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Abstract

Genomic data hold salient information about the characteristics of a living organism. Throughout the past decade, pinnacle
developments have given us more accurate and inexpensive methods to retrieve genome sequences of humans. However,
with the advancement of genomic research, there is a growing privacy concern regarding the collection, storage and ana-
lysis of such sensitive human data. Recent results show that given some background information, it is possible for an adver-
sary to reidentify an individual from a specific genomic data set. This can reveal the current association or future suscepti-
bility of some diseases for that individual (and sometimes the kinship between individuals) resulting in a privacy violation.
Regardless of these risks, our genomic data hold much importance in analyzing the well-being of us and the future gener-
ation. Thus, in this article, we discuss the different privacy and security-related problems revolving around human genomic
data. In addition, we will explore some of the cardinal cryptographic concepts, which can bring efficacy in secure and pri-
vate genomic data computation. This article will relate the gaps between these two research areas—Cryptography and
Genomics.

Key words: genomic data privacy; secure computation of genomic data; privacy-preserving techniques; cryptographic meth-
ods on genomic data; genomic data security

Introduction

Seminal advancement in genomic data generation over the past
decade has impacted health science and related scientific stud-
ies. The genesis in data accumulation has made the scientific
studies on multiple genre of medical genomics more realistic
[1]. Throughout the world, large and varied genomic data sets
now help researchers understand the relation between our gen-
omic codes and our health [2, 3]. Genomic data are highly sensi-
tive, as they may reveal the current and future susceptibility of
specific diseases for an individual or his/her relatives.
Therefore, these unique genomic sequences impose a greater

privacy risk (Table 1) for the participants. In addition, genomic
databases often are owned by different organizations making it
unavailable for public usage. Moreover, these data are storage
exhaustive (varying in range of 30–200 GB [16]) and require a
high-performance computation when processed.

One popular approach to mitigate this problem is to enforce
privacy policies on sharing data. This strategy is popular but
challenging, as varying laws and regulations are followed in dif-
ferent institutions worldwide, which govern the sharing and
disclosure of these sensitive data. Though these policies are
protecting the privacy of the participating individuals, they are
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not the final answer. For example, the time needed by a govern-
ing body to review researchers’ applications requesting the ac-
cess of data sets is tedious, and it adversely affects achieving
timely research outcomes. This delay often demotivates re-
searchers to pursue specific studies. As we cannot foresee the
future attacks on genomic data, these policies are either much
generalized or can fall short for a new or advance attack
strategy.

On the other hand, cryptography is fairly archaic and mature
area, which can provide help in this domain. Using crypto-
graphic approaches allows addressing various privacy issues of
genomic data, as these strategies ensure the data security and
privacy of an individual even on an untrusted environment.
The rigorous definitions and guarantees of these concepts per-
mit us to measure and mitigate the risk involved. Also, with
seminal development in multiple crypto primitives in recent
years, this should impact positively toward some of these secur-
ity/privacy requirements. Thus, developing a secure system
using various cryptographic techniques that guarantee both
privacy and utility of genomic data is an important research
problem.

In this article, we summarize the interoperability of these
two scientific research fields: genomic data and privacy-pre-
serving techniques. The different focus points of security and
privacy aspects of genomic data will be the main concern, dis-
cussing the necessary backgrounds and followed by some of the
recent works. Specifically, we will discuss the following:

• Current privacy problems around sharing and computation on

genomic data in different settings are detailed.
• Major cryptographic approaches and recent advancements with

potentials to solve specific genomic data privacy and security

issues are discussed.
• Available tools regarding these crypto primitives are also de-

tailed along with their used cases, differences and limitations,

which will help practitioners for better understanding.
• Recent developments or scientific literature that adopts such

privacy-preserving approaches and the corresponding problem

space are discussed. We focus on the gaps in this domain along

with the open problems to be addressed as future work.

This review focuses on privacy-preserving techniques that are
applicable for addressing some of the problems of genomic data
dissemination and computation. Previous surveys targeting
such multidisciplinary research area [17–20] either presented
different privacy attacks on genomic data or proposed solutions
in lieu of these privacy issues. In this article, we take a different

route, as we discuss various privacy-preserving solutions to
mitigate the privacy concerns in sharing genomic data for re-
search [e.g. genome-wide association studies(GWASs)]. The eth-
ical, forensic or security–privacy concerns of DNA sequencing
[17, 20] are kept out of discussions in this article, while we only
focus on the computational security or privacy aspects of the
retrieved genomic data. In other words, we discuss the methods
required to securely compute or preserve the privacy of the data
retrieved after the DNA sequencing.

In particular, we first overview different recently proposed
cryptographic techniques and then discuss how these tech-
niques can be used to ensure privacy-preserving genomic data
sharing. This might be beneficial in understanding the current
state of the art of these privacy-preserving techniques and re-
solve some misconceptions about their efficiency.

Some of the seminal developments in this ecology of priv-
acy-preserving techniques and genomics are shown in Figure 1.
From the earlier sequencing techniques in 1975 to the recent de-
velopments using Intel Software Guard Extensions (SGX) in
2017, the genomic data evolution and the cryptographic tech-
niques are presented in a chronological fashion in Figure 2. We
use the green color and the orange color to describe the contri-
butions in genomic data and privacy-preserving techniques, re-
spectively. It is noteworthy that all these events might not be
equally significant, but each of these has some potential in this
area of research.

Problem specifications

Exploring the cryptographic solutions available warrants dis-
cussions on the privacy or security problems specific to gen-
omic data sharing/computation.

Different entities

In a genomics study, the collaborating parties can be catego-
rized into four general entities: (a) end point users/researchers,
(b) computation layer, (c) data owners, and (d) data storage and
operations layer (Figure 2). Often times, these entities can be
merged or generalized as detailed in the Supplementary
Material. For example, data owners can have their own infra-
structure to store large quantities of genomic data or their own
data storage layer. Also, there are several proposals for intro-
ducing a fully trusted entity in this pool. Regardless of any alter-
ation to the structure, these entities are often assigned with

Table 1. Notable privacy attacks with the help of public genomic data

Author Year Summary

Malin and Sweeney [4] 2000 Identifying of DNA sequence based on available health records and disease background knowledge
Gottlib [5] 2001 Finding employees who are susceptible to genetic diseases depending on genomic data
Lin et al. [6] 2004 Identifying a person by only 75 independent SNPs
Homer et al. [7] 2008 Telling if a user is present in a DNA mixture
Goodrich [8] 2009 Revealing information about the full identity of an encrypted genomic query sequence
Humbert et al. [9] 2013 Inferring close relatives’ genomes using statistical inference
Sweeney et al. [10] 2013 Identify the individuals in the Personal Genome Project (PGP) by Name
Gymrek et al. [11] 2013 Identifying personal genomes from surnames by profiling short-tandem repeats on the Y-chromosome
Fredrikson et al. [12] 2014 Predicting genetic markers using machine learning models on differentially private data
Shringarpure and

Bustamante [13]
2015 Identifying participants from a genomic database (with beacon services) with limited number of queries

Raisaro et al. [14] 2016 Modifying attack on beacon services with better adversarial knowledge
Harmanci and Gerstein [15] 2016 Linking phenotypes to genotypes from publicly known genotype–phenotype correlation
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different trust models (i.e. malicious, semi-honest or fully
trusted).

Problem categories

The privacy and security problems of genomic data can broadly
be classified into three major groups:

Problem 1: Privacy-preserving sharing of genomic data
In the past decade, multiple reidentification attacks (Table 1) on
genomic data have amplified the privacy and security aspects
of such sensitive data, which accounts for almost all current
practices (described in the Supplementary Document) not
allowing public sharing of these data without any form of priv-
acy guarantee (i.e. anonymization). However, these privacy
guarantees often fall short for different reasons (i.e. different
adversarial assumptions, better attacks or different threat
models).

Example. A government or research organization has
sequenced a population or a disease group believing that these
data will reveal the correlation between the disease and the
genomic data. The organization believes the data should not be

public, as it contains the disease association of the participants.
However, as the primary intention behind collecting the data
was to share it to the scientific community, the necessity for a
privacy-preserving sharing mechanism is emphasized.
Solutions such as ‘Homomorphic encryption’ or ‘Differential
privacy’ sections are applicable in this case.

Problem 2: Secure computation and storage of genomic data
Problem 1 only deals with the unknown risk involved with shar-
ing the genomic data. Problem 2, however, denotes the leakage
risks from the storage or computation of genomic data.

Example. Suppose a sensitive genomic data set is shared
with researchers using a state-of-the-art privacy-preserving
mechanism; there are still unknown risks involved as re-
searchers need to store the data. This risk is further elevated, as
researchers might opt for public cloud solutions for their com-
putation. In this case, the usability of cloud service is consider-
able because of the budget constraints of any research. Even
without the cloud usage, allowing a third party to compute on
the data in plaintext involves unwanted risks, as data might
leak from the secure enclosure of researchers as well. Such
problems can be solved by using three techniques, which are

Figure 1. Timeline of the evolution of genomic data studies and seminal development of different privacy-preserving techniques.

Figure 2. Different entities involved in a genomic data computation.
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outlined in sections ‘Homomorphic encryption’, ‘Garbled circuit’
(GC) and ‘Secure hardware’.

Problem 3: Query or output privacy
The last piece of the puzzle comes from the outputs of any ana-
lysis of genomic data. Even with all the security or privacy-pre-
serving techniques around data sharing or computation, the
query and its output will reveal the researcher’s interest and
some data characteristics, respectively. Though these problems
are surfacing recently and less explored by the research com-
munity over the past years, attacks against the aggregated re-
sults of Genomic Beacon Service [13, 21] further elevate the
necessity of such privacy.

Example. Some parties (i.e. commercial drug manufacturers)
often have private queries that reveal their targeted consumer
markets and strategic plans. The published results from these
queries are also sensitive, as they can reveal the presence of an
individual or a certain group in a study. One particular tech-
nique to solve such a privacy problem is detailed in ‘Differential
privacy’ section and the Supplementary Document as well.

In this article, we consider the privacy/security issues raised
after the generation of human genomic sequences only. There
are other concerns related to the sequencing phase: different
policies or ethical aspects of collecting genomic data presented
in different surveys [17–20]. However, the aforementioned three
problems will be sufficient, as we explain the application of the
different cryptographic methods.

Current practices

There are two practices of genomic data sharing: (a) open or
public access and (b) controlled access via different policies and
access controls. We discuss these practices in the
Supplementary Material along with current privacy policies in
genomic data sharing, different threat models and the entities
presented in Figure 2.

Privacy-preserving solutions

Here, we discuss the different privacy-preserving methods de-
veloped in context of genomic data using the four cryptographic
techniques: (a) homomorphic encryption, (b) GC, (c) secure
hardware and (d) differential privacy. The necessary back-
ground of these crypto primitives is detailed in the
Supplementary Material, which will further explain the usage of
the techniques.

Homomorphic encryption

Homomorphic encryption (HE) allows one party to compute pre-
defined functions over encrypted data without decrypting it
(Figure 3). HE can be classified to various form factors such as
Fully, Leveled and SomeWhat HE (detailed in Supplementary
Document) depending mostly on compactness, correctness or
the functions they can compute [22]. Different HE schemes were
applied to different secure computation and storage problems
of genomic data. One of the first approaches was to use an addi-
tive HE (Paillier encryption) [23] on a semi-honest cloud server
proposed by Kantarcioglu et al. [24]. The authors [24] presented a
cryptographic approach to securely store the genomic se-
quences in a cloud server. They encoded the genomic se-
quences according to a binary representation and then
encrypted the individual encoding by Paillier (additive homo-
morphic) encryption. There are also some other attempts made

with the Paillier encryption in a federated [25] and centralized
environment [26].

Another attempt with additive HE was the privacy-preserv-
ing genetic risk calculation [27]. Ayday et al. [27] proposed a
method depending on the DGK (Damgård, Geisler and
Krøigaard) cryptosystem [28], which is mostly used for secure
computation of integers. It is also one of the earliest works that
handle the problem of the privacy-preserving of federated/cen-
tralized genomic data storage and computation.

Some recent works proposed by Lauter et al. [29] show some
secure versions of statistical algorithms used in genomic stud-
ies, e.g. Hardy–Weinberg equilibrium and linkage disequilib-
rium. This work uses the rigorous security definition of fully
homomorphic encryption; it can allow any computation over
any encrypted data.

After the availability of the implementations of these en-
cryption schemes [30–32], Cheon et al. [33] proposed edit dis-
tance to be securely computed via lattice encryption. However,
the present state of HE inhibits the efficiency of the scheme; it
still takes 16.4 s to compute a small 8 � 8 block of dynamic
programming.

There are other usages of SomeWhat HE in genomic data
[34], which covers homomorphically computing logistic regres-
sion. An extension is Healer [35], which provides Secure Exact
Logistic Regression in genomic data. Privacy-preserving GWASs
with HE were also proposed by Lu et al. [36] in 2015, where the
authors compared their packing technique with Lauter et al.’s
work [29]. FORESEE [37] is also similar to this work and proposes
secure chi-square statistics on genomic data. In a more recent
work, Shimizu et al. [38] proposed the usage of Burrows–
Wheeler transformation for finding target queries on a genomic
data set. This work along with some others [39, 40] used addi-
tive HE for privacy-preserving computation on genomic data
efficiently.

However, some results from a recent competition look prom-
ising in favor of HE. The task was to execute a simple yes/no
query from VCF (Variant Call Format) files using HE schemes.
The solutions were evaluated with different number of query
parameters and varying the underlying encrypted VCF files con-
taining 10–100 000 records. The results are ranked in Table 2.

Available implementation
There are several mainstream implementations available for
HE: (a) SEAL (sealcrypto.codeplex.com), (b) HElib (github.com/
shaih/HElib) and (c) NFLlib (github.com/quarkslab/NFLlib). In
Table 3, we point some of the differences between these imple-
mentations. There are other implementations available such as
Krypto based on Multivariate Quadratic FHE (https://github.
com/kryptnostic/krypto), FHEW library from Ducas–Micciancio

Figure 3. Example of homomorphic operations on encrypted values.
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[49] and recent TFHE [32], which claims to provide the fastest
bootstrapping.

Open directions
As HE is still in its early phase, it has not reached the level effi-
ciency for large-scale generic genomic data computation as
mentioned in sections ‘Problem 1: Privacy-preserving sharing of
genomic data’ or ‘Problem 2: Secure computation and storage of
genomic data’. For example, a multiplication or bootstrapping
operation takes some time making it unrealistic to use on com-
plex functions such as training machine learning. In real-world
scenarios, there is a demand for using different machine learn-
ing techniques on genomic data for various research objectives.
However, as these data are much sensitive, running (training)
the machine learning models on encrypted data will need much
faster HE schemes. Also, there is a necessity of different pack-
ing techniques [50] for genomic data, which can reduce the exe-
cution time of the whole computation.

Garbled circuit

A GC is a constant round secure protocol, which allows any
function to be computed between multiple parties, hiding both
their inputs from each other [51]. The security guarantee of GC
lies in equal participation of two parties communicating over
the computed functions. Another significance of GC is the priv-
acy of the inputs of both parties, as often times the query itself
requires similar privacy deemed by the data. Therefore, GC is
primarily used in the sequence similarity problems in which
one party has a data set of genomic sequences and another
party (researcher) has a sensitive query sequence. The re-
searcher wants to find the similar sequences of that specific
query based on any similarity metrics, i.e. hamming and
Levenshtein distances.

One of the primary works in the domain of privacy-preserv-
ing genomic sequence similarity is proposed by Jha et al. [52] in
2008. The authors showed three different protocols that can

replicate the original edit distance algorithm over a GC.
However, it took around 40 s to compute the edit distance be-
tween two 25-long sequences because of the performance of the
GC available that time.

Wang et al. [53] formally defined this problem as ‘Similar
Patients Query’. The authors addressed the problem of approxi-
mating the original edit distance in a realistic setting for a larger
data set [54]. The method used a public reference genomic se-
quence for some precomputation on the genomic data set and
then approximate the edit distance between the query string
and the data set.

However, the selection of a public reference leaks some in-
formation about the underlying data distribution. Moreover, it
affects the accuracy, as the computation is done according to a
reference. There are other related studies [55, 56, 57] that ad-
dress approximating or securely computing edit distance. In
Table 4, we show some recent results on privacy-preserving edit
distance approximations using GC and some other protocols.

Available implementation
As mentioned above, there are multiple efficient algorithms
available for GCs. These implementations are highly extensible
and offer a secure multiparty computation with inherent com-
munication cost. Some of the notable tools regarding GC are
ObliVM [60], FastGC [61], FlexSC [62], ABY [63] and TinyGC [64].
As the last available implementation of GC, TinyGC [64] con-
tains all the benchmarks necessary and is the state of the art to
the best of our knowledge.

Open directions
Problems such as query and computation privacy (sections
‘Problem 3: Query or output privacy’ or ‘Problem 2: Secure com-
putation and storage of genomic data’) are primary motivations
to apply GC. As the current state of the art in GC and oblivious
Transfer [60] is a little more matured than FHE, they still need to
be tested on large-scale genomic data computation. For ex-
ample, all the recent secure edit distance computations (or ap-
proximations) take small sequence length into account, where
realistic scenario dictates long genomic sequences. Also, the
network overhead required (mentioned in section ‘Differential
privacy’) for large-scale circuit computation might need further
experiments.

However, there is a potential for another secure multiparty
computation protocol, Secret Sharing Schemes. Though
architecture-wise it is a bit different from GC, this technique
has not been much explored into this area of research. Secret
Sharing Schemes can hold some answers to the privacy issues
in cross-institutional or federated environment architecture
[65].

Secure hardware

Using secure hardware for a secure computation is considered a
seminal contribution from Intel when they introduced SGX in
their sixth and subsequent generation processors. It allows a
user to separate their confidential data and code from the regu-
lar ones and allows him/her to do the secure computation in a
secure enclave inside the processor. The secure portion of the
data or the code is inaccessible from the rest of the execution
ensured by the processor itself (Figure 4).

The first work using secure hardware on genomic data intro-
duced by Canim et al. [66] in 2012 leveraged a trusted hardware
(secure co-processor) inside an untrusted cloud to ensure

Table 2. Results from the iDash 2016 competition task 3: Searching
in encrypted genomic data set

Authors Setup time Encrypted size Computation time

Çetin et al. [42] 36.69 188 59.58
Kim et al. [43] 2384 244 226.9
Ziegeldorf et al. [44] 1207 13 000 297.2
Sousa et al. [45] 6903.1 1468 288.9

Note: The results are for 100 000 records and a query with four variants (times

are in seconds and encrypted data set size in MB) [41].

Table 3. Comparison of popular HE implementations

Feature HElib SEAL FV-NFLlib TFHE

Crypto scheme BGV [46] FV [47] FV [47] BGV [46]
Fully HE � � � �

Language Cþþ Cþþ Cþþ Cþþ
Library dependency NTL and GMP � NFLlib Any FFT
Relinearization � � � �

Bootstrap � � � �

Fixed-point support � � � �

GPU enabled � [48] � � �

Wrapper available Python C# � �
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privacy. The authors proposed a technique to use the symmet-
ric encryption to perform secure count queries on a genomic
data set.

With the advent of Intel SGX, research has surfaced on
privacy-preserving statistical analysis on genomic data. One re-
cent attempt, proposed by Chen et al. [67] in 2016, introduced a
solution based on Intel SGX, which enables efficient and
privacy-preserving estimation of an individual admixture
named PREMIX. PREMIX [67] can protect the confidentiality of
genomic data and ancestry information of patients.

Another recent solution, PRINCESS [68], introduced an inter-
national collaboration framework (Federated) for privacy-
preserving analysis of rare disease genetic data that is distrib-
uted around the world. PRINCESS [68] was evaluated in a study
of family-based transmission disequilibrium tests to under-
stand the genetic architecture of Kawasaki disease (KD).

HardiDX [69] is an SGX-based framework for searching over
encrypted data efficiently, which can be incorporated for gen-
omic data, as it overcomes the memory limitation of SGX by
loading the data into the enclave in an on-demand fashion.
Another work named LASTGT [70] formulates the problem of
managing large-scale data as a virtual memory management
problem. Though LASTGT is implemented on TrustVisor, the au-
thors also described a possible implementation on Intel SGX.

Open directions

Secure hardware solutions such as Intel SGX or AMD memory
encryption [71] are recent and still unknown to the research
community. Though it could potentially solve problems men-
tioned in section ‘Problem 2: Secure computation and storage of
genomic data’, further inspections are still required. As this ap-
proach could be an efficient alternate to HE, the security risks of

using a third-party trusted component (H/W) or dependency on
one singular key can be explored further.

Nonetheless, it is beyond the scope of the genomics re-
search, and there are other pressing issues as SGX comes with
limited low-level memory attached only to the processor. Some
recent works [69, 70] mentioned before focus on managing
large-scale data in Intel SGX applications to overcome the lim-
ited size of enclave page cache. Regardless, it might be interest-
ing to look for any side channels or cache attacks depending on
the genomic data size as well.

Differential privacy

Though differential privacy is not a cryptographic technique, it
theoretically offers quantifiable bound of privacy on the disclos-
ure of data or any query result. A majority of the research work
revolving differential privacy and genomic data lies in the pri-
vate GWAS. In 2013, Johnson and Shmatikov [72] proposed a dif-
ferentially private approach to answer statistical queries of
GWAS: (a) specific position in DNA is correlated with a particu-
lar disease, (b) relation between two positions in a DNA and (c)
the number of locations affiliated to a specific disease.

This problem is later extended by Yue et al. [73], where the
authors applied differential privacy to detect association among
multiple positions using logistic regression. In extension to the
problem above [72], Yu and Ji [74] also worked on differentially
private GWAS for integrating Data for Analysis, Anonymization
and SHaring (iDash) competition.

Another work from Tramèr et al. [75] proposed a differen-
tially private mechanism for positive membership considering
weaker adversarial model. Recently, Simmons and Berger [76]
refined both of the aforementioned problems of finding signifi-
cant positions on DNA by modeling it as an optimization prob-
lem. They further relaxed the optimization problem and solved
it in constant time. Simmons et al. also proposed differential
techniques for the EigenStrat and linear mixed model-based
GWAS with population stratification [77] in late 2016. There are
also some other attempts [78–80] in GWAS, data dissemination
or sharing using differentially private mechanisms.

In a more recent work in 2017, a differentially private solu-
tion [81] was proposed for the privacy attack on Genomic
Beacon Services [13, 21]. The method was initially presented in
the iDASH 2016 competition [82]. It scrutinized the parameters
of the original attack, analyzed it for different scenarios and
proposed a simple differentially private ‘Randomized Response’
algorithm. Despite having a formal privacy guarantee, this solu-
tion came second best, as the winning solution [83] took a dif-
ferent direction toward the problem. Wan et al. [83] formulated
the problem with an objective function consisting the data and
potential queries from any adversary with different background
knowledge. Further improvements were made by considering

Table 4. Some recent results of privacy-preserving genomic data similarity methods using GC protocol

Authors Year Data (n � m) Time (s) Principal method

Jha et al. [52] 2008 25� 25 <40 Smith–Waterman
Wang et al. [55] 2009 400� 400 28.5 Custom protocols
Wang et al. [54] 2015 2000� 9000 2800 Private set difference with a reference sequence
Cheon et al. [33] 2015 8� 8 16.4 HE
Shimzu et al. [38] 2016 2184 genomes 4–10 Burrows–Wheeler transform
Zhu and Huang [58] 2017 500� 3500 209 GC
Aziz et al. [59] 2017 500� 3500 22 Private set intersection
Asharov et al. [56] 2017 500� 3500 11 Custom protocols with reference genome

Figure 4. Protected execution environment in Intel SGX.
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the uniqueness of some data points (SNPs), which were more
sensitive than others. Such game theoretic solutions are also
interesting, as it often maximizes the privacy–utility of a given
scenario compared with contemporary DP solutions.

Available implementation
One of the most popular tools available in differential privacy
was proposed in 2009 by Mcsherry [84]. The toolkit was named
Privacy Integrated Queries (PINQ) based on Microsoft’s C#
Language-Integrated Query (LINQ) feature. PINQ works as a
layer above the database working on the SQL queries being per-
formed on the data. For example, with any count queries per-
formed on the data, PINQ will return the calibrated noisy or
differentially private output.

Open directions
Differential privacy is one of the subverted concepts from the
others, though it has the potential to solve some of the privacy
issues regarding the data (sections ‘Problem 1: Privacy-
preserving sharing of genomic data’ and ‘Problem 3: Query or
output privacy’). However, this method needs to be analyzed in
different research problems because of the error or noise cali-
bration issues and high accuracy requirement of genomic re-
search. This technique offers promise of a rigorous guarantee
over the privacy of the data and outputs.

For example, if any computation is executed on differentially
private data, the output can be proven to follow the same differ-
ential privacy guarantees. This definition allows us to avoid the
overhead from secure computation techniques (i.e. HE or SGX) for
some certain scenarios, where we do not require secure computa-
tion. Nonetheless, as differential privacy is more explored on the
context of privacy-preserving machine learning, this can have a
benefit when learning different models on genomic data.

Comparison
In Table 5, we compare the aforementioned four techniques
(HE, GC, SGX and DP). However, the techniques have much dif-
ference in terms of architecture, security guarantee, underlying
threat models and usage scenarios. Hence, we do not compare
these techniques only for a single problem; rather, we provide a
generic ranking (1¼ good; 4¼poor) for the execution time, ac-
curacy, memory requirement and network communication.
However, this ranking might not be true for every scenario, as it
depends mostly on the problem setting. For example, in a two-
party secure computation setting, GC might be more appealing
than HE, where for an n-party problem, we might opt for HE or
Secret Sharing solutions instead.

Sometimes the combination of some of these techniques
offers better solutions. For example, if the solution requires out-
put privacy and computation security as well, we can combine
DP and any of the other techniques to achieve that. Primarily DP
prevents inference attacks, while the rest of the techniques

ensure confidentiality. Thus, these techniques complement
each other as shown by [80, 21].

Conclusion

Our genomic data are what we inherited from our ancestors, share
them with our siblings and will pass onto our offspring. As we are
heading into less expensive and more accurate sequencing meth-
ods and more sophisticated attacks surfacing, the motivation for
genomic data security and privacy is amplified. Therefore, as we
discussed in this article with the different research problems con-
cerning genomic data and the advancement of privacy-preserving
techniques, this ecology of security–privacy and genomic data
needs further exploration, resulting in more efficient, secure com-
putation and storage architectures for such data.

Key Points

• Different privacy and security concerns relating to gen-
omic data with respect to recent attack scenarios and
current practices.

• State of the art methods of privacy-preserving tech-
niques and their current status.

• Some of the recent developments in using such tech-
niques for genomic data privacy and their results.

• The future directions of using these privacy-preserving
techniques.
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