Skip to main content
. 2019 Jun 20;21:75. doi: 10.1186/s13058-019-1158-4

Table 3.

Performance AU-ROC curve of BCRAT and ML algorithms (with standard deviation) predicting breast cancer lifetime risk from simulated datasets (n = 1200) and the US population-based sample (n = 1143)

Dataset BCRAT ML: random forest ML: Logistic Regression ML: adapt boosting ML: Linear Model ML: K-nearest neighbors ML: linear discriminant ML: quadratic discriminant ML: MCMC GLMM
A.Sim_no_signal 0.5333 0.5016 (0.0231) 0.5133 (0.0271) 0.5067 (0.0307) 0.5015 (0.0220) 0.5054 (0.0211) 0.5158 (0.0276) 0.5133 (0.0323) 0.5090 (0.0210)
B.Sim_atifical_signal 0.5261 0.9308 (0.0171) 0.9417 (0.0103) 0.9292 (0.0095) 0.7859 (0.0197) 0.9125 (0.0109) 0.9312 (0.0154) 0.9188 (0.0111) 0.9329 (0.0087)
C. Sim_ atifical_signal + 20% missing 0.5068 0.9275 (0.0179) 0.9217 (0.0259) 0.9258 (0.0113) 0.7807 (0.0227) 0.9012 (0.0120) 0.9213 (0.0202) 0.9104 (0.0237) 0.9191 (0.0210)
D. Sim_ atifical_signal + 20% missing + imputation 0.5035 0.9167 (0.0184) 0.9300 (0.0111) 0.9213 (0.0119) 0.7824 (0.0200) 0.9058 (0.0117) 0.9275 (0.0148) 0.9121 (0.0081) 0.9232 (0.0099)
US population-based sample 0.6240 0.8889 (0.0201) 0.7192 (0.0314) 0.8828 (0.0229) 0.6813 (0.0378) 0.8089 (0.0217) 0.8692 (0.0284) 0.8675 (0.0241) 0.8234 (0.0189)