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1  | INTRODUC TION

Previous genome‐wide association studies (GWASs) have identi‐
fied a large number of SNPs associated with complex traits and 
diseases.1-3 A big challenge after GWAS is to explain the functions 
of the identified SNPs, and to illustrate the mechanisms underly‐
ing the associations. Notably, only 7% of the identified variations 

are located in protein‐coding regions,4,5 and the majority of dis‐
eases‐associated variations are unlikely to affect the protein func‐
tions by changing the amino acid sequence. DNA methylation 
plays an important role in regulating expression of target gene. 
DNA methylation at promoter is dynamically linked to gene ac‐
tivity, and could directly influence the patterns of gene expres‐
sion and cellular differentiation.6 Aberrant DNA methylation in 
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Abstract
Genetic variants have potential influence on DNA methylation and thereby regu‐
late mRNA expression. This study aimed to comprehensively reveal the relationships 
among SNP, methylation and mRNA, and identify methylation‐mediated regulation 
patterns in human peripheral blood mononuclear cells (PBMCs). Based on in‐house 
multi‐omics datasets from 43 Chinese Han female subjects, genome‐wide associa‐
tion trios were constructed by simultaneously testing the following three association 
pairs: SNP‐methylation, methylation‐mRNA and SNP‐mRNA. Causal inference test 
(CIT) was used to identify methylation‐mediated genetic effects on mRNA. A total 
of 64,184 significant cis‐methylation quantitative trait loci (meQTLs) were identified 
(FDR < 0.05). Among the 745 constructed trios, 464 trios formed SNP‐methylation‐
mRNA regulation chains (CIT). Network analysis (Cytoscape 3.3.0) constructed multi‐
ple complex regulation networks among SNP, methylation and mRNA (eg a total of 43 
SNPs simultaneously connected to cg22517527 and further to PRMT2, DIP2A and 
YBEY). The regulation chains were supported by the evidence from 4DGenome da‐
tabase, relevant to immune or inflammatory related diseases/traits, and overlapped 
with previous eQTLs from dbGaP and GTEx. The results provide new insights into 
the regulation patterns among SNP, DNA methylation and mRNA expression, espe‐
cially for the methylation‐mediated effects, and also increase our understanding of 
functional mechanisms underlying the established associations.
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cancer was associated with abnormally regulated expression of 
normal cellular genes.7 Recently, disrupted DNA methylation pat‐
terns were established as a contributor to metabolic syndrome,8,9 
schizophrenia10,11 and inflammatory or autoimmune disorders.12,13 
The feature and distribution of DNA methylation have been stud‐
ied in a variety of tissues/cells, and these genome‐wide maps of 
DNA methylation have revealed interesting features and provided 
important insights into its potential functions in genome regula‐
tion.14,15 However, the functional mechanism underlying the vari‐
ation in DNA methylation itself is still  largely unknown. Previous 
studies have revealed that DNA methylation at specific loci can be 
influenced by sequence variations.16-19 So far, how these genetic 
variations exert their effects was largely unknown, for example, it 
is unknown whether the SNPs exert their effects on DNA methyl‐
ation and ultimately affects the gene expression.

Genome‐wide expression quantitative trait locus (eQTL) analysis 
is a well‐known method to explore genetic effect of SNP on gene 
expression. This approach has extensively been used to investi‐
gate the associations between SNP and other target phenotype 
(eg methylation level11,16-19) or between two phenotypes (eg DNA 
methylation and gene expression15). Methylation quantitative trait 
locus (meQTL) analysis is a kind of improved eQTL method that has 
been used to investigate the associations between SNPs and the 
methylation levels.16-19 Another study has assessed the associations 
between DNA methylation and gene expression, that is, expression 
quantitative trait methylation (eQTMs).15 However, such QTLs stud‐
ies were largely limited to testing one single pair of association only. 
Because of lack of multiple‐omics data from the same set of samples, 
the complex triangle relationship between SNP, DNA methylation 
and mRNA expression was undefined yet.

This study conducted multi‐omics integrative analyses as well 
as causal inference test (CIT)20 to reveal the complex connections 
among SNP, DNA methylation and mRNA expression, and identified 
DNA methylation‐mediated regulation effects in peripheral blood 
mononuclear cells (PBMCs), a commonly used target cell in immu‐
nity studies.

2  | MATERIAL S AND METHODS

2.1 | Subjects and PBMC isolation

The study was approved by the Institutional Research Ethic Board at 
Soochow University. Table S1 showed the basic characteristics of 43 
study subjects. The human subjects included 43 unrelated Chinese 
Han adult females from Suzhou city of China, which were recruited 
originally for identifying risk molecules of rheumatoid arthritis. 
Subjects were excluded from serious diseases involving vital organs 
(brain, liver, kidney, heart or lung). All subjects signed informed con‐
sent forms before entering this project. A total of 15 ml peripheral 
blood was collected and stored in sodium‐citrate‐supplemented 
vacuum tubes. PBMCs were isolated using density gradient centrifu‐
gation using Lymphoprep (Sigma, life science, USA). PBMCs were 
divided into two equal parts, one for DNA extraction, and the other 

for RNA extraction after treatment of Trizol reagent (Invitrogen, 
Carlsbad, CA) to avoid RNA degradation.

2.2 | Genome‐wide SNP genotyping, DNA 
methylation profiling and transcriptome profiling

DNA was extracted from the isolated PBMCs using phenol‐chloroform 
extraction and ultrapurification method.21 The quality of extracted 
DNA was first tested by 0.8% agarose gel electrophoresis to check the 
integrity (usually > 10KB main band). The OD260/280 of 1.7‐1.9 by 
NanoDrop ND‐1000 (Thermo Scientific, Wilmington, Delaware) spec‐
trophotometer was the QC cutoff of the DNA purification. Affymetrix 
Genome‐Wide Human SNP Array 6.0 chips were used for SNP geno‐
typing by following the protocol recommended by the manufacturer. 
The experiments were performed in the laboratory of CapitalBio 
Corporation (Beijing, China). We used the contrast QC greater than 
0.4 for quality control. A total of 909,622 SNPs in each subject were 
genotyped. After excluded the SNPs with a minor allele frequency less 
than 5%, or a call‐rate less than 95%, 551,745 SNPs were finally used 
in further analysis. All analyses are based on human reference genome 
37 version assembly annotations.

DNA methylation profiling was performed with Illumina 450K 
Infinium Methylation BeadChip according to the manufacturer's 
instructions in the laboratory of CapitalBio Corporation (Beijing, 
China). DNA methylation data quality control consist of sample QC 
(subjects with more than 5% probes with a detection P > 0.05 were 
removed) and probe QC (probes with a detection P > 0.05 more than 
5% subject were excluded). DNA methylation data normalization con‐
tains background adjustment, colour‐bias adjustment, quantile nor‐
malization and beta mixture quantile (BMIQ) method normalization. 
The background adjustment was performed in GenomeStudio. Then, 
colour‐bias adjustment and quantile normalization were performed in 
the R package lumi, followed by the BMIQ normalization to eliminate 
the bias between probe types. The methylation level was measured 
as beta (β) = M/(M + U), in which M was the methylated signals and U 
was the unmethylated signals. The β value ranges continuously from 
0 (unmethylated) to 1 (fully methylated). After normalization, 416 285 
methylated sites were left for further data processing.

Total RNA was extracted from PBMCs according to the instructions 
recommended by the manufacturer. The OD260/280 of ≥1.8 was the 
QC cutoff of the RNA purification (NanoDrop ND‐1000 spectrophotom‐
eter). RNA integrity was determined with 1% formaldehyde denaturing 
gel electrophoresis and Agilent 2100 Bioanalyzer. 28S/18S rRNA ratio 
of ≥1.5 and RIN >7 were used as the eligible criteria. The transcriptome‐
wide mRNA expression was profiled using lncRNA&mRNA Human Gene 
Expression Microarray V4.0 (CaptialBio Corp, Beijing, China). The data 
were extracted by Agilent Feature Extraction (V10.7). The data summary, 
normalization and quality control were performed with GeneSpring GX 
program (V12.0). The log2 transformation was applied using the Adjust 
Data function. The probes with less than 80% of detection rate and/
or incomplete annotation information were filtered (Multiexperiment 
Viewer (MeV) software (http://www.tm4.org)). Subsequently, a total of 
17,566 unique mRNA probes were used for further analysis.

http://www.tm4.org
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2.3 | Quantitative trait locus analyses for three pairs 
(SNP & methylation, SNP & mRNA and methylation 
& mRNA

All the three quantitative trait locus (QTL) analyses were performed 
with the MatrixEQTL package modelled in R software (freely avail‐
able at http://cran.r-proje​ct.org/).15,22-25 Here, we defined the QTL 
analyses for three association pairs (SNP & methylation, SNP & 
mRNA and methylation & mRNA) as meQTL, eQTL and eQTM, re‐
spectively. Multivariate linear regression analysis was conducted for 
each QTL analysis after adjusting for age and disease states of rheu‐
matoid arthritis. Compared to trans‐effects, cis‐effects were much 
larger and be more stable.26-30 So, in order to enhance the reliabil‐
ity of the results, this study focused on the cis‐effect. SNPs located 
within 1 megabase (Mb) on either side of methylation sites was sup‐
posed to exert local effect (cis‐meQTLs). For the cis‐eQTL analysis, 
SNPs were also confined within 1 Mb distant from the transcription 
start site (TSS) or transcription end site (TES) of mRNAs. For the cis‐
eQTM analysis, methylation sites were confined within 1 Mb distant 
from TSS or TES of mRNAs. Benjamini‐Hochberg false‐discovery 
rate (FDR) was used to correct for multiple testing.

2.4 | CIT for DNA methylation‐mediated genetic 
effect on mRNA expression

To identify DNA methylation‐mediated effect on mRNA expression, 
we first constructed the associated trios according to the analysis 
results of the above three pairs. The associated trios were gener‐
ated according to the physical positions of SNPs and methylation 
sites in genes with known official names. Herein, CIT31,32 was ap‐
plied to identify methylation‐mediated association between SNPs 
and mRNAs. Briefly, the causal inference simultaneously requires 
the following four criteria: SNP and mRNA expression is associated; 
SNP is associated with methylation level after adjusting for mRNA; 
Methylation is associated with mRNA after adjusting for SNP; 
and SNP is independent of mRNA expression after adjusting for 

methylation level.31,32 The covariates, age and disease status, were 
adjusted in the above four tests. The maximum of the test P‐values 
was reported as the CIT P‐Value. CIT was performed in SAS 9.2 soft‐
ware (SAS Institute Inc, Cary, North Carolina).

2.5 | Construction of SNP‐methylation‐mRNA 
interaction network

Based on CITs, the fulfilled association trios (SNP‐methylation‐
mRNA) were selected to construct gene regulatory network. All 
network data were visualized using open source bioinformatics soft‐
ware Cytoscape 3.3.0 (Institute of Systems Biology in Seattle).33

2.6 | Linkage disequilibrium analysis

Since multiple nearby SNPs from SNP‐methylation‐mRNA regula‐
tory chains were simultaneously connected to single methylation 
site, we conducted linkage disequilibrium (LD) analysis for those 
nearby SNPs in HaploView 4.2 using the data of 1000 Genomes 
Project34 (2504 volunteer donors from various ethnic populations). 
We also obtained the LD measure r2, which represents the statistical 
correlation between two SNPs of interest and is frequently used in 
LD mapping because of its statistical advantages and strong theo‐
retical basis for population genetics. When r2 = 0, it shows that the 
two loci are completely independent, and r2 = 1 means SNPs at the 
two loci sharing the same frequency.

2.7 | The identified SNP‐methylation‐mRNA chains 
overlapped with previous results

To find whether the identified associations in significant SNP‐
methylation‐mRNA chains were reported by previous studies, 
we searched the databases of Phenotype‐Genotype Integrator 
(PheGenI) (www.ncbi.nlm.nih.gov/gap/PheGe​nI/), National Human 
Genome Research Institute (NHGRI) Catalog of published GWAS 
(GWAS Catalog), GTEx Portal (https​://www.gtexp​ortal.org/), and 

meQTLs eQTMs eQTLs

Test SNP & methylation Methylation & 
expression

SNP & expression

Window size 1 MB 1 MB 1 MB

FDR 5% 5% 5%

Number of tests 144 470 159 10 944 256 5 880 162

Maximum P‐value 2.22E‐05 1.28E‐05 4.39E‐06

Cis‐effect pairs 64 184 2 795 525

SNP 40 896 — 471

Methylation 16 033 2 090 —

mRNA — 837 140

eQTLs, Expression quantitative trait loci, the association between SNP and gene expression; 
eQTMs, Expression quantitative trait methylation, the associations between DNA methylation and 
gene expression; FDR, Benjamini‐Hochberg false‐discovery rate; meQTLs, Methylation quantita‐
tive trait loci, the association between SNPs and methylation level.

TA B L E  1   Summary of associations in 
meQTLs, eQTMs and eQTLs

http://cran.r-project.org/)
http://www.ncbi.nlm.nih.gov/gap/PheGenI/
https://www.gtexportal.org/
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the 4DGenome, a general repository for chromatin interaction data 
(https​://4dgen​ome.resea​rch.chop.edu/).

3  | RESULTS

3.1 | Cis‐meQTL identification and distribution 
characteristics

A total of 551 745 genotyped SNPs and 416 285 methylation lev‐
els were tested. Among the 144  470  159 tested cis‐meQTL pairs, 
64 184 pairs were significant (FDR < 0.05), which corresponded to 
40 896 unique SNPs and 16 033 unique methylation sites (Table 1 
and Table S2). As shown in Figure 1, the plots significantly deviated 
from the reference line for both cis‐meQTLs and trans‐meQTLs, but 
more rapidly for cis‐meQTLs, suggesting that the significant regu‐
lation effects of SNPs on methylation were relatively stronger for 
cis‐meQTLs than for trans‐meQTLs in general.

Specifically, for the methylation sites in CpG regions, we iden‐
tified 42 131 (65.64%: 42 131/64 184) significant cis‐meQTL pairs. 
These corresponding methylation sites were distributed at CpG is‐
land (N = 15 738, 24.52%), CpG shore (N_shore and S_shore, 0‐2 Kb 
from CpG island) (N = 19 005, 29.61%) and CpG shelf (N_shelf and 
S_shelf, 2‐4 Kb from CpG island) (N = 7 388, 11.51%) (Figure 2A). 
The shores and shelves were annotated according to their chro‐
mosome orientation from the p‐ to q‐arms as in N‐ and S‐shores, 
respectively. As presented in Figure 2B, according to annotation 
of gene region feature category by UCSC (http://www.genome.
ucsc.edu), the corresponding SNPs were distributed in gene body 
(39.76%), TSS 1500 (−1500 to −200 bp to TSS) region (17.79%), TSS 

200 (−200 bp to TSS) region (8.72%), 5′‐UTR (8.40%), as well as 1st 
exons (3.30%).

The distribution of the physical distance from SNPs to their associ‐
ated methylation sites for all the significant cis‐meQTLs (FDR < 0.05) 
was presented in Figure 2C. An obvious peak in frequency around 
the methylation sites was observed, suggesting that the SNPs from 
the significant meQTLs were enriched around methylation sites. 
Similarly, the most effective SNPs were enriched around the methyl‐
ation sites, indicating that the closer to methylation sites, the greater 
effects of the SNPs on methylations in general (Figure 2D).

3.2 | Identification of the SNP‐methylation‐mRNA 
regulation chain

We further tested the associations of the following two pairs, methyla‐
tion‐mRNA by eQTMs and SNP‐mRNA by eQTLs. As shown in Table 1, 
we identified 2,795 local significant methylation‐mRNA associations (cis‐
eQTMs) (FDR < 0.05), and 525 significant local effect SNP‐mRNA pairs 
(cis‐eQTLs) (FDR < 0.05). According to the physical positions of SNPs and 
methylation sites in the corresponding genes with official names, the 
significant pairs from the above three association tests were matched 
and the overlapped pairs were selected to construct SNP‐methylation‐
mRNA association trios. Consequently, 745 trios were generated, which 
corresponded to 272 unique SNPs, 65 unique methylations and 47 
unique target mRNAs. In‐depth CIT analysis showed that 464 trios ful‐
filled significant causal inference. Specifically, 191 SNPs were associated 
with mRNA expressions of 37 genes, which were dependently through 
56 methylation sites. Notably, 21 SNPs were simultaneously associated 
with the same methylation site (cg22517527) and the same gene expres‐
sion (PRMT2). The statistical results for the 464 methylation‐mediated 
genetic effects on mRNA expressions were detailed in Table S3, includ‐
ing effect directions and P‐values under all the tested conditions.

3.3 | Construction of SNP‐methylation‐mRNA 
interaction network

Figure 3 demonstrated the epi‐genetic regulation patterns among 
171 SNPs, 56 methylation sites and 37 target genes from 464 causal 
trios. We found a primary network and several small separate net‐
works, which showed their complex regulation patterns. Notably, 
it was common that multiple SNPs are connected to a few limited 
methylation sites or mRNAs. For example, 43 SNPs simultaneously 
influenced methylation at cg22517527 and further regulated mRNA 
expression of PRMT2 (protein arginine methyltransferase 2), DIP2A 
(disco‐interacting protein 2 homolog A) and YBEY (ybeY metallo‐
peptidase). Besides, 20 SNPs regulated YBEY expression through 
methylation at the cg20399509, and 30 SNPs regulated YBEY ex‐
pression by methylation at the cg12516959.

3.4 | LD analysis

LD analyses for the SNPs physically located closely in the same chro‐
mosome were performed by using the HaploView and the genotype 

F I G U R E  1   Quantile‐quantile plots of the associations from 
meQTL analyses. Local P‐value: P‐value from cis‐meQTLs, in 
which the SNPs located within 1 megabase (Mb) on either side of 
methylation sites; Distant P‐value: P‐value from trans‐meQTLs, in 
which the SNPs located outside 1 megabase (Mb) on either side of 
methylation sites

https://4dgenome.research.chop.edu/
http://www.genome.ucsc.edu
http://www.genome.ucsc.edu
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data of 1000 Genomes Project. As we expected, strong LD structure 
was detected for most of the analysed SNPs. As shown in Figure 4, we 
have found 7 LD blocks (3 in Chr21, 2 in Chr1, 1 in Chr11 and 1 in Chr6). 
For example, an SNP group (10 SNPs) in the Block 1 of Chr21 formed 
an extremely strong LD block (the first sub‐network in Figure 3), 
which simultaneously influenced five methylation sites (cg00612595, 
cg02776659, cg09417038, cg12516959 and cg20399509) and fur‐
ther regulated mRNA expression of YBEY. In the Block 1 of Chr1, 
21 SNPs also formed a strong LD block, which correspond to the 21 
SNPs‐cg04982190‐NCF2 regulation chains (the second sub‐network 
in Figure 3). Besides, another group (16 SNPs) had strong LD in chro‐
mosome 1, which were simultaneously connected to cg05043910 and 
further regulated mRNA expression of TSGA10 (the third sub‐network 
in Figure 3).

3.5 | Supported evidence from 4DGenome database 
for the identified SNP‐methylation‐mRNA chains

To find additional evidence to support the identified SNP‐meth‐
ylation‐mRNA chains, we searched the 4DGenome database 
based on their physical positions (hg19). The information of the 

SNP‐Methylation‐mRNA chains, their located interactions, detec‐
tion methods and the detected cells/tissues were listed in Table S4. 
We found 89 significant interactions that correspond to 38 unique 
SNP‐Methylation‐mRNA chains in 23 types of cells/tissues including 
CD4 T cell, an important immunity related cell. Especially for the 
rs8069739‐cg08322244‐VAMP2, about 33 interactions were iden‐
tified in a variety of cells, for example, in the CD4 T cells, rs8069739 
and VAMP2 were located in Interactor B and cg08322244 was lo‐
cated in Interactor A.

3.6 | The SNP‐methylation‐mRNA chains relevant 
to immune or inflammatory related diseases/traits

Among the 191 SNPs and 37 genes involved in the identified causal 
trios, 19 SNPs and 7 genes were reported to be significantly associ‐
ated with human diseases/traits (Table S5), as archived in the NHGRI 
database and the database of Genotypes and Phenotypes (dbGaP). 
The associated diseases/traits included rheumatoid arthritis, mul‐
tiple sclerosis, systemic lupus erythematosus, inflammatory bowel 
disease and crohn disease, which are immune or inflammatory re‐
lated diseases/traits.

F I G U R E  2   The distribution of cis‐meQTL associated methylation sites. (A) The distribution according to their positions in the UCSC 
CpG island region. (B) The distribution according to gene region feature category (UCSC). (C) The frequency distribution Note: Distance 
indicates the physical distance from SNP to their associated methylation site. (D) The distribution according to association significance (‐
log10(P‐value)) against the physical distance from SNP to their associated methylation site
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3.7 | The identified SNP‐methylation‐mRNA 
chains overlapped with previous eQTLs from 
dbGaP and GTEx

The identified regulation chains also probably provide functional 
explanations for previous eQTL results. After searched the dbGaP 
according to SNP ID, 16 eQTLs had been reported in lymphoblas‐
toid and liver, which correspond to 13 unique SNPs and 6 genes. 
Meanwhile, the GTEx Portal was also retrieved for more support‐
ive information, and it was found 112 eQTLs results containing 74 
unique SNPs and 10 genes (Table S6).

4  | DISCUSSION

DNA methylation is known as an important epigenetic regulatory 
factor in mediating the correlations between genetic variants and 
mRNAs.35,36 EQTL analysis is a typical and powerful statistical 
method in explaining the functional link between SNP and disease/
trait.27,37-39 Several studies have supported that cis‐acting QTLs 

have large effect sizes that can be detected in a relatively small 
sample less than 100 subjects.16,40-42 A large number of cis‐meQTL 
associations identified in our study have suggested that DNA meth‐
ylation levels were under strong genetic influence. Previous meQTL 
studies also found abundant local effects in other tissues.22,43-45 
Furthermore, an obvious peak observed around the methylation 
sites suggested that the physical distance seemed to have large ef‐
fect on their associations, that is, the more close to methylation site, 
the greater effect for the associations. Our findings suggested that 
methylation sites were typically associated with SNPs in close prox‐
imity. The significant SNPs in our cis‐meQTL analysis were mostly 
located in gene regions, including gene body and the promoter. It is 
because that genetic influence on the human methylome involves 
heterogeneous processes and is predominantly dependent on local 
sequence context at the meQTL sites.45,46

This study represents the first efforts of conducting integrative 
multiple omics analyses by multiple QTL tests and in‐depth CIT to 
more comprehensively reveal methylation‐mediated regulation ef‐
fects. CIT provides a highly interpretable quantitative measure for 
a trio of variables when association between two implies causation 

F I G U R E  3   The constructed networks based on the significant SNP‐methylation‐mRNA regulatory chains. Cytoscape 3.3.0 was used 
to establish the networks. The SNP, DNA methylation and mRNA from significant CIT trios were imported. Purple nodes represent SNPs, 
grey nodes represent DNA methylation and pink nodes represent mRNA. Red dot edges represent negative regulation between two nodes. 
Green solid lines represent positive regulation between two nodes
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F I G U R E  4  Linkage disequilibrium (LD) analysis. HaploView 4.2 was used to analyse the linkage disequilibrium. The SNPs used in LD 
analysis are from the significant SNP‐methylation‐mRNA regulatory chains. The shades of colour represent r2, deeper colour represent the 
higher value of r2. Each number in cell represents r2 between neighbouring SNPs. The black cells without numbers means r2 = 1
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and the third is a potential mediator.32 This method is theoretically 
and computationally accessible in disentangling molecular relation‐
ships,47 and was proposed as a novel statistical framework in which 
existing notions of causal mediation were formalized into a hypoth‐
esis test.

The identified 464 regulation chain of SNP‐methylation‐mRNA 
suggest that DNA methylation can emerges both as marker and de‐
terminant.15 For instance, we found 43 SNPs further regulates gene 
expression of PRMT2, DIP2A and YBEY by regulating methylation 
levels of cg22517527. Two SNPs (rs4970774 and rs3814309) neg‐
atively regulated the GSTM1 and GSTM4 by negatively controlling 
seven methylated sites collectively. The SNP rs12484710 positively 
regulated cg26000393, cg25787886 and cg14194956 so that to in‐
fluence the expression of APOBEC3A and APOBEC3B. LD analy‐
sis was conducted in SNPs physically located closely by using the 
HaploView and 1000 Genomes Project. Strong LD structure was 
identified for most of the analysed SNPs. Nevertheless, the SNPs 
closest to the significant methylation site is likely to be most effec‐
tive in regulation, but when multiple SNPs are in strong LD in the de‐
tected region, it is challenging to discriminate which SNP within the 
same LD region is truly causative. Moreover, whether and how the 
SNPs influences the methylation structure and then regulates gene 
expression is unclear yet. These regulatory networks can provide a 
basis for future functional studies. Herein, we propose that some 
DNA sequence variants, through changing the methylation levels, 
hence influences the gene expressions.

To find more evidence to support the identified SNP‐meth‐
ylation‐mRNA regulatory chains, we searched the 4DGenome. 
4DGenome is a public database that archives and disseminates chro‐
matin interaction data. It covers all major experimental technologies 
including chromosome conformation capture (3C), chromosome 
conformation capture‐on‐chip (4C), chromosome conformation cap‐
ture carbon copy, ChIA‐PET, Hi‐C, Capture‐C and a computational 
prediction of IM‐PET for detecting chromatin interactions. The 
interaction paired sequence tags archived in this database implies 
the corresponding pair of DNA regions is in close physical proxim‐
ity and probably functionally interacts. We found 89 results includ‐
ing 38 unique SNP‐methylation‐mRNA chains overlapped with the 
4DGenome database. The results from 4DGenome database pro‐
vide additional understanding of chromatin architecture how SNP, 
methylation and mRNA are tightly related.

The identified regulation chains probably provide functional ex‐
planations for the associations of SNPs and diseases. We searched 
for the Phenotype‐Genotype Integrator and GWAS Catalog. PBMCs 
consist of several important immunity cells, which play a decisive 
role in the process of immune or inflammatory response. It was 
found some SNPs and genes in SNP‐methylation‐mRNA chains were 
related to the immune or inflammatory disease/trait by searching for 
the database. For instance, RNASET2 regulated by rs1819333 is as‐
sociated with inflammatory bowel diseases and crohn disease, which 
further illustrated that significant association of SNPs and genes 
in SNP‐methylation‐mRNA chains, may play a decisive role in the 
process of immune response in PBMCs. These overlapped results 

suggested that the methylation is a probable functional mechanism 
in connecting SNP with the susceptibility to diseases. We further 
validated the associations between SNPs and mRNAs in SNP‐meth‐
ylation‐mRNA chains in dbGAP and GTEx Portal, and found 16 over‐
lap results in dbGAP and 112 overlap results in GTEx Portal.

This study had several potential limitations. First, the relatively 
small sample size may offer limited power in detecting minor‐ or 
modest‐effect meQTLs/eQTMs/eQTLs. Second, the inferred in‐
teraction patterns were based on multi‐omics data, further cellular 
and molecular experiments will be helpful to validate the findings. 
Third, it was probably inappropriate to extend the PBMC expres‐
sion regulatory pattern to other cells or tissues because of the high 
tissue‐ or cell‐specificity as mentioned above. Fourth, the subjects 
concerning only women may limit the extensions of the results in 
male or mix sample (both male and female) because gender‐spe‐
cific genetic architecture is common in humans. Last, the cross‐
reactive probes and polymorphic CpGs in Illumina 450K Infinium 
Methylation BeadChip probably have confusing impacts on meth‐
ylation readouts.48,49

In summary, our study comprehensively investigated the (epi‐) 
genetic architecture underlying the variation of methylation expres‐
sion, and illustrated SNP‐methylation‐mRNA regulation pattern by in‐
depth CIT analysis in human PBMCs by using multi‐omics integrative 
strategy. The results provide new insights into the regulation patterns 
among SNP, DNA methylation and mRNA expression, especially for the 
methylation‐mediated effects, and also increase our understanding of 
functional mechanisms underlying the established associations. The 
results would further facilitate the investigations of PBMC‐related im‐
mune physiological process and immunological diseases in the future.
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