Skip to main content
. 2019 Jun 20;21:75. doi: 10.1186/s13058-019-1158-4

Table 4.

Performance AU-ROC curve of the BOADICEA model and ML algorithms (with standard deviation) predicting breast cancer lifetime risk from simulated datasets (n = 2500) and Swiss clinic-based sample (n = 112,587 women from 2481 families)

Dataset BOADICEA model ML: random forest ML: logistic regression ML: adapt boosting ML: linear model ML: K-nearest neighbors ML: linear discriminant ML: quadratic discriminant ML: MCMC GLMM
A.Sim_no_signal 0.5103 0.5020 (0.0197) 0.5093 (0.0210) 0.5029 (0.0177) 0.5151 (0.0190) 0.5254 (0.0199) 0.5094 (0.0241) 0.5002 (0.0216) 0.5075 (0.0201)
B.Sim_ atifical_signal 0.5392 0.9101 (0.0148) 0.9233 (0.0172) 0.9321 (0.0122) 0.6659 (0.0164) 0.9301 (0.0159) 0.9109 (0.0187) 0.9244 (0.0166) 0.9219 (0.0151)
C.Sim_ atifical_signal + 20% missing 0.5022 0.8977 (0.0183) 0.9100 (0.0293) 0.9291 (0.0156) 0.6407 (0.0257) 0.9232 (0.0180) 0.8982 (0.0276) 0.9209 (0.0297) 0.9088 (0.0219)
D.Sim_ atifical_signal + 20% missing +imputation 0.5115 0.9028 (0.0127) 0.9203 (0.0157) 0.9299 (0.0110) 0.6463 (0.0147) 0.9276 (0.0140) 0.9035 (0.0159) 0.9220 (0.0141) 0.9154 (0.0137)
Swiss clinic-based sample 0.5931 0.8535 (0.0214) 0.8271 (0.0189) 0.9017 (0.0162) 0.6921 (0.0202) 0.8377 (0.0156) 0.7899 (0.0188) 0.8369 (0.0192) 0.8932 (0.0149)