking21–24. One of the primary
objectives of PSI design is to reduce this malalignment in an
effort to reduce associated complications or implant failure.
In a PSI TKA, a commercial PSI program uses a MRI or CT
scan to take patient-specific measurements of the complete

A B

Fig. 1 Representation of the stress distribution of bone surface for conventional (A) and patient-specific (B) implant with both loading and reaction

force applied in the center. Maximum stresses are shown in red color at a level of 5 MPa. Green contour stress levels are 2.5 MPa7.
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joint space in order to optimally guide the operative plan
and the surgeon’s specific bone cuts11. Ideal joint alignment
theoretically results from the patient’s postoperative mechan-
ical leg axis, femoral component coronal alignment, tibial
component coronal alignment, femoral component sagittal
alignment, and tibial component sagittal alignment11. This
includes the distal and posterior cutting planes for the femur
and the proximal cutting plane for the tibia as well as the
shape, size, and fit of the implant, which is displayed in a 3-
D anatomic model10. The program also provides the surgeon
with on-screen warnings if a cutting plane will result in an
undesirable outcome such as “notching” (Fig. 4). After the
surgeon reviews the preoperative plan, custom-made jigs are
manufactured based on the preoperatively planned bone
resections (Fig. 5). These jigs act as temporary guidance to
precisely reflect the preoperative plan and allow the surgeon
to make the appropriate resections9.

Despite the theoretical advantages of PSIs in TKA,
there is controversy regarding the clinical advantage of PSI
use over traditional implants for TKA procedures. Currently,
there is no reported clinical advantage of PSI use over tradi-
tional implants for outcomes in regards to blood loss, range
of motion, length of hospital stay, postoperative Oxford knee
score at 3 months, or postoperative UCLA activity score at
2 years8,25–35. However, Ng et al. demonstrated that PSIs

result in improved accuracy of biomechanical implant align-
ment when compared to standard TKA implants30. Further-
more, a 2015 cadaver study by Patil et al. showed that PSI
TKAs allow for better knee kinematic function when com-
pared to a standard TKA36. This was shown by testing active
femoral rollback, active tibiofemoral adduction, and passive
varus-valgus laxity in cadaver knees that had either been
implanted with patient-specific implants using patient-
specific cutting guides, or with a standard implant using tra-
ditional intramedullary alignment cutting guides. The study
concluded that PSI TKAs resulted in knee kinematics signifi-
cantly closer to normal than the standard TKA implants
were able to achieve, potentially suggesting improved func-
tion and patient satisfaction after a PSI TKA with the
enhanced restoration of knee kinematics that PSIs allow
for36. Patient-specific TKA implants also carry a potential
economic advantage, as DeHaan et al. found that a patient-
specific TKA carries a shorter average operating room time
by 20.4 min and an average of four fewer instrument trays
utilized per operation when compared to a traditional TKA
procedure37. They argue that the shorter operating time and
fewer instrument trays result in a net savings of US$736 per
operation when compared to traditional TKA, even when
they accounted for the additional cost of PSI imaging37. With
the potential cost savings and improved alignment, PSI
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Fig. 2 Flowchart depicting the selection process for articles included in

this review.

A B

Fig. 3 Anterior (A) and lateral (B) radiographs of knee, 2 years after TKA

using a traditional cruciate-retaining implant with notable loosening and

polyethylene wear of the implant12.
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TKAs could be an advantageous treatment option in the
future. However, studies are needed to assess long-term PSI
TKA patient outcomes at 10 or more years before definitive
conclusions can be made.

Total Hip Arthroplasty
Traditional total hip arthroplasty (THA) consistently
improves patient range of motion, decreases patient pain,
and improves patients’ quality of life38–40. In a traditional

THA, modular implants are placed using basic instrumen-
tation and the surgeon’s intraoperative assessment of ana-
tomical landmarks in the patient40. One of two strategies is
typically employed for a traditional THA: cemented or
uncemented fixation of the femoral stem (Fig. 6)42.
Figure 6 shows a comparison of cemented (Fig. 6A) fixation
and press-fit (Fig. 6B) fixation41. Without a clear advantage
of using one fixation method over the other, orthopaedic
surgeons are exploring PSIs as an alternative to traditional

A

B C

Fig. 4 Adapted user interface showing the data

necessary for preoperative planning of a patient-

specific total knee arthroplasty: (A) This image

displays the distal and posterior cutting planes and

the sagittal alignment of the femur (yellow lines), and

the proximal cutting plane of the tibia with its slope

(yellow lines). Red lines display the mechanical axis of

the femur and tibia as well as the transepicondylar

axis of the knee. The software displays a warning (B) if

the anterior cutting plane exits the femoral cortical

bone or (C) if tibial overhang occurs10.

A

B C

Fig. 5 Femoral and tibial custom-made jigs (A) used to

guide the surgeon’s cuts in the femur (B) and tibia (C).
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implants in THA43–45. Particular interest has been given to
the improvement of acetabular cup alignment, as acetabular
cup malpositioning has been demonstrated to be the most
common cause of THA revision46. Accurate acetabular cup
positioning in THA has been demonstrated to decrease the
risk of dislocation, impingement, and implant wear
rate47–55. Accurate acetabular cup placement could be an
important advantage for using PSIs in THA procedures. In
a PSI THA, preoperative computer-assisted surgical pla-
nning software is used to plan the procedure and to fabri-
cate patient-specific instruments for use in guiding the
procedure42,56 (Fig. 7). The temporary PSI acetabular cup is
placed within and around the acetabulum of the patient42

(Fig. 8). A peripheral guide-wire is then drilled through the
acetabular PSI cup, eventually serving as a reference for the

trajectory of acetabular reaming. Then, the temporary PSI
guide cup is removed, and an appropriately sized perma-
nent acetabular component is chosen and inserted with the
reference of the residual guide-wire42. The PSIs are
designed based on a CT scan or MRI of the patient’s hip,
with great attention given to the patient’s unique bony
morphologic features of the acetabulum and proximal
femur42. This methodology theoretically minimizes the
sources of error associated with conventional THA method-
ology, which has a much higher dependence on appropriate
patient positioning, pelvis orientation, exposure, and sur-
geon experience42,57–60.

Similar to PSI usage in TKA procedures, there is a lack
of literature comparing clinical outcomes of PSIs and con-
ventional THAs. However, PSIs have been demonstrated to

Cemented Uncemented

Metal Metal

Cement

Bone Bone

Porous
Coating

A B

Fig. 6 (A) A cemented implant is held by cement,

which attaches the metal implant directly to the femur

bone. (B) A press-fit implant has a porous meshing

between the implant and bone, allowing for the

ingrowth of bone into the mesh41.

Fig. 7 Screen shot of a surgical simulator software

program used for preoperative planning and

manufacturing of a 3D printed patient-specific implant

(PSI) acetabular cup42.
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be more accurate at placing acetabular THA implants in
their intended position and alignment, theoretically reducing
the risk of implant wear, dislocations, impingement, and
revision42,61–65. PSI THA technology could also carry advan-
tages for treating patients with a high body mass index
(BMI) or unique morphologies. A higher BMI correlates with
malpositioned acetabular cups in THAs, yet Small et al.
found no difference in positioning for those patients with
high BMI in patient-specific THAs42,66. This is attributed to
the fact that traditional THA operative plans are impacted
by soft tissue, patient positioning, and the degree of pathol-
ogy. In comparison, PSI THA technology primarily relies on
the imaging of the bony anatomy, allowing for objective
measurements and preoperative customization42. Despite this
benefit of PSIs, long-term outcomes and cost analysis data
for PSI THAs are required before a recommendation regard-
ing the use of PSIs for hip arthroplasty can be made.

Bone Plates
A recently emerging indication for PSI use is in corrective
osteotomies. 3-D bone models are developed from CT scans,
and a planned correctional osteotomy is simulated by manipu-
lating the virtual bone models in computerized 3-D space67–74.
Measurements are taken for the development of patient-
specific cutting guides and a patient-specific osteosynthesis
plate to stabilize postoperative bone healing (Fig. 9)75,76. Accu-
racy in preoperative quantification of the surgical reconstruc-
tion is critical, as over-correction and under-correction in the
correctional osteotomy is associated with loss of range-of-
motion and muscle strength77. Therefore, computerized mod-
eling, planning, and manufacturing of implants have seen
increasing popularity75. Laboratory studies using patient-
specific guides have reported average residual errors less than
1� and 1 mm for simulated osteotomies, much lower than the
2.4� average error associated with a standard corrective osteot-
omy78,79. However, as with joint arthroplasties, clinical out-
come and cost studies are necessary prior to justifying the
increased cost of PSIs for this application.

Future Applications
With its increasing popularity in total knee arthroplasties,
total hip arthroplasties, and corrective osteotomies, moving
forward PSI technology has potential indications in many
orthopaedic procedures. The idea of improved patient-specific
implants for spinal surgery is currently being explored, with
Amendia, a provider of spinal technologies, recently acquiring
Custom Spine and the rights to its 41 patents relating to
patient-specific spinal technologies80. The orthopaedic depart-
ment at Cleveland Clinic has also explored the use of
patient-specific instruments in glenoid implant positioning in
shoulder arthroplasty. Their results suggest that patient-
specific guiding instruments allow for a significant decrease in
the average deviation of implant position for inclination and
medial-lateral offset in such procedures81.

There is controversy regarding the efficacy of patient-
specific orthopaedic implants, yet the theoretical alignment
and precision of PSI methodology provide potential advan-
tages when compared to standard procedures. However, the
long-term clinical efficacy of this custom technology must be
demonstrated in further clinical study before the widespread
application of PSI technology is fully supported and indi-
cated for patient care.

A B

Fig. 9 Outline of a computer-assisted planning

approach for a corrective osteotomy with plate

fixation. (A) First the degree of malunion is quantified

by superimposing the proximal misaligned bone

(orange) with the mirrored contralateral bone (green).

(B) The distal fragment of bone is then reduced

through simulation (violet) and the planned

positioning of the patient-specific fixation plate is

calculated and displayed75.

Fig. 8 A 3D printed patient-specific implant (PSI) right acetabular cup

placed in a native acetabulum/pelvis patient-specific model. Both the

model and implant were manufactured based on a patient computed

tomography (CT) scan, and were printed with an SLA 5000 3D printer

from 3D systems using Watershed XC11122 resin42.
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