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Contactless cardiac arrest detection using smart devices
Justin Chan 1, Thomas Rea2,3, Shyamnath Gollakota 1 and Jacob E. Sunshine 4

Out-of-hospital cardiac arrest is a leading cause of death worldwide. Rapid diagnosis and initiation of cardiopulmonary resuscitation
(CPR) is the cornerstone of therapy for victims of cardiac arrest. Yet a significant fraction of cardiac arrest victims have no chance of
survival because they experience an unwitnessed event, often in the privacy of their own homes. An under-appreciated diagnostic
element of cardiac arrest is the presence of agonal breathing, an audible biomarker and brainstem reflex that arises in the setting of
severe hypoxia. Here, we demonstrate that a support vector machine (SVM) can classify agonal breathing instances in real-time
within a bedroom environment. Using real-world labeled 9-1-1 audio of cardiac arrests, we train the SVM to accurately classify
agonal breathing instances. We obtain an area under the curve (AUC) of 0.9993 ± 0.0003 and an operating point with an overall
sensitivity and specificity of 97.24% (95% CI: 96.86–97.61%) and 99.51% (95% CI: 99.35–99.67%). We achieve a false positive rate
between 0 and 0.14% over 82 h (117,985 audio segments) of polysomnographic sleep lab data that includes snoring, hypopnea,
central, and obstructive sleep apnea events. We also evaluate our classifier in home sleep environments: the false positive rate was
0–0.22% over 164 h (236,666 audio segments) of sleep data collected across 35 different bedroom environments. We prototype our
proof-of-concept contactless system using commodity smart devices (Amazon Echo and Apple iPhone) and demonstrate its
effectiveness in identifying cardiac arrest-associated agonal breathing instances played over the air.
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INTRODUCTION
Out-of-hospital cardiac arrest (OHCA) is a leading cause of death
worldwide1 and in North America accounts for nearly 300,000
deaths annually.2 A relatively under-appreciated diagnostic
element of cardiac arrest is the presence of a distinctive type of
disordered breathing: agonal breathing.3,4 Agonal breathing,
which arises from a brainstem reflex in the setting of severe
hypoxia,5,6 appears to be evident in approximately half of cardiac
arrest cases reported to 9-1-1. Agonal breathing indicates a
relatively short duration from arrest and has been associated with
higher survival rates.7–9 Sometimes reported as “gasping” breaths,
agonal respirations may hold potential as an audible diagnostic
biomarker, particularly in unwitnessed cardiac arrests that occur in
a private residence, the location of 2/3 of all OHCAs.10,11

The widespread adoption of smartphones and smart speakers
(projected to be in 75% of US households by 202012) presents a
unique opportunity to identify this audible biomarker and connect
unwitnessed cardiac arrest victims to Emergency Medical Services
(EMS) or others who can administer cardiopulmonary resuscitation
(CPR). In this study, we hypothesized that existing commodity
devices (e.g., smartphones and smart speakers) could be used to
accurately identify OHCA-associated agonal breathing instances in
a domestic setting. As initial proof-of-concept, we focus on a
relatively controlled environment, the bedroom, which is the
location of the majority of OHCA events that occur within a private
residence.11,13 A key challenge to algorithm development for this
purpose is accessing real-world data on agonal breathing; agonal
breathing events are relatively uncommon, lack gold-standard
measurements and cannot be reproduced in a lab because of their
emergent nature. To overcome this challenge, we leverage a

unique data source, 9-1-1 audio of confirmed cardiac arrest cases,
which can include agonal breathing instances captured during the
call. As our negative dataset, we use ambient household noise and
audio from polysomnographic sleep studies, which include data
that share similar audio characteristics to agonal breathing such as
snoring and obstructive apnea events. Using real-world audio of
agonal instances from OHCA events, we evaluate (1) whether a
support vector machine (SVM) can be trained to detect OHCA-
associated agonal breathing instances in a bedroom and sleep
setting and (2) whether the SVM can be deployed and accurately
classify agonal breathing audio in real-time using existing
commodity smartphones and smart speakers.

RESULTS
Concept
Our agonal breathing detection pipeline (Fig. 1a) captures audio
samples from a smart speaker and smartphone and outputs the
probability of agonal breathing in real-time on each 2.5 s audio
segment. We use Google’s VGGish model14 as a feature extractor
to transform the raw audio waveforms into embeddings which are
passed into an SVM. Each segment is transformed from the time-
domain into a log-mel spectrogram,15 and is further compressed
into a feature embedding using principal component analysis.
These embeddings are then passed into an SVM with a radial basis
function kernel that can distinguish between agonal breathing
instances (positive data) and non-agonal instances (negative data).
An agonal-breathing frequency filter is then applied to the
classifier’s probability outputs to reduce the false positive rate of
the overall system. For comparison, Fig. 1b, c shows example
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audio waveforms and spectrograms for agonal breathing as well
as snoring and apnea events, which can sound similar to but are
physiologically different from agonal breathing.

Datasets
Our agonal breathing recordings are sourced from 9-1-1
emergency calls from 2009 to 2017, provided by Public Health-
Seattle & King County, Division of Emergency Medical Services.
The dataset included 162 calls (19 h) that had clear recordings of
agonal breathing (Fig. 2a). For each occurrence, we extract 2.5 s
worth of audio from the start of each agonal breath. We extracted
a total of 236 clips of agonal breathing instances. Given the
relatively small size of our agonal breathing dataset, we augment
the number of agonal breathing instances with label preserving
transformations, a common technique applied to sparse data-
sets.16,17 We augment the data by playing the recordings over the
air over distances of 1, 3, and 6m, in the presence of interference
from indoor and outdoor sounds with different volumes and when
a noise cancellation filter is applied. The recordings were captured
on different devices, namely an Amazon Alexa, an iPhone 5s and a
Samsung Galaxy S4 to get 7316 positive samples.
Our negative dataset consists of 83 h of audio data captured

during polysomnographic sleep studies, across 12 different
patients. These audio streams include instances of hypopnea,
central apnea, obstructive apnea, snoring, and breathing (Supple-
mentary Table 1). The negative dataset also includes interfering
sounds that might be present in a bedroom while a person is
asleep, specifically a podcast, sleep soundscape and white noise.

To train our model, we use 1 h of audio data from the sleep study
in addition to other interfering sounds. These audio signals were
played over the air at different distances and recorded on different
devices to get 7305 samples. The remaining 82 h of sleep data
(117,985 audio segments) is then used for validating the
performance of our model.

Classifier performance
We applied k-fold (k= 10) cross-validation and obtained an area
under the curve (AUC) of 0.9993 ± 0.0003 (Fig. 2b). We obtain an
operating point with an overall sensitivity and specificity of
97.24% (95% CI: 96.86–97.61%) and 99.51% (95% CI:
99.35–99.67%), respectively (Fig. 2c). We ran k-fold (k= 10)
cross-validation using other machine learning classifiers including
k-nearest neighbors, logistic regression and random forests. These
classifiers achieved an AUC that was >0.98 but slightly lower than
the AUC of the trained SVM (Fig. 2b). Our detection algorithm can
run in real-time on a smartphone natively and can classify each
2.5 s audio segment within 21 ms. With the smart speaker, the
algorithm can run within 58 ms. We visualized the audio
embeddings of our dataset by using t-SNE18 to project the
features into the 2-D space (Fig. 2d). The two clusters represent
the abstract features of agonal breathing instances and audio
from the polysomnographic studies.
To evaluate false positive rate, we run our classifier trained

over the full audio stream collected in the sleep lab (Fig. 2e). The
sleep audio used to train each model was excluded from
evaluation. By relying only on the classifier’s probability outputs,

Fig. 1 Using a smart speaker to detect agonal breathing. a Agonal breathing detection pipeline. b Audio waveform and c spectrogram of
agonal breathing, hypopnea, central apnea, and obstructive apnea
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we obtain a false positive rate of 0.14409%, which corresponds
to 170 of 117,985 audio segments. To reduce false positives, the
classifier’s predictions are passed through a frequency filter that
checks if the rate of positive predictions is within the typical
frequency at which agonal breathing occurs (i.e., within a range
of 3–6 agonal breaths per minute19,20). This filter reduced the
false positive rate to 0.00085%, when it considers two agonal
breaths within a duration of 10–20 s. When it considers a third
agonal breath within a subsequent period of 10–20 s, the false
positive rate reduces to 0%. In our proposed use case a static
smart speaker or smartphone would be able to operate on the
entire duration of agonal breathing which has been estimated
to last for ~4 min,19 in the early phase of cardiac arrest. Because
it is from a sleep lab, we note that the audio stream used in this
analysis is captured from a relatively quiet sleep environment,
without loud interfering noises.

Performance on real-world sleep data
In order to evaluate our classifier outside of the sleep lab, we
measure the false positive rate of our classifier on real-world
recordings of sleep sounds that occur within the home (snoring,
breathing, movement in bed). We recruited 35 individuals to
record themselves while sleeping using their smartphone for a
total duration of 167 h (Fig. 3a). The recordings were manually
checked to ensure the audio corresponded to sleep sounds. We
then retrained our classifier with an additional 5 min of data from
each subject, with a comparable operating point with a sensitivity
and specificity of 97.17% (95% CI: 96.79–97.55%) and 99.38% (95%
CI: 99.20–99.56%), respectively. The false positive rate of the
classifier without a frequency filter is 0.21761%, corresponding to
515 of the 236,666 audio segments (164 h) used as test data. After
applying the frequency filter, the false positive rate reaches
0.00127% when considering two agonal breaths within a duration

Fig. 2 Performance of agonal breathing classifier. a Demographic summary of subjects with agonal breathing during 9-1-1 calls showing
distribution of age and gender. b ROC curve for our support vector machine classifier, cross-validated on sounds collected from a sleep study,
and domestic interfering sounds. c Confusion matrix of agonal breathing and sleeping/domestic interfering sounds indicating the operating
point on the ROC curve. d t-SNE algorithm is applied to visualize the audio embeddings in 2-D. The point clouds show clusters representing
the abstract features learned to represent both agonal breathing and negative sound instances. e The false positive rate when running the
classifier across an 82-h stream of sleep data without and with the frequency filter. By applying a frequency filter to check if the rate of positive
predictions matches the rate of agonal breathing, we can decrease the false positive rate
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of 10–20 s, and 0% after considering a third agonal breath within a
subsequent period of 10–20 s (Fig. 3b).

Benchmark performance
Finally, we benchmark the performance of our classifier. For these
experiments we played the audio clips of agonal breathing over
the air from an external speaker and captured the audio on an
Amazon Echo and Apple iPhone 5s. In Fig. 4, we show the
detection accuracy of our classifier in a domestic setting on a
smart speaker and smartphone. We evaluate detection accuracy
using the k= 10 validation folds in our dataset such that no audio
file in the validation set appears in any of the different recording
conditions in the training set. Figure 4a shows the detection
accuracy of our classifier in ambient conditions at distances of 1, 3,
and 6m on the Echo and iPhone 5s. Both devices achieve
>96.63% mean accuracy at distances up to 3m. We also evaluated
the effect of placing the smartphone in a pocket, with the subject
supine on the ground and the speaker next to the head, and
obtain a mean detection accuracy of 93.22% ± 4.92%. Figure 4b
shows our system performance, using the same experimental
setup, but in the presence of indoor interfering sounds (cat, dog,
air conditioner) and outdoor interfering sounds (traffic, construc-
tion and human speech). Across all interfering sound classes the
smart speaker and smartphone achieve a mean detection
accuracy of 96.23%. Finally, we evaluate how a smartphone or
smart speaker can use acoustic interference cancellation to reduce
the interfering effects of its own audio transmissions and improve
detection accuracy of agonal breathing (Fig. 4c, d). We set the
smartphone to play sounds one might play to fall asleep including
a podcast, sleep soundscape (i.e., river current) and white noise.
We play them at a soft (45 dBA) and loud (67 dBA) volume.
Simultaneously, we play the agonal breathing audio clips. Without
any audio cancellation, the detection accuracy is consistently poor,

with an average accuracy of 22.46 and 4.76% across distances and
sounds for soft and loud interfering volumes. When the audio
cancellation algorithm is applied, our detection accuracy achieves
an average accuracy of 98.62 and 98.57% across distances and
sounds for soft and loud interfering volumes, respectively.
To benchmark the classifier’s performance against negative

audio sounds, we played a stream of negative sounds over the air:
snoring, a podcast, a sleep soundscape and white noise, and
recorded them on a smart speaker and smartphone. We repeat
the benchmark experiments above and record these sounds at
different distances and in the presence of indoor and outdoor
interfering sounds (Fig. 5). The smart speaker and smartphone
achieve a mean detection accuracy of 99.57% at a distance of 3 m;
a 100% accuracy corresponds to the classifier correctly identifying
that the sounds are from the negative dataset. Across all
interfering sounds, the mean detection accuracy was 99.29%.

DISCUSSION
Out-of-hospital cardiac arrest is a widespread public health
concern. Early CPR is a core treatment, underscoring the vital
importance of timely detection, followed by initiation of a series of
time-dependent coordinated actions which comprise the chain of
survival.21 Hundreds of thousands of people worldwide die
annually from unwitnessed cardiac arrest, without any chance of
survival because they are unable to activate this chain of survival
and receive timely resuscitation. Non-contact, passive detection of
agonal breathing represents a novel way to identify a portion of
previously unreachable victims of cardiac arrest, particularly those
who experience such events in a private residence. As the US
population ages and more people become at risk for OHCA,
leveraging commodity smart hardware for monitoring of these
emergent conditions could have public health benefits. Other
domains where an efficient agonal breathing classifier could have

Fig. 3 Performance on real-world sleep data. a Demographic summary of subjects showing distribution of age, gender, audio recording
duration, and smartphone manufacturer. One participant submitted three unique recordings. b The false positive rate when running the
classifier trained with the real-world sleep data
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utility include unmonitored health facilities (hospital wards and
elder care environments22), EMS dispatch,23 and when people
have greater than average risk, such as people at risk for opioid
overdose-induced cardiac arrest.24

An immediate concern of a passive agonal breathing detector is
privacy. For this use case, intentional activation of the device (i.e.,
“Hey Alexa” or “Hey Siri”) immediately prior to classification is not
feasible because diagnosis involves an unconscious individual in an
emergent situation. To address privacy concerns, we envision our
system to run locally on the smart devices and not store any data.
An advantage of a contactless detection mechanism is that it

does not require a victim to be wearing a device while asleep in
the bedroom, which can be inconvenient or uncomfortable. Such
a solution can be implemented on existing wired smart speakers,

and as a result would not face power constraints and could scale
efficiently. Potential downsides include that, to date, agonal
breathing has been identified in ~50% of cardiac arrest victims, so
people experiencing an unwitnessed cardiac arrest without agonal
breathing would go undetected by our system. With that said, it is
worth noting that prior incidence estimates of cardiac arrest-
associated agonal breathing events have been based on 9-1-1
calls, which likely biases estimates and underestimates the true
incidence of agonal breathing during cardiac arrest.25

Our proof-of-concept study has the following limitations. The
number of agonal instances in this study was from one
geographic community over an 8-year period and is relatively
sparse containing 10min of clearly captured agonal breathing
sounds. Additional agonal events are needed to ensure our model

Fig. 5 Benchmark testing of negative sounds across different scenarios. Mean detection accuracy of smart speaker and smartphone (a) across
distance (b) in the presence of other interfering indoor and outdoor sounds. Error bars indicate the standard deviation accuracy across
validation folds

Fig. 4 Benchmark testing of agonal breathing sounds across different scenarios. Mean detection accuracy of smart speaker and smartphone
(a) across distance (b) in the presence of other interfering indoor and outdoor sounds. c, d With acoustic interference cancellation a
smartphone or smart speaker can reduce the effects of its own audio transmissions and become more sensitive at detecting agonal breathing
signals. The left and right subplots show the detection accuracy when interfering sounds are played at soft (45 dBA) and loud (67 dBA)
volumes, respectively. Solid and dashed lines indicate detection accuracy with and without interference cancellation, respectively. Error bars
indicate the standard deviation accuracy across validation folds
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generalizes to variations of agonal breathing. Moreover, additional
audio of agonal instances, which likely reside in 9-1-1 databases
around the world, would also contribute to a more accurate
detection system. Evaluation on an alternative positive dataset,
such as recordings from patients in hospice care or inpatient end-
of-life settings, could help conclusively validate the real-world
performance of the classifier. In addition, evaluation over a longer
duration is needed to gauge the real-world clinical value of the
classifier. Another classification consideration is whether condi-
tions such as seizure, hypoglycemia, severe stroke or drug
overdoses with disordered breathing (but not agonal breathing)
are distinct or similar to agonals. Further work is needed in this
area, yet it is worth noting that all of these instances represent
acute conditions requiring prompt medical intervention. In
addition, our current system is focused on detection within the
controlled environment of the bedroom. Building and evaluating a
general detection system that works reliably in different environ-
ments is an area of future work. Finally, this proof-of-concept
study did not involve EMS activation. A real-world implementation
would sound an alarm and require a user-interface that provides a
cancellation opportunity before the emergency medical response
system was activated, so as to further minimize false positives.
Technology is rapidly evolving and in turn providing opportu-

nities to improve human health.26,27 The increasing adoption of
commodity smart speakers in private residences12 and hospital
environments28 may provide a wide-reaching means to realize the
potential of a contactless cardiac arrest detection system.

METHODS
This study was approved by the University of Washington Institutional
Review Board. The methods were performed in accordance with University
of Washington’s ethical, professional and legal standards. The 9-1-1 dataset
was provided by Public Health-Seattle & King County, Division of
Emergency Medical Services. For the sleep apnea dataset, human
participants from the polysomnography studies provided written informed
consent.

Datasets
The data represents a subset of 9-1-1 calls which (a) contained a known
cardiac arrest and (b) had been identified to contain cardiac arrest-
associated agonal breathing instances. The negative data consist of
recordings of 12 patients sleeping in a sleep lab recorded on a Samsung
Galaxy S4.
Our agonal breathing recordings are sourced from 9-1-1 emergency calls

from 2009 to 2017 provided by Public Health-Seattle & King County,
Division of Emergency Medical Services. There are 729 calls totaling to 82 h
(Fig. 2a). The provided recordings include only calls involving cardiac arrest
and specifically those determined to contain occurrences of agonal
breathing, either by audible identification of agonal breathing or by
description of the breathing from the caller. Each call is further rated by the
9-1-1 operator and an EMS quality assurance reviewer with a confidence
score indicating the presence of audible agonal instances. We train our
classifier on audio from calls that are rated with high confidence by both
the operator and reviewer to contain audible agonal instances. These
instances predominantly occur when the 9-1-1 operator asked the caller to
place the phone next to the victim’s mouth for the purposes of breathing
identification. A clinician who has experience identifying agonal breathing
listened to a subset of recordings with the researcher and pointed out
instances of agonal breathing. The researcher then identified all instances
of agonal breathing that did not co-occur with other interfering sounds
such as human speech. The trained researcher did this by listening to the
162 calls (19 h) and manually recorded timestamps where agonal
breathing was heard during the call. For every timestamp annotation,
we extract 2.5 s worth of audio from the start of each agonal breath. We
extracted a total of 236 clips of agonal breathing instances. The female to
male ratio was 0.5 and the median age was 62 (IQR: 21).
Two independent researchers confirmed the presence of agonal

breathing sounds. They were first trained with examples of agonal
breathing sounds. They then listened to the 236 clips and were instructed
to mark clips that did not contain agonal breathing. The first researcher

marked 1 of the 236 clips as not agonal breathing (classifying it as a cough
sound), but marked all remaining 235 clips as containing agonal breathing.
The second researcher marked all 236 clips as containing agonal breathing.
Our negative dataset consists of 83 h of audio from polysomnographic

studies across 12 different patients (Supplementary Table 1). The female to
male ratio was 1 and the median age was 57.5 (IQR: 10.25). The mean
number of hypopnea, central apnea, and obstructive apnea events across
patients was 41, 24, and 26, respectively. The mean apnea–hypopnea
index (AHI) was 13, where a value of 0–5 is considered as ‘no apnea’, 5–15
is considered as ‘mild apnea’, 15–30 is considered as ‘moderate apnea’, and
values > 30 are considered as ‘severe apnea’.29 AHI annotations were
identified and calculated by trained sleep technicians. The negative
dataset also includes interfering sounds that might be played while a
person is asleep: podcast, sleep soundscape, and white noise.
We augment the data by playing the recordings over the air at distances

of 1, 3, and 6m, in the presence of interference from indoor and outdoor
sounds with different volumes and when a noise cancellation filter is
applied. The recordings were captured on different devices, namely an
Amazon Alexa, an iPhone 5s and a Samsung Galaxy S4. Similarly, for the
negative dataset, portions of the sleep data from all patients were played
over the air and recorded on different devices as well as over a phone
connection. We play a 5min portion of audio data from each patient over
the air at different distances and record the data on an Amazon Alexa,
iPhone 5s and over a phone connection. The entire dataset for cross-
validation consists of 14,621 data points with 7316 agonal breathing
instances and 7305 instances of negative data.
The classifier’s false positive rate is evaluated on a set of real-world sleep

sounds that occur in bedroom settings. We recruited 35 subjects to record
themselves sleeping in their own bedrooms with a smartphone. Subjects
were recruited from the Amazon Mechanical Turk platform. Subjects were
asked to record themselves sleeping with their smartphone. All recordings
submitted by subjects were manually reviewed to assure the presence of
sleep sounds. The female to male ratio was 0.35, the median age was 33.00
(IQR: 13.00), the median recorded time was 4.48 (IQR: 3.12) h, and 28
unique smartphones were used across all subjects (Fig. 3a).

Data preparation
We note that the audio clips were sampled at a frequency of 8 kHz which is
standard for audio received over a telephone. All audio clips are
normalized between a range of −1 and 1. The audio clips are then
passed through Google’s VGGish14 model for extracting feature embed-
dings from an audio waveform. The VGGish model transforms the
waveforms into a compact embedding. The model resamples all audio
waveforms at 16 kHz then computes a spectrogram using the Short-Time
Fourier Transform. A log-mel spectrogram is generated and PCA is applied
on the spectrogram to produce a 256-dimensional embedding.

Training algorithm
We performed k-fold validation (k= 10). For any given fold, none of the
breathing instances in the validation set occurred in the training set. We
evaluate detection accuracy such that no audio file in the validation set
appears in any of the different recording conditions in the training set (e.g.,
if a file played at 6 m is present in the validation set, the same file played at
1 m is not present in the training set). We use a support vector machine
with a radial basis function kernel and a regularization (C parameter) of 10.
To reduce bias in our classifier we partitioned the data such that recordings
from the same call did not straddle the training and validation set split.
During cross-validation there was never an instance where a subject in the
training set occurred in the validation set or vice versa.

Benchmark experiments
To record audio indefinitely on the Echo we used Echo’s Drop In feature
which streams audio to another smartphone. That smartphone was
plugged into a laptop which recorded audio data that was received on the
smartphone’s audio interface. Audio from the Echo is streamed at 16 kHz
and recorded at 44.1 kHz. The iPhone recorded data at 44.1 kHz. Each of
the 236 audio clips is prepended with a frequency modulated continuous
wave (FMCW) chirp. An FMCW chirp has good auto-correlation properties,
as a result we can cross-correlate the recordings from the Echo and iPhone
with the chirp to determine the exact timestamp of each audio clip. Each
audio clip can then be extracted and transformed into an input for the
classifier.
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In our benchmark scenarios we evaluate the detection accuracy of our
classifier across different distances on a second generation Amazon Echo
and an iPhone 5s. We played the 236 audio clips of agonal breathing from
a AmazonBasics Wireless Bluetooth speaker and recorded the audio on the
Echo and iPhone. The sound intensity of the recordings were ~70 dBA at a
distance of 1 m. We fixed the location of the Echo and iPhone and placed
the speaker at different distances.
To evaluate the audio interference cancellation algorithm we set the

iPhone 5s to play music at two different volumes (45 and 67 dBA), while
simultaneously recording audio. We then ran an acoustic interference
cancellation algorithm that allowed the smartphone to locally reduce the
interference of its own audio transmissions. We used an adaptive least
mean squares filter to reduce the dissimilarity between the device’s
transmission and the received audio recording. Our filter uses the Sign-
Data LMS algorithm with 100 weights and a step size of 0.05.
When evaluating system performance in the presence of interfering

sounds we use two external speakers, one which plays the agonal
breathing recordings and another that plays the interfering noise. The
interfering noise is played with a sound intensity of ~55 dBA at a distance
of 1 m. The interfering sounds are played outside the room containing the
agonal breathing speaker and the recording device to simulate sounds
that would be heard from outside a bedroom.

Run-time analysis
The most time consuming operations within the detection pipeline are the
fast Fourier transforms (FFTs) required to generate the spectrogram and
running inferences on the audio embeddings. Our iPhone 7 implementation
of the detection algorithm used the Accelerate frameworks to perform the
FFTs and Monte Carlo sampling to approximate the radial basis function
kernel. On an iPhone 7 performing the FFTs to generate a single log-mel
spectrogram takes 16ms and running inferences on the support vector
machine takes 5ms. While the classifier can in principle run locally on the
Echo device, Amazon currently does not allow third party programs to locally
analyze data. Thus, to estimate the performance of our system when run
natively on an Amazon Echo, we ran our pipeline on an iPhone 4, which
shares the same Cortex-A8 processor as the Echo. On an iPhone 4, computing
the spectrogram takes 40ms and making predictions takes 18ms.

Reporting summary
Further information on experimental design is available in the Nature
Research Reporting Summary linked to this paper.
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