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Abstract

Systems Bioinformatics is a relatively new approach, which lies in the intersection of systems biology and classical bioinfor-
matics. It focuses on integrating information across different levels using a bottom-up approach as in systems biology with
a data-driven top-down approach as in bioinformatics. The advent of omics technologies has provided the stepping-stone
for the emergence of Systems Bioinformatics. These technologies provide a spectrum of information ranging from
genomics, transcriptomics and proteomics to epigenomics, pharmacogenomics, metagenomics and metabolomics.
Systems Bioinformatics is the framework in which systems approaches are applied to such data, setting the level of resolu-
tion as well as the boundary of the system of interest and studying the emerging properties of the system as a whole rather
than the sum of the properties derived from the system’s individual components. A key approach in Systems
Bioinformatics is the construction of multiple networks representing each level of the omics spectrum and their integration
in a layered network that exchanges information within and between layers. Here, we provide evidence on how Systems
Bioinformatics enhances computational therapeutics and diagnostics, hence paving the way to precision medicine. The
aim of this review is to familiarize the reader with the emerging field of Systems Bioinformatics and to provide a compre-
hensive overview of its current state-of-the-art methods and technologies. Moreover, we provide examples of success sto-
ries and case studies that utilize such methods and tools to significantly advance research in the fields of systems biology
and systems medicine.
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Introduction

Biological data, either as large-scale omics or as classical bio-
data, are the footprints of biological mechanisms. These mecha-
nisms consist of numerous synergistic effects emerging from
various systems of interwoven biomolecules, cells and tissues.
Therefore, it is necessary to explore them with a systemic
approach to reveal the behaviour of the system as a whole
rather than as the sum of its parts.

Systems biology provides a holistic perspective on biological
mechanisms via the integration of information and knowledge
from multiple interdisciplinary fields (such as biology, chemis-
try, mathematics, computer science and physics). It aims to elu-
cidate synergistic relationships between multiple factors in
contrast to representing them as single entities and can lead to
the generation of complex molecular networks of interactions
modelled by computational or mathematical approaches.
Systems biology harnesses its power from technological advan-
ces in the field of ‘omics’ and the advent of next-generation
sequencing. These technologies provide a spectrum of informa-
tion ranging from genomics, transcriptomics and proteomics
to epigenomics, pharmacogenomics, metagenomics and
metabolomics.

Bioinformatics and computational biology have made signif-
icant breakthroughs towards the analysis and interpretation of
the data obtained from the above-mentioned omics technolo-
gies. The sheer size of data generated by these high-throughput
methodologies, coupled with the need to analyse, integrate and
concurrently interpret this avalanche of information in a sys-
temic way, has paved the way to the upcoming field of Systems
Bioinformatics.

Systems Bioinformatics is a relatively new approach, which
lies in the intersection of systems biology and classical bioinfor-
matics. It focuses on integrating information across different
levels using a bottom-up approach—as adopted in systems biol-
ogy—with a data-driven top-down approach used in bioinfor-
matics. The bottom-up approach in systems biology typically
brings together information from molecular cells and tissues in
the framework of mathematical models to generate insights on
the function and dynamic behaviour of cells, organs and organ-
isms. The top-down approach uses bioinformatics methods to
extract and analyse information from ‘omics’ data generated
through high-throughput techniques.

Initially, informatics approaches to systems biology focused
mainly on modelling and simulation. However, owing to the
lack of sufficient experimental data, these methods fell short in
building reliable models. Subsequently, the explosion of multi-
level data generation brought a plethora of new methods, tools
and solutions capable of studying systemic properties. The
application of systemic approaches such as information theory,
statistical inference, probabilistic models, graph theory and fur-
ther network science approaches in the analysis of biological
data paved the way to the creation of a distinct field, namely,
Systems Bioinformatics.

Depending on the availability, the quality and the compre-
hensiveness of the data, Systems Bioinformatics’ methods con-
tribute significant benefit in narrowing down the gap between
genotype to phenotype as well as providing additional informa-
tion regarding biomarker and drug discovery. These methods
are applied to classical biological data, clinical/patient data and
omics data as well. They are suitable for extracting precise and
personalized results, thus, facilitating systems medicine (medi-
cine that is in bidirectional interaction with computational mul-
tiscale analysis and modelling of disease-related mechanisms)

and more specifically P4 Medicine (medicine that is personal,
participatory, predictive and preventive) [1, 2] (as illustrated in
Figure 1).

The delivery of individually adapted medical care of high
precision, based on multi-source patient information across
various levels and in various scales, is the basic idea of modern
medicine having various appellations depending on the empha-
sis given (e.g. translational/systems/P4/precision/personalized
medicine). The omics spectrum offers the opportunity and the
challenge for multiscale and multi-source analysis
towards building a comprehensive profile of the Human
System (Figure 2). The major challenges faced by Systems
Bioinformatics towards this demanding form of medicine are:
(i) the design and development of suitable bioinformatics pipe-
lines to provide valid and sufficient biological information from
the high-throughput molecular profiles of the patient, (ii) the
development of robust information systems capable for data
integration, information extraction and knowledge sharing, (iii)
the construction of mathematical models to predict the evolu-
tion of a particular disease, its relation with the measured
markers, its tolerance/resistance to various drug families and
the existing risks to the patient. These challenges can be tackled
with state-of-the-art computational methodologies and techni-
ques, such as computational intelligence, machine learning,
pattern recognition and data mining, modelling and simulation,
network reconstruction and visualization, complex network
analysis, deep learning, text mining/semantics and association
analysis. Further to these, Systems Bioinformatics serves as the
framework for the development of powerful computational
methods and tools to create user-friendly platforms to visualize
and analyse big and heterogeneous information in the form of a
network.

This review is structured in three main sections. In the first
section on ‘Systems Bioinformatics’ we begin with an overview of
the systems theory approach for complex biological problems.
We then provide an in-depth summary of the network science
approach in System Bioinformatics. We introduce certain basic
network measures, which are used to analyse the components of
a network, both locally and globally, and discuss the biological
interpretation of such measures. We then describe in detail key
biological network construction methods followed by a discus-
sion on module-based approaches and network signatures.
Finally, we describe network manipulation methods in the
‘Network controllability’ and ‘Network integration’ subsections.

Figure 1. Systems Bioinformatics. A schematic representation of the emergence

of Systems Bioinformatics as a distinct discipline among other interrelated and

interdependent disciplines. The information provided by Bioinformatics,

Biology and Systems Biology is integrated in the Systems Bioinformatics frame-

work through computational integration and network-based and other holistic

approaches to tackle challenges in Systems Medicine and in particular P4

Medicine.
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In the following subsection we provide a short summary regard-
ing modelling and simulation approaches followed by a short dis-
cussion on the infrastructures and data management challenges
in the field of Systems Bioinformatics. In the last two sections we
provide an overview of methods and case studies with regards to
the Systems Bioinformatics applications in biomarker and drug
discovery.

Systems Bioinformatics
Systems approaches

Biological data have tremendously expanded both in size and
complexity. Systems Bioinformatics focuses on the investiga-
tion of such vast and complex biological systems and their
within interactions using a ‘holistic’ rather than a ‘reductionist’
approach, much like the systems biology field. A holistic
approach to science and the analysis and description of a com-
plex phenomenon emphasizes the whole and the interaction of
its parts, whereas the reductionist approach focuses on the fun-
damental parts. In fact, the debate on reductionism versus
holism has its roots in ancient years. According to reductionism
proponents, the optimal method to understand any science is
the decomposition in smaller components. Moreover, in its
greedy form, reductionism may see the whole science as
physics. Even in its layered-model form, reductionism considers
human/health sciences as based on biology, biology based on
chemistry and chemistry based on physics. On the other hand,
a strong dissent has formulated a solid antireductionism trend.
This trend has either epistemological or ontological origins,
supporting that complete reductionism is technically impossi-
ble and that there are emergent laws that govern the system
and cannot be derived from the laws governing the components
of the system. Furthermore, it is supported that each system
has a ‘buffering capacity’ where many micro-states correspond
to fewer macro-states of the system, making reductionism to be
considered as pointless after a certain decomposition level [3].

The reductionism’s approach in biology is epitomized by
molecular biology, which in the past two decades has led to the
generation of a plethora of omics data. These data provide
information on the building blocks of the entire organism at

different scales and for different types of cells, tissues and
organs. Data on DNA fragments, genes, RNA fragments, pepti-
des, proteins and metabolites measured in short time and space
intervals provide a spatiotemporal distribution of these building
blocks under various states of the organism. These interwoven
building blocks control and are controlled by signals in a non-
linear way. As a result, the understanding of the system
requires something more than simply the bottom-up assembly
of the system’ components.

Systems theory, which is a holistic approach, addresses the
limitations from the reductionism’s point of view by consider-
ing the system as a whole, adopting a top-down approach [4].
Thus, it studies the emergent properties of the system such as
homeostasis, adaptivity, tolerance, stability and modularity,
through some basic overlying hierarchical principles such as
entropy, positive and negative feedback control [4]. In the con-
text of Systems approaches, the graph theory and the further
science of networks have been successfully applied to the inves-
tigation of complex phenomena across a range of different sci-
entific disciplines. The theoretical context of complex networks
approach includes concepts that are derived from information
theory, dynamical systems, statistical physics and topology
approaches, as well as several mathematical methods suited for
the analysis of the interaction of components in a complex net-
work. In the following subsection we provide an in-depth over-
view of such network approaches and examples of their use in
Systems Bioinformatics.

Networks

Biological network basics
Casting biological systems as networks and analysing their top-
ology can be useful in understanding how such systems are
organized. Graph theory provides a powerful mathematical
framework for the understanding of the organization of such
large and complex systems by considering them in the form of
graphs [5, 6]. Graphs, also termed as networks, can be used to
model the pairwise relations between objects. A network is a
collection of nodes or vertices connected by edges, arcs or lines
(as shown in Figure 3A). It may be undirected, meaning that
there is no distinction between the two nodes associated with

Figure 2. Network Integration. Multiscale and multisource data generated from the Human System can be represented in network form. These networks can be further

analysed and, importantly, they can be integrated forming supernetworks and building a comprehensive profile of the Human System.
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each edge, or its edges may be directed from one node to
another (as shown in Figure 3B). In cell biology, nodes represent
cellular components (e.g. proteins) and edges represent interac-
tions or other relationships between these components [e.g.
protein–protein interactions (PPIs)]. Basic network measures
can be used to analyse the components of a network, both
locally and globally, and facilitate the analysis and extraction of
useful information from a biological network. The most elemen-
tary characteristic of a node is its degree, i.e. the number of
edges connecting one node to its neighbours. The probability
distribution of the degrees over the whole network is called
degree distribution. In random networks, most nodes have a
similar number of links and their degree distribution follows
the Poisson distribution. In contrast, many real-world networks,
including most biological networks, are scale free. This means
that their degree distribution follows a power law, as most of
the nodes have few links and only a few nodes are densely con-
nected [7].

Nodes with high degree, known as ‘hubs’ (illustrated in
Figure 3C), can be key players in molecular mechanisms such as
(i) a protein interacting with multiple other proteins, (ii) regula-
tion of multiple genes by a key transcription factor or (iii) multi-
part regulation by other regulatory elements [i.e. microRNAs
(miRNAs)]. All these cellular processes may be highly significant
in determining the outcome or phenotype of a disease of inter-
est. In human cells, hub genes have been found to indicate

essential genes (i.e. critical for survival) rather than disease
genes [8]. Another node feature is its betweenness, i.e. the
extent to which a node participates in the shortest paths con-
necting other nodes. Nodes with high betweenness, known as
‘bottlenecks’, can be extremely influential in a network in the
sense that they rest in critical junctions between hubs and can
therefore represent bridges that allow groups of nodes to cross
talk to each other (as illustrated in Figure 3C). Importantly,
some of these bottleneck nodes represent key connections that
if removed will result in the complete loss of connectivity
between clusters of nodes, thus affecting greatly the overall top-
ology and, as a result, the information propagation in the net-
work. In molecular terms, an example of bottleneck nodes is
that of proteins whose loss of function leads to deactivation of
specific processes. In directed regulatory protein networks,
betweenness was shown to be a good predictor of essentiality
[9]. Various other network features can be calculated to provide
insights into biological networks. Another measure is closeness
(a measure of the average length of the shortest paths from one
node to other nodes), which indicates important nodes that can
communicate quickly with other nodes of the network. For
example, in a protein signalling network closeness can be inter-
preted as the ‘probability’ of a protein to be functionally rele-
vant for several other proteins. An example illustrating how
network measures, such as network-efficiency and network-
clustering, can be used as biomarkers is the recent study of
Blain-Morales et al. [10] where a network was constructed using
the alpha bandwidth (8–13 Hz) of the electroencephalogram
recordings during anaesthesia in healthy humans. Global net-
work efficiency quantifies the efficiency of information
exchange across the whole network and is defined as the aver-
age inverse shortest path length over all pairs of nodes. The
clustering-coefficient is a measure of the degree to which nodes
in a network tend to cluster together (the global measure is cal-
culated by averaging the local clustering-coefficients of all
nodes). In Blain-Morales et al. [10] network efficiency was signif-
icantly decreased and network clustering-coefficient was signif-
icantly increased during anaesthesia-induced unconsciousness.
These measures returned to baseline 3 h post-recovery, suggest-
ing that they could be used as potential biomarkers for normal
recovery brain networks post general anaesthesia induction.

Other network measures such as network size [11], density
[11], PageRank versatility [12], path length [10] and modularity
[10] can further be used to evaluate networks. For an extensive
review of network measures, the reader is referred to [13].
Although topological properties from a graph-theory point of
view do not always have a clear biological meaning, in many
cases they can be good predictors of functional and disease
modules (see [8] for further discussion).

Biological network construction methods
Biological networks can be split into two broad categories that
best characterize their underlying nature: (i) evidence-based
molecular networks that rely on experimental evidence for spe-
cific molecular interactions such as PPI networks, metabolic
networks and regulatory networks (transcription factor—gene
networks, non-coding RNA—gene networks) [14–18], (ii) statisti-
cally inferred networks, which are based on statistical inference
that rely on interactions between components established by
means of statistical analysis.

Evidence-based molecular networks: The information used to
build networks of molecular interactions is obtained from small-,
medium- or large-scale experimental data that are usually aggre-
gated and available in online databases [19, 20]. A plethora of

Figure 3. Network Basics. (A) The basic elements of a network are illustrated in

this simple network where a circle indicates a node and a line indicates an edge.

(B) Networks can be either undirected (upper panel) or directed (lower panel). (C)

Hubs (red nodes – or dark grey nodes in Black & White printing) and bottlenecks

(green nodes – or medium grey nodes in Black & White printing) are illustrated in

this sample graph. Two example modules (green and blue areas – or shadowed

areas in Black & White printing) are illustrated as subgroups of nodes and their

respective edges.
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information can be derived from multiple resources including
PPIs, gene regulatory relationships (including miRNAs) and meta-
bolic pathways, using high-throughput (i.e. whole exome
sequencing) and literature-curated data. In addition, valuable
pre-compiled information can be derived from databases like
Gene Ontology [21], REACTOME [22, 23] and literature-based
annotations in Genome Recognition Analysis Internet Link [24].

The construction of biological interaction networks with the
goal of uncovering causal relationships constitutes a major
research topic in systems biology [25]. Many approaches have
been developed to study the interactions among a large number
of genes to highlight significant genes for each disease. Certain
approaches utilize biological knowledge, to address many biologi-
cal problems and find genes related to the disease of interest.

Construction of networks requires knowledge of PPIs, protein–
DNA interactions (PDIs) and/or protein–metabolite interactions
(PMIs). Such data can be obtained from open-access databases. For
example, PPI data can be obtained from the Search Tool for
Recurring Instances of Neighbouring Genes (STRING) [26], the
Human Protein Reference Database (HPRD) [27], the Biomolecular
Interaction Network Database (BIND) [28], the Molecular
INTeraction database (MINT) [29] and the Biological General
Repository for Interaction Datasets (BioGRID) [30]. For example, in
a recent study, a network-based analysis of mass-spectrometry
(MS)-based proteomics data of spinal nerves led to the identifica-
tion of 19 biological processes to be involved in retrograde moto-
neurodegeneration and neuroprotection after axonal damage [31].
In this study, the authors used nine public PPI databases to obtain
protein interaction data. Furthermore, PDI databases include
the EdgeExpressDB (FANTOM4-EEDB) [32], the Transcriptional
Regulatory Element Database [33], MSigDB [34], MultiNet [35] and
the MetaCore [36]. The KEGG pathway database [37] can be used to
obtain PMI data.

Nevertheless, as a large number of genes are not function-
ally characterized, these approaches are compromised owing to
lack of available data [38]. Based on this limitation, many statis-
tical network inference methods were developed to construct
statistically inferred gene networks, based on omic data from
high-throughput technologies, as they provide snapshots of the
transcriptome under many tested experimental conditions [39].

Statistically inferred networks: A type of statistical inference net-
work is the ‘co-expression network’, where genes are connected
based on statistically significant correlated or anti-correlated
(depending on the underlying question) expression profiles with
respect to a disease of interest. Another type of statistically gen-
erated network is the ‘genetic network’ [40–42]. Sources like the
BioGRID [43] database, allow researchers to investigate how the
dysregulation of one gene affects the downstream response of
another gene and, moreover, how this cascade of molecular func-
tions influences specific disease phenotypes.

The basic idea behind the network inference methods is to
search for sets of co-expressed genes. Depending on the metric
that is used, these methods can be classified into three major
categories [38]: (i) Mutual Information-based methods, (ii)
Correlation-based methods and (iii) Tree-based methods.

Mutual information-based methods calculate the mutual
information values of all pairs for a given gene expression pro-
file, and if a pair’s corresponding value is larger than a given
threshold then this pair of genes is considered as linked. The
resulting network is constructed based on this threshold by
including a weighted edge between two genes [44]. The weight
can be calculated with several algorithms: ARACNE (Algorithm
for the Reconstruction of Accurate Cellular Networks) [45], CLR
(Context Likelihood or Relatedness Network) [46], MRNET

(Maximum Relevance Minimum Redundancy) [47], MRNETB
(Maximum Relevance Minimum Redundancy Backward) [47]
and C3NET [48].

In the case of correlation-based methods, the different algo-
rithms calculate the correlation or the partial correlation
between pairs of genes. These methods are implemented through
algorithms like GeneNet, a statistical learning algorithm which
allows the assessment of Graphical Gaussian Models [49], and
Weighted Correlation Network Analysis (WGCNA) [50], an algo-
rithm which calculates correlations across each pair of genes. It
computes an adjacency matrix using the Spearman correlation,
Lasso—a shrinkage and selection method for linear regression
[51]—and Adaptive Lasso—another version of Lasso modified to
include penalty weights [52].

In the case of tree-based methods, algorithms use tree-
based ensemble methods as feature selection techniques to
solve a regression problem for each gene in the network. More
specifically, the basic idea of tree-based methods in regression
is to recursively divide the learning sample with binary tests
based each on one input variable (the expression of one gene).
These binary tests are optimized to minimize, in the largest
amount possible, the variance of the output variable, namely,
the expression of another gene from the remaining in the sub-
sets of samples. Candidate divisions compare values from the
input variable with a threshold, which is determined during the
tree growing. Tree-based ensemble methods are more
enhanced than single trees, as they estimate the average pre-
dictions of several trees. An example of a tree-based method is
the GENIE3 algorithm [53], which emerged as the best performer
in a significant network inference challenge [39].

In summary, statistical-inference methods are used to esti-
mate the expression pattern relationships across all pairs of
genes driving to co-expression network inference. However,
correlation-based methods have a tendency to be algorithmically
straightforward and computationally fast, but with the limitation
that assume linear relationships among variables. In contrast,
methods based on mutual information capture non-linear as well
as linear interactions but they can be computationally expensive.
From another point of view, tree-based methods are non-
parametric and consequently, they do not need to make any
assumption about the nature of the data. Tree-based methods
can deal effectively with high-dimensionality data.

Module-based approaches and network signatures
Representing high-throughput data with networks often leads
to complex and highly dense networks that cannot be easily
interpreted by the human eye. To extract biologically meaning-
ful information from these networks and establish links to dis-
ease, methods have been developed for scanning and parsing
these networks. These methods allow for significant sub-
networks to be highlighted in the sea of nodes and edges, often
representing important ‘modules’ that are associated with a
specific disease [8, 54, 55] (as illustrated in Figure 3C). This type
of network ‘traversing’ can be performed between networks
obtained from data from different phenotypes from the same
disease (staging, subtyping) or from similar diseases (disease
hierarchy). Through this way, common/shared modules can be
identified by looking at network intersections. Alternatively,
unique modules reflecting molecular signatures exclusive to
specific conditions or phenotypes can be extracted. Depending
on the integration mode, the identification of modules may lead
to ‘active modules’ (by integrating molecular profiles and high-
lighting activity of nodes/interactions), ‘conserved modules’ (by
comparing multiple species/states and concluding to conserved

810 | Oulas et al.

Deleted Text: :
Deleted Text: ,
Deleted Text:  &hx2013; WES
Deleted Text: :
Deleted Text:  (GO)
Deleted Text: ,
Deleted Text:  (GRAIL)
Deleted Text: in order 
Deleted Text: -
Deleted Text: ,
Deleted Text: -
Deleted Text:  
Deleted Text:  
Deleted Text: ,
Deleted Text: employed 
Deleted Text:  (TRED)
Deleted Text: ,
Deleted Text: due 
Deleted Text: -
Deleted Text: <italic>-</italic>
Deleted Text:  &hx2013; 
Deleted Text: &hx2014;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: a
Deleted Text: b
Deleted Text: ,
Deleted Text: ,
Deleted Text: c
Deleted Text: &hx2018;
Deleted Text: :
Deleted Text: &hx2014;
Deleted Text:  - 
Deleted Text:  (GGMs)
Deleted Text: WGCNA (
Deleted Text:  &hx2013; 
Deleted Text: &hx2014;
Deleted Text:  - 
Deleted Text:  
Deleted Text:  &hx2013; 
Deleted Text: in order 
Deleted Text: in order 
Deleted Text:  
Deleted Text: &hx2019;
Deleted Text: A
Deleted Text: N
Deleted Text: S
Deleted Text: In order 
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;


subnetworks), ‘differential modules’ (by comparing states and
conditions and concluding to differentiated subnetworks) and
‘composite modules’ (by integrating multi-source information
from complementary networks) [56].

Module identification can be performed using Systems
Bioinformatics approaches and constitutes a powerful tool for
delineating the systematic molecular basis of disease. Module
identification thus abides by two assumptions: (i) modules that
are specific to a disease of interest are expected to form dense
clusters or hubs capable of detection by unsupervised network
clustering algorithms, (ii) the functional relationship between
the nodes residing within these clusters is expected to be simi-
lar with respect to underlying molecular mechanisms, biologi-
cal processes and cellular/tissue localization [57].

Further functional significance of modules can be derived by
using pathway enrichment analysis methods, either in the tra-
ditional sense (Fisher’s enrichment analysis) or by prioritizing/
ranking pathways and genes based on network topological sim-
ilarities to already validated disease network components. The
latter case leads to another type of module functional annota-
tion and assignment based on associations and connection to
neighbouring nodes that are of known/validated functions. This
approach has been used to elucidate functional and clinical sig-
nificance of hazy areas of molecular networks for which associ-
ations between genes or proteins and specific disease
phenotypes are not available in publicly available resources or
through basic high-throughput analyses.

There are several different types of example cases that have
used network methods to gain information on functional mod-
ules and network signatures. Novel information for genes, path-
ways and other molecular interactions involved in numerous
disorders has been discovered using network module-based
approaches. These include disorders such as type 2 diabetes
mellitus [58–61], Alzheimer’s disease (AD) [62, 63], Parkinson’s
disease [60, 64], cardiovascular diseases, asthma [61, 65–67] and
a variety of tumours [68, 69]. When existing bioinformatics
resources and databases fall short in shedding light on a specific
disorder of interest, novel experiments have to be designed and
conducted to successfully unravel the clinicopathological,
genetic and molecular mechanisms underlying disease. Success
stories include studies for spinocerebellar ataxia [70],
Huntington’s disease [71] and schizophrenia [72–74].

For example, a recent study utilized large-scale expression
data to extract/identify biologically significant modules from
gene expression networks [75]. It has been hypothesized that
disease tissue specificity is governed by the expression of a spe-
cific functional disease module (sub-network) in the tissue of
disease manifestation [75]. The authors of this study adopted
this hypothesis and used systems approaches to investigate the
tissue-specific expression patterns of disease genes in the
human interactome. They observed that genes expressed in a
specific tissue shared a topological neighbourhood in the
human interactome network, in contrast to genes expressed in
different tissues. The authors further provided evidence that
expression of all components of the tissue-specific disease
module was necessary for determining the disease outcome.
The construction of this tissue-specific disease network further
allowed for predictions on novel disease–tissue relationships.

Network controllability
Network controllability is defined as the potential to steer a net-
work from a given initial state to a final desired state within a
finite time and with appropriate inputs/modifications. Such
modifications are also known as ‘network attacks’. Another

Systems Bioinformatics’ emerging research direction related to
the dynamic properties of complex networks is the way in
which these properties are spreading and/or reforming during
network attacks. The attack process is usually based on specific
mathematical models that decide which nodes-edges or even
specific hubs to remove, to examine issues like controllability
[76], error tolerance [77], attack vulnerability [77, 78], robustness
[79, 80], topological characteristics [81] and control centrality
[82]. Cascade attacks [83], degree and betweenness-based
attacks and prominence-based attacks are commonly used
types of attacks [84]. It has been shown that intentional attacks
as well as random failures may easily affect (or even destroy)
network functions such as connectivity and synchronization
[84, 85], while a small range of node failures can affect the net-
work controllability [86]. In the case of Systems Bioinformatics
there are relatively limited, yet of great interest, studies that
have used such an approach [87].

‘Driving nodes’ are highly important nodes in a network that
governs its controllability. Control theory shows that to direct a
complex network towards a desired state, there is a minimum
number of driving nodes. Determining the minimum number of
driving nodes can be demanding with respect to both computa-
tional resources and time, hence novel non-exhaustive algo-
rithms for determining driving nodes are necessary. A recently
published study [88] presents the actuation spectrum method
that optimizes the trade-off between driving node prediction and
time. The authors validate their methodology across numerous
complex networks and show that a small number of driving
nodes are sufficient to determine the state of a complex network.
Another approach makes use of PPI networks and network con-
trollability. By controlling the structure of human PPI networks,
using the correct queues or inputs, it is possible to activate spe-
cific cellular processes that determine disease outcome (i.e. apop-
tosis). A recent study [89] utilized a PPI network of 6339 proteins
and 34 813 interactions to perform classification of proteins with
respect to their importance in the network. The authors quanti-
fied the effects of removing a specific protein from the network
by calculating the number of remaining driving nodes. Results
showed that the most important proteins according to this analy-
sis were also the primary targets of disease-causing mutations,
human viruses and drugs. This study showed that controllability
of a network can provide crucial information for the shift
between healthy and disease states, at the same time highlight-
ing novel candidate drug targets.

Network integration
A key approach in Systems Bioinformatics is the construction of
multiple networks representing each level of the omics spec-
trum and their integration in a layered network that exchanges
information within and between layers (Figure 2). Different dis-
ease modules have been shown to act in synergy. Thus, to
obtain a holistic picture of the complex mechanisms that
underlie disease manifestation, it is necessary to construct net-
works of integrated disease modules. Such an integration can
be achieved via various ways: (i) By investigating gene associa-
tion it is possible to construct connections between different
disease modules by looking at shared, common genes. This can
reflect the genetic basis of diseases and provide associations
between diseases of a common genetic background. (ii)
Superimposing gene networks with gene expression data from
RNA-Seq or microarray analysis can further enrich these net-
works of disease modules. (iii) A common genetic basis for dis-
ease modules can also be established by analysing genetic
variants or polymorphisms (i.e. SNPs, indels). Networks of
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disease modules sharing genetic mutations can lead to impor-
tant findings such as establishment of linkage and associations
of variants as well as environmental factors with disease mod-
ules. (iv) Protein interaction network modules can also be
merged using common PPIs between disease modules and
moreover, overlaying this information with proteomics expres-
sion data can provide valuable insights into the proteome of
diseases of interest. (v) Looking at common pathways between
disease sub-networks can also provide valuable clues as to simi-
larities and/or differences between diseases of interest. (vi)
Metabolic pathways can also provide additional information
towards the understanding of enzyme catalytic activity for dif-
ferent disease modules. Disorders that affect specific metabolic
pathways (i.e. obesity) are more likely to share commonalties in
the metabolic networks than diseases that share a genetic basis.
(vii) Disease modules can also be linked using regulatory infor-
mation such as shared miRNA regulators, thus highlighting
important commonalities or differences between diseases.

Specific cellular components (or modules) associated with a
disease are believed to share a topological neighbourhood
within the human interactome [90]. In a recent study [90] the
authors utilized novel mathematical conditions to map the
topological relationships between diseases in the human inter-
actome. They showed that diseases with common expression
profiles, symptoms and comorbidity share overlapping modules
in contrast to more phenotypically distinct diseases, which
appear in distant topological neighbourhoods. These tools can
provide valuable insights in predicting drug therapy for diseases
with common phenotypes, even if they are genetically distinct.

Another recent study [91] adopted a novel, multiple-
network-framework integration for epigenetic modules. This
method utilized the Epigenetic Module based on Differential
Networks (EMDN) algorithm, which simultaneously analyses
DNA methylation and gene expression data [91]. Using The
Cancer Genome Atlas (TCGA) breast cancer data, the authors
reported that the EMDN algorithm could recognize positively
and negatively correlated modules. These modules can serve as
biomarkers to predict/diagnose breast cancer subtypes by using
methylation profiles, where positively and negatively correlated
modules are of equal importance in the classification of cancer
subtypes. The authors of this study also showed that epigenetic
modules also estimate the survival time of patients, and this
factor is critical for cancer therapy.

Tools that analyse the structure and topology of these inte-
grated networks are of extreme value and can provide insights
into the synergistic role of multiple network components in dis-
eases of interest. The methods for network analysis and inte-
gration we have discussed so far are mainly used to describe
the topology of a biological network (or a set of networks).
Although these methods capture the relationships between
components, they fail to capture the dynamics, i.e. the time
component is not modelled and, thus, simulations to obtain
prediction of the evolution of the system cannot be performed.
For example, static insights into the molecular basis of a disease
do not provide a complete picture with regards to drug response
without access to time-dependent data. Hence, the use of math-
ematical algorithms and computational tools for modelling the
dynamics of these networks complements network analysis
and is further detailed in the following section.

Systems modelling and simulation

To test the validity and predict the behaviour of complex bio-
chemical systems, such as gene networks, it is often required to

describe the effects of multiple, simultaneous and dynamic
interactions within the components of the system that are too
complex to interpret intuitively. Developing and simulating
mathematical models is essential in investigating such complex
biological systems. These complex systems can be further
explored using mathematical models to describe the valid
structure (i.e. the components of the system and their interac-
tions based on experimental data) and identify the basic under-
lying principles of their function to predict behavioural
responses to a certain perturbation [92].

Two types of models are commonly used to describe biologi-
cal processes such as gene networks—‘quantitative’ and
‘logical’ [93, 94]. Quantitative models use differential equations
to describe the non-linear dynamic interactions in a network,
whereas logical models use the Boolean approach to describe
dynamics in a qualitative way. Quantitative models provide pre-
cise information and can be directly compared with experi-
ments including time-dependent data. However, they require
sufficient knowledge of the mechanistic details and kinetic
parameters and, thus, they are limited to applications to net-
works which are well characterized and are of small to moder-
ate size. Logical models do not require such information and
can be applied to large-scale networks with known structure,
yet only provide limited information, as they cannot provide
quantitative predictions and assist in choosing better alterna-
tive behaviours. In summary, each modelling approach has its
advantages and disadvantages and recent work suggests that
hybrid approaches might be optimal for challenges in systems
biology (for a detailed discussion see [93]).

Mathematical models are indispensable in pharmacology
and diagnostics. For example, spatio-temporal mathematical
models of the blood coagulation network have been developed
to aid drug development and diagnostics (as extensively
reviewed in [95]). Another relevant application is the use of
mathematical models of drug-targeted pathways (modelled
with a set of differential equations based on the mass action
law) to explore drug combinations [96]. Classical bioinformatics
and systems biology can complement and strengthen each
other in drug discovery and therapeutics where concrete predic-
tions are required [92]. The value of combining high-throughput
data with mathematical modelling is shown, for example, in
devising personalized treatments in cancer (for extensive
review see [97]). Integration of multi-omic data can be used as
an additional constraint in constraint-based modelling in sys-
tems biology (to optimize parameter estimation and validation).
For a recent survey summarizing constraint-based metabolomic
modelling and multi-omic integration methods see [98].

Infrastructures and data management

It is important to highlight some of the modern computing
trends that play an important role in driving research in
Systems Bioinformatics and facilitate the transition to personal-
ized medicine. The main limiting factor for research laborato-
ries specializing in Systems Bioinformatics is computational
power and resources. Significant investment is required to
attain high-performance computer (HPC) servers or clusters,
which have the capacity to store, manage and process the vast
amount of data generated from high-throughput omics technol-
ogies. Often sheer maintenance of these machines can be a
costly and a limiting factor that disallows the exploitation of
the full potential of HPC. Cloud computing promises to solve
major issues of system administration for these computer clus-
ters by allowing for the exploitation of HPC, stored and
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managed in an expert environment, as virtual resources that
are made available through the internet. Tool availability is also
a major issue and having organized platforms with tools like
CytoScape [99], GATK [100], BLAST [101], omics assemblers (i.e.
IDBA-UD [102]) and programming languages and packages like
R’s Bioconductor library for expression data analysis [103],
JAVA, Python, SQL and others is of major importance for scien-
tists to facilitate dissemination of algorithms, data and results.

Systems bioinformatics applications

In this section we present the impact of Systems Bioinformatics
on diagnostics and therapeutics by highlighting success stories
and cases in a formatted manner: introductory text/data set col-
lection/network construction/network analysis/findings and
significance of research.

Systems bioinformatics applications in biomarker
discovery

The use of networks in computational diagnostics via the detec-
tion of molecular biomarkers is one of the hallmarks of Systems
Bioinformatics. Numerous recent state-of-the-art studies have
made use of such networks to characterize cellular systems by
simultaneously analysing thousands of genes, proteins, iso-
forms and complexes to address issues of computational diag-
nostics. Here, we highlight a few studies, showcasing the
essence of networks’ contribution in precision diagnostics.

A recent study [62] used a machine learning approach, which
integrates topological features from PPI networks, to identify
candidate AD-associated genes.

Data set collection: Positive and negative data sets were col-
lected from Entrez Gene database at the National Centre for
Biotechnology Information (NCBI). The positive data set con-
sisted of 458 genes known to be associated with AD. The nega-
tive data set consisted of the additional 55 947 Entrez genes,
excluding the AD-associated genes.

Network construction: Human PPI data sets were extracted
from a variety of sources including Online Predicted Human
Interaction Database (OPID), STRING, MINT, BIND and InTAct
databases.

Network analysis: By utilizing the PPI networks, the authors
extracted topological features for the AD- and non-AD-
associated genes. These features included nine topological
properties of the PPI network for each gene, namely, the average
shortest path length, betweenness centrality, closeness central-
ity, clustering coefficient, degree, eccentricity, neighbourhood
connectivity, topological coefficient and radiality.

Findings and significance of research: The authors further com-
bined sequence features and functional annotations features
and concurrently performed feature selection using seven
methods including gain-ratio-based attribute evaluation, oneR
algorithm, chi-square-based selection, correlation-based selec-
tion, information gain-based attribute evaluation and relief-
based selection. The most important features were fed into 11
machine learning algorithms to generate classifiers using the
training data set capable of predicting AD- and non-AD-
associated genes using the selected network, sequence and
functional features. Methods included Naive Bayes (NB), NB
Tree, Bayes Net, Decision table/NB hybrid classifier, Random
Forest, J48, Functional Tree, Locally Weighted Learning (J48þk-
nearest neighbour), Logistic Regression and Support Vector
Machine. Training of sophisticated machine learning classifiers
using systemic properties can be a key feature in generating

personalized medicine diagnostic approaches. The authors
finally combined diagnostics with therapeutics by screening 45
known anti-Alzheimer drugs from DrugBank against novel pre-
dicted probable AD targets, obtained from their trained classi-
fiers, using molecular docking. They further proposed a novel
candidate untried drug, AL-108, with high affinity to potential
therapeutic targets. Additional tools were also used to validate
preliminary findings, including molecular dynamics simula-
tions and MM/GBSA calculations on the docked complexes [62].

Another interesting study [104] used data from TCGA [105] to
successfully construct a multidimensional subnetwork atlas for
cancer prognosis. The authors addressed how multiple genetic
and epigenetic factors (i.e. gene expression, copy number varia-
tion, miRNA expression and DNA methylation) affect molecular
states of networks and patient survival.

Dat aset collection: The multidimensional cancer-associated
data sets for 1027 patients for four cancer types were collected
from TCGA Cancer Browser (https://genome-can cer.ucsc.edu/
proj/site/hgHeatmap/). They contained clinical information,
copy-number variation, promoter DNA methylation, mRNA-
gene and miRNA expression data. They furthermore extracted
PPI data from HPRD for network construction. To enrich these
networks with additional miRNA-regulatory information the
authors extracted miRNA and target gene information from two
miRNA target databases [miRTarBase (Release 4.5) and TarBase
v6], which provide experimentally validated miRNA–target
interactions.

Network construction: PPI interaction network was constructed
using data collected from HPRD.

Network analysis: The authors fitted a univariate Cox propor-
tional hazards model between each molecular feature and
patient survival time and thus scored each gene based on its
significance to predict survival. Genes with a positive score
were considered as survival-related genes. They next used this
score (heat score) as the input into HotNet2, which uses a heat
diffusion process and a statistical test-based algorithm to dis-
cover subnetwork signatures in the PPI network. Through this
way subnetwork signatures of survival-related genes were
determined both by the scores of their genes as well as gene
topology in the PPI network.

Findings and significance of research: The authors then used
Monte Carlo cross-validation and permutation testing proce-
dure to assess predictive power of the subnetworks on patient
overall survival. They used a Cox proportional hazards model
with L1 penalized log partial likelihood (LASSO) for feature
selection to train the models based on the molecular profile of
individual subnetworks. Finally, the prognostic outcomes for
the training set were used to determine the regression coeffi-
cients. These coefficients were then used in the testing model
to predict outcomes for patients in the test set and calculate the
concordance index (C-index). Results reveal novel PPI subnet-
works with significant prognostic capabilities for a variety of
cancer types. The authors further validated their subnetworks
by performing prognostic impact evaluation, functional enrich-
ment analysis, drug target annotation, tumour stratification
and independent validation. They highlighted distinct path-
ways in the underlying subnetworks as potential new targets
for therapeutic intervention for certain cancer types. This study
integrated the protein interactome with cancer genomics data,
thus allowing for a systemic analysis of the molecular mecha-
nisms that underlie genesis of cancer and provides new direc-
tions in personalized cancer therapy [104].

Another recent study [106] adopted an approach that uses
an enriched library of single-stranded oligodeoxynucleotides to
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profile complex biological samples. This method allows for the
analysis of systemic native biomolecules. The authors defined
their method as Adaptive Dynamic Artificial Poly-ligand
Targeting and further utilized it as a diagnostic tool to profile
plasma exosome of cancer patients. They achieved high classifi-
cation accuracy in breast cancer patients by analysing the circu-
lating exosomes in their blood [106].

The online database MelGene is yet another example of suc-
cessful integration of Systems Bioinformatics approaches in
current research for molecular diagnostics. This tool provides a
comprehensive, regularly updated collection of data from
genetic association studies in cutaneous melanoma, including
random-effects meta-analysis results of all eligible polymor-
phisms [107]. The MelGene proposed network connections high-
light potentially new loci in relation to melanoma risk.

Recent studies have shown that interpretation of proteomics
data using network-based approaches can offer additional
insights into the mechanistic and dynamics of protein assem-
blies, and hence into the molecular mechanisms underlying the
system under study. Moreover, network-based approaches can
be used to reconstruct a disease-perturbed cellular network
model showing the interactions of identified differentially
expressed proteins involved in selected cellular pathways
related to the target pathophysiology. For example, Shirasaki et
al. [108] have used affinity purification coupled to MS to investi-
gate the proteome profile of Huntington’s disease. In particular,
using a monoclonal antibody against huntingtin (Htt), they
identified 747 proteins to be complexed with Htt. A systems-
level view of Htt interactome was achieved by using WGCNA,
which was used to construct weighted links between the Htt co-
purifying proteins. Using topological overlap, the data were
clustered into eight Htt-interactome modules that were related
to distinct functional aspects such as brain region specificity,
aging and protein aggregation modulation or Htt functions
directly [108].

Moreover, several network-based approaches have been
developed that can identify the cellular pathways which are
altered under pathophysiological conditions, and can hence
enrich biomarker discovery. For example, functional enrich-
ment analysis of GO biological processes or KEGG pathways [37]
of differentially expressed proteins can be performed using
both free licence tools such as Database for Annotation,
Visualization and Integrated Discovery (DAVID) [109], Protein
ANalysis THrough Evolutionary Relationships (PANTHER) [110]
and Gene Set Enrichment Analysis (GSEA) [34], as well as com-
mercialized tools such as MetaCore [36] and Ingenuity Pathway
Analysis. Furthermore, pathway topology approaches have
been developed as alternative to enrichment analysis. For
example, Signalling Pathway Impact Analysis [111] and
Network Perturbation Amplitude [112] deliberate whether the
proteins involved in functional modules defined by other data-
bases interact with each other in cellular networks.

Various tools are currently available, which can aid the
Systems Bioinformatics application in biomarker discovery.
GWAB, a recent tool, makes use of systems approaches and
computational methods to boost weak association signals for
Genome Wide Association Studies (GWAS), a common problem
when analysing this type of data. This tool works by incorporat-
ing publicly available data in the form of using GWAS summary
statistics (p-values) for SNPs along with reference genes for a
disease of interest. The authors demonstrated the feasibility of
boosting GWAS disease associations using gene networks and
further present a web server for GWAB, for the network-based
boosting of human GWAS data [113]. Other tools like

GeneMANIA [114] and PINTA [115] allow for gene prioritization
and gene function prediction and can greatly aid in computa-
tional diagnostics.

Systems Bioinformatics applications in drug discovery

Systems Bioinformatics contributes in computational therapeu-
tics by providing tools and algorithms for novel drug discovery.
Research in this direction is often done in close collaboration
with pharmaceutical companies. One of the main challenges
faced by both the research community and the industry is the
prediction of adverse drug effects, especially during the early
stages of drug development. These types of predictions can lead
to significant cost reductions by allowing for accurate drug
assessment and discontinuation of development for drugs with
severe adverse effects. The use of human genetic variation has
been known to play an important role in drug response [116];
however, the effect of this factor alone is not sufficient to pro-
vide a complete perspective on the matter in hand. Systems
pharmacology is a term that is widely used today in many
high-calibre, recently published studies [117–119]. Systems
pharmacology is a systems biology approach, which focuses on
enhancing the understanding of drugs function in the human
body at a systems’ level, described by several types of networks,
rather than looking at the effect of single molecular compo-
nents. It shifts away from traditional practice, which considers
the effects of a drug with respect to its target protein and
instead strives to address the effects of the drug by considering
a network of drug–target interactions. Systems Bioinformatics is
a precious field in the neighbourhood of systems pharmacology
that provides important methods and tools for multi-source
and multilevel integration of the omics spectrum with drug net-
works shedding light in the area of modern drug discovery.

A recent area of great interest where Systems
Bioinformatics can be of substantial impact and value is the
area of drug repurposing or repositioning [120]. This entails
the use of Food and Drug Administration (FDA)-approved
drugs to treat new diseases, which are different from the ones
they were initially designed for. This allows for obvious short-
cuts for pharmaceutical companies allowing them to by-pass
the timely and costly process of FDA approval for novel drugs.
Recent studies used gene expression data derived from micro-
arrays or RNA-Seq data to obtain specific expression profiles
for specific diseases of interest. By comparing these to collec-
tions of data sets from repositories such as CMap [121],
Drugmap Central and more advanced versions like LINCS and
the recent Drug Repurposing Hub [121, 122] allows for alterna-
tive drugs to be proposed for the treatment of diseases under
investigation.

In a recent study [38], this approach was used to devise drug/
target networks obtained from algorithms of mutual informa-
tion and co-expression networks aiming to gain insights into
the treatment of breast cancer subtypes.

Data collection: TCGA mRNA (microarray) gene expression
data for Breast Invasive Carcinoma cases were obtained from
Firehose (http://gdac.broadinstitute.org/). From a total of 587
samples (526 primary solid tumour samples and 61 primary
solid normal samples—17.814 genes), the authors selected a
subset of tumour data containing information regarding breast
cancer staging, HER2, ER and PR status with their corresponding
normal samples as well as breast cancer stages I, II, III and IV.

Network construction: The authors examined three major cat-
egories of statistical network inference methods: (i) mutual
information-based methods, (ii) correlation-based methods and
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(iii) tree-based methods. They further utilized Biological
information-based network methods and one ensemble scheme
using all statistical network inference methods. They used the
Cytoscape platform and more specifically the GeneMania plug-
in to reconstruct the biological information-based gene
network. This plug-in uses a large data set unifying functional
networks comprising approximately 800 networks for six organ-
isms including Homo sapiens. Using the H. sapiens network they
constructed a sub-network for the top 1000 differentially
expressed genes (DEGs) from the TCGA data set merging five
Network types: Co-expression, Physical Interaction, Genetic
interaction, Co-localization and Pathways.

Network analysis: The authors further performed gene re-
ranking using the underlying networks. To investigate the influ-
ence of the reconstructed 17 gene networks (12 statistically and
5 biologically inferred) on gene prioritization, they applied a
method that allows for a custom network selection combining
the log fold change absolute values with the selected underlying
network topology to re-rank the initial DEGs. The basic idea of
the method is the reconciliation of the gene expression values
taking into account the underlying gene network topological
features such as degree and betweenness. The network patterns
were further analysed to investigate their exclusive contribu-
tion with respect to breast cancer subtypes and stages. The
authors then performed drug repurposing using the up- and
down-regulated genes forming disease signatures by querying
them in a well-established drug repurposing pipeline, namely,
LINCS-L1000 (http://www.lincscloud.org/), an advanced version
of CMap. In summary, the authors obtained 63 unique drugs for
the breast cancer stages and 58 for the breast cancer subtypes.
To further examine the resulting drugs, the authors constructed
super networks by combining top drugs extracted from their
analysis with the FDA-approved breast cancer drugs, connect-
ing them with their target genes and superimposing these on
the gene expression networks.

Findings and significance of research: The authors performed an
analysis that concluded to eight network patterns, four for the
stages (I, II, III and IV) and four for the subtypes (Triple Negative,
Luminal A, Luminal B and HER2). These patterns were shown to
highlight four exclusive stage-related pathways including
phenylalanine metabolism for Stage II, peroxisome proliferator-
activated signalling pathway and glycolysis and gluconeogene-
sis for Stage III and toll-like receptor signalling pathway for
Stage IV. Finally, the authors performed drug repurposing to
elucidate potential anti-breast-cancer properties for known
drugs and they compared the molecular structure for their pre-
dicted re-purposed drugs against 25 FDA-approved drugs of
clinical use. Two out of these 25 drugs (Gemcitabine and
Palbociclib) were also found as repurposed drugs by the authors.
In Stage I, two repurposed drugs, Clofarabine and Kinetin-
riboside, were found to be structurally similar to Gemcitabine.
Clofarabine seems to have potential efficacy in epigenetic
therapy of solid tumours, especially at early stages of
carcinogenesis.

Another recent line of work [64] performed network-based in
silico drug efficacy screening by exploiting network-based
approaches. The authors investigated the association between
drug targets and diseases, presenting a drug–disease proximity
measure [64].

Data collection: The authors used 1489 diseases defined by
Medical Subject Headings (MeSH) compiled in a recent study
[90]. For each disease, the disease–gene associations were col-
lected from OMIM and GWAS catalogue.

For each disease, the authors extracted information on FDA-
approved drugs from DrugBank and matched 79 of these dis-
eases with at least one drug using tools like MEDI-HPS and
Metab2Mesh resulting in 238 unique drugs and 384 targets. The
authors took information published by [90] that contained
experimentally documented human protein physical interac-
tions from TRANSFAC, IntAct, MINT, BioGRID, HPRD, KEGG,
BIGG, CORUM, PhosphoSitePlus and a large-scale signalling
network.

Network construction: The human PPI network was compiled
using information extracted from the databases described
above, to generate an elaborate human interactome. The largest
connected component of this interactome was consequently
used in their analysis, consisting of 141 150 interactions
between 13 329 proteins. Entrez Gene IDs were used to map
disease-associated genes to the corresponding proteins in the
interactome.

Network analysis: The proximity between a disease and a
drug was evaluated using various distance measures that take
into account the path lengths between drug targets and
disease proteins. The authors focused on two types of
network-based proximity relationships between drugs and
disease proteins: (i) the most straightforward measure is the
average shortest path length between all targets of a drug and
the proteins involved in the same disease; (ii) the second
proximity is the closest measure, representing the average
shortest path length between the drug’s targets and the
nearest disease protein.

Findings and significance of research: The authors validated
their approach and optimized their proximity thresholds by
assessing how well relative proximity discriminates 402 known
drug–disease pairs from the 18 162 unknown drug–disease pairs
by comparing the area under Receiver Operating Characteristic
curve for different distance measures. Based on these results
the authors showed that network proximity delineates thera-
peutic effects of a drug. This approach of utilizing network prox-
imity in the interactome for drug targets and diseases, allowed
for increased understanding in the therapeutic effect of drugs.
They made use of cases from Parkinson’s disease and several
inflammatory disorders to further substantiate findings. This
approach can potentially have significant applications in drug
discovery, drug repurposing and assessment of drug adverse
effects.

Another study [123] led to the development of a current
state-of-the-art tool that addresses computational therapeutics
from a network perspective, the TCM-Mesh system. This tool
allows for the high-throughput network pharmacology analysis
for Traditional Chinese Medicine (TCM) [123].

Data set collection: TCM utilizes data curated from collections
of 6235 herbs, 383 840 compounds, 14 298 genes, 6204 diseases,
144 723 gene–disease associations, 3 440 231 pairs of gene inter-
actions, 163 221 side-effect records and 71 toxic records (data as
of April 2017). The information for traditional Chinese herbs
and traditional Chinese medicine preparation was extracted
from TCM Database@Taiwan, TCMID, information of com-
pounds and their targets; diseases and their related proteins
were obtained from STITCH and OMIM, respectively; the protein
interactions were obtained from STRING; the toxic and side-
effect records of compounds were derived from TOXNET and
SIDER.

Network construction: The authors used Cytoscape as well as a
web-based software to facilitate visualization of a compound–
gene–disease network construction between TCM and treated
diseases.
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Table 1. Tools and databases for systems bioinformatics approaches in therapeutics, diagnostics, network visualization/analysis, integration
and systems modelling

Tool category/description Publication year Link Reference

Network-based therapeutics
TCM-Mesh: The database and analytical system for network pharma-

cology analysis for TCM preparations
2017 http://mesh.tcm.microbioinfor

matics.org/
[123]

SDTNBI: an integrated network and chemoinformatics tool for sys-
tematic prediction of drug–target interactions and drug
repositioning

2017 The program is available on
request

[124]

A protein network descriptor server and its use in studying protein,
disease, metabolic and drug-targeted networks

2016 http://bidd2.nus.edu.sg/cgi-bin/
profeat2016/main.cgi

[128]

systemsDock: a web server for network pharmacology-based predic-
tion and analysis

2016 http://systemsdock.unit.oist.jp/
iddp/home/index

[129]

BindingDB in 2015: A public database for medicinal chemistry, com-
putational chemistry and systems pharmacology

2016 https://www.bindingdb.org/
bind/index.jsp

[130]

NFFinder: an online bioinformatics tool for searching similar tran-
scriptomics experiments in the context of drug repositioning

2015 http://nffinder.cnb.csic.es/ [131]

NutriChem: a systems chemical biology resource to explore the
medicinal value of plant-based foods

2015 http://sbb.hku.hk/services/
NutriChem-2.0/FoodDisease.
php

[132]

TIMMA-R: an R package for predicting synergistic multi-targeted drug
combinations in cancer cell lines or patient-derived samples

2015 https://cran.r-project.org/web/
packages/timma/

[133]

Network-based diagnostics
GWAB: a web server for the network-based boosting of human

genome-wide association data
2017 http://www.inetbio.org/gwab/ [113]

Netter: re-ranking gene network inference predictions using structural
network properties

2016 https://github.com/JRuyssinck/
netter

[134]

MetaNetVar: Pipeline for applying network analysis tools for genomic
variants analysis

2016 https://github.com/NCBI-
Hackathons/Network_SNPs

[135]

GenomeRunner web server: regulatory similarity and differences
define the functional impact of SNP sets

2016 http://www.integrativegenom
ics.org/

[136]

NetDecoder: a network biology platform that decodes context-specific
biological networks and gene activities

2016 http://netdecoder.hms.harvard.
edu/

[137]

MUFFINN: cancer gene discovery via network analysis of somatic
mutation data

2016 http://www.inetbio.org/
muffinn/

[138]

HitWalker2: visual analytics for precision medicine and beyond 2016 https://github.com/biodev/
HitWalker2

[139]

NCG 5.0: updates of a manually curated repository of cancer genes and
associated properties from cancer mutational screenings

2016 http://ncg.kcl.ac.uk/ [140]

dbSNO 2.0: a resource for exploring structural environment, functional
and disease association and regulatory network of protein
S-nitrosylation

2015 http://140.138.144.145/�dbSNO/
index.php

[141]

Causal biological network database: a comprehensive platform of
causal biological network models focused on the pulmonary and
vascular systems

2015 http://causalbionet.com/ [142]

Network reconstruction-visualization-analysis
MotifNet: a web-server for network motif analysis 2017 http://netbio.bgu.ac.il/

motifnet/
[143]

cMapper: gene-centric connectivity mapper for EBI-RDF platform 2017 http://cmapper.ewostech.net/ [144]
BRANE Clust: Cluster-assisted gene regulatory network inference

refinement
2017 http://www-syscom.univ-mlv.

fr/�pirayre/Codes-GRN-
BRANE-clust.html

[145]

vcfr: a package to manipulate and visualize variant call format
data in R

2017 https://cran.r-project.org/web/
packages/vcfR/index.html

[146]

shinyheatmap: Ultra-fast low-memory heatmap web interface for big
data genomics

2017 http://shinyheatmap.com/ [147]

PROXiMATE: a database of mutant protein–protein complex thermo-
dynamics and kinetics

2017 http://www.iitm.ac.in/bioinfo/
PROXiMATE/

[148]

Recon2Neo4j: applying graph database technologies for managing
comprehensive genome-scale networks

2017 https://github.com/ibalaur/
MetabolicFramework

[149]

RAIN: RNA–protein association and interaction networks 2017 http://rth.dk/resources/rain/ [150]
Phenopolis: an open platform for harmonization and analysis of

genetic and phenotypic data
2017 https://uclex.cs.ucl.ac.uk/ [151]
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816 | Oulas et al.

http://mesh.tcm.microbioinformatics.org/
http://mesh.tcm.microbioinformatics.org/
http://bidd2.nus.edu.sg/cgi-bin/profeat2016/main.cgi
http://bidd2.nus.edu.sg/cgi-bin/profeat2016/main.cgi
http://systemsdock.unit.oist.jp/iddp/home/index
http://systemsdock.unit.oist.jp/iddp/home/index
https://www.bindingdb.org/bind/index.jsp
https://www.bindingdb.org/bind/index.jsp
http://nffinder.cnb.csic.es/
http://sbb.hku.hk/services/NutriChem-2.0/FoodDisease.php
http://sbb.hku.hk/services/NutriChem-2.0/FoodDisease.php
http://sbb.hku.hk/services/NutriChem-2.0/FoodDisease.php
https://cran.r-project.org/web/packages/timma/
https://cran.r-project.org/web/packages/timma/
http://www.inetbio.org/gwab/
https://github.com/JRuyssinck/netter
https://github.com/JRuyssinck/netter
https://github.com/NCBI-Hackathons/Network_SNPs
https://github.com/NCBI-Hackathons/Network_SNPs
http://www.integrativegenomics.org/
http://www.integrativegenomics.org/
http://netdecoder.hms.harvard.edu/
http://netdecoder.hms.harvard.edu/
http://www.inetbio.org/muffinn/
http://www.inetbio.org/muffinn/
https://github.com/biodev/HitWalker2
https://github.com/biodev/HitWalker2
http://ncg.kcl.ac.uk/
http://140.138.144.145/&hx0026;sim;dbSNO/index.php
http://140.138.144.145/&hx0026;sim;dbSNO/index.php
http://140.138.144.145/&hx0026;sim;dbSNO/index.php
http://causalbionet.com/
http://netbio.bgu.ac.il/motifnet/
http://netbio.bgu.ac.il/motifnet/
http://cmapper.ewostech.net/
http://www-syscom.univ-mlv.fr/&hx0026;sim;pirayre/Codes-GRN-BRANE-clust.html
http://www-syscom.univ-mlv.fr/&hx0026;sim;pirayre/Codes-GRN-BRANE-clust.html
http://www-syscom.univ-mlv.fr/&hx0026;sim;pirayre/Codes-GRN-BRANE-clust.html
http://www-syscom.univ-mlv.fr/&hx0026;sim;pirayre/Codes-GRN-BRANE-clust.html
https://cran.r-project.org/web/packages/vcfR/index.html
https://cran.r-project.org/web/packages/vcfR/index.html
http://shinyheatmap.com/
http://www.iitm.ac.in/bioinfo/PROXiMATE/
http://www.iitm.ac.in/bioinfo/PROXiMATE/
https://github.com/ibalaur/MetabolicFramework
https://github.com/ibalaur/MetabolicFramework
http://rth.dk/resources/rain/
https://uclex.cs.ucl.ac.uk/


Table 1. Continued

Tool category/description Publication year Link Reference

Pheno4J: a gene to phenotype graph database 2017 https://github.com/phenopolis/
pheno4j

[152]

SigMod: an exact and efficient method to identify a strongly intercon-
nected disease-associated module in a gene network

2017 https://github.com/
YuanlongLiu/SigMod

[153]

iRegNet3D: three-dimensional integrated regulatory network for the
genomic analysis of coding and non-coding disease mutations

2017 http://iregnet3d.yulab.org/
index/

[154]

JDINAC: joint density-based non-parametric differential interaction
network analysis and classification using high-dimensional sparse
omics data

2017 https://github.com/jijiadong/
JDINAC

[155]

SmartR: An open-source platform for interactive visual analytics for
translational research data

2017 https://github.com/transmart/
SmartR

[156]

D-Map: random walking on gene network inference maps towards dif-
ferential avenue discovery

2017 http://bioserver-3.bioacademy.
gr/Bioserver/DMap/index.
php

[157]

TRaCEþ: Ensemble inference of gene regulatory networks from tran-
scriptional expression profiles of gene knock-out experiments

2016 http://www.cabsel.ethz.ch/
tools/trace.html

[158]

The Network Library: a framework to rapidly integrate network biol-
ogy resources

2016 https://github.com/gsummer

Web-based network analysis and visualization using CellMaps 2016 http://cellmaps.babelomics.
org/

[159]

PathwAX: a web server for network crosstalk based pathway
annotation

2016 http://pathwax.sbc.su.se/ [160]

Pathway Tools version 19.0 update: software for pathway/genome
informatics and systems biology

2016 http://brg.ai.sri.com/ptools/ [161]

NAPS: Network analysis of protein structures 2016 http://bioinf.iiit.ac.in/NAPS/ [162]
UbiNet: an online resource for exploring the functional associations

and regulatory networks of protein ubiquitylation
2016 http://140.138.144.145/�ubinet/

index.php
[163]

MET network in PubMed: a text-mined network visualization and
curation system

2016 http://btm.tmu.edu.tw/
metastasisway

[164]

QuIN: a web server for querying and visualizing chromatin interaction
networks

2016 https://quin.jax.org/ [165]

NET-GE: a web server for NETwork-based human gene enrichment 2016 http://net-ge.biocomp.unibo.it/
enrich

[166]

IIIDB: a database for isoform–isoform interactions and isoform net-
work modules

2015 http://syslab.nchu.edu.tw/
IIIDB/

[167]

cyNeo4j: connecting Neo4j and Cytoscape 2015 http://apps.cytoscape.org/apps/
cyneo4j

[168]

BRANE Cut: biologically related a priori network enhancement with
graph cuts for gene regulatory network inference

2015 http://www-syscom.univ-mlv.
fr/�pirayre/Codes-GRN-
BRANE-cut.html

[169]

NetExplore: a web server for modelling small network motifs 2015 http://line.bioinfolab.net/nex/
NetExplore.htm

[170]

COXPRESdb in 2015: coexpression database for animal species by
DNA-microarray and RNAseq-based expression data with multiple
quality assessment systems

2015 http://coxpresdb.jp/ [171]

NAIL: a software toolset for inferring, analysing and visualizing regu-
latory networks

2015 https://sourceforge.net/proj
ects/nailsystemsbiology/

[172]

LncReg: a reference resource for lncRNA-associated regulatory
networks

2015 http://bioinformatics.ustc.edu.
cn/lncreg/

[173]

TeloPIN: a database of telomeric proteins interaction network in
mammalian cells

2015 http://songyanglab.sysu.edu.
cn/telopin/

[174]

MIsoMine: a genome-scale high-resolution data portal of expression,
function and networks at the splice isoform level in the mouse

2015 http://guanlab.ccmb.med.
umich.edu/misomine/

[175]

CerebralWeb: a Cytoscape.js plug-in to visualize networks stratified by
subcellular localization

2015 http://www.innatedb.ca/
CerebralWeb/

[176]

Network-based integration
NaviCom: a web application to create interactive molecular network

portraits using multilevel omics data
2017 https://navicom.curie.fr/bridge.

php
[177]

KeyPathwayMinerWeb: online multi-omics network enrichment 2016 https://keypathwayminer.
compbio.sdu.dk/
keypathwayminer/

[178]

Visual Omics Explorer (VOE): a cross-platform portal for interactive
data visualization

2016 http://bcil.github.io/VOE/ [179]

(continued)
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Network analysis: The authors based their network analysis
and scored their compounds using the combined score as
defined and obtained from the STITCH database. This score rep-
resents the strength of the links between the compounds and
their associated proteins.

Findings and significance of research: The authors used 1293
FDA-approved drugs, as well as compounds from a herbal mate-
rial Panax ginseng and a patented drug Liuwei Dihuang Wan for
evaluating their database. By comparison of different databases,
as well as checking against literature, they demonstrated the
completeness, effectiveness and accuracy of the TCM-Mesh
database and further aided in increased understanding of the
molecular mechanisms of TCM action.

Various tools are currently available, which can aid the
Systems Bioinformatics application in drug discovery. For
example, tools like Substructure-Drug-Target Network-Based
Inference SDTNBI [124], C(2) Maps [125], Chem2Bio2RDF [126]
and PROMISCUOUS [127] cumulatively provide integrated sys-
tems and pharmacology databases for chemoinformatics

analysis, drug-target prediction, networks of disease–gene–drug
connectivity relationships as well as drug repositioning
analysis.

For a full list of tools and databases adopting or supporting
Systems Bioinformatics methodologies, see Table 1. A more
comprehensive list of related tools and databases going back to
2010 can be found in Supplementary Table S1.

Discussion

The concept of utilizing networks to visualize the complex
interaction of mechanisms implicated in disease has been
around for several years. However, two important break-
throughs separate previous network-based approaches and are
currently driving the state-of-the-art in Systems Bioinformatics:
(i) construction of multiple networks representing each level of
the omics spectrum and the integration of these in a layered
network that exchanges information within and between layers
[62, 67, 97] and (ii) the advent of novel techniques and

Table 1. Continued

Tool category/description Publication year Link Reference

ModuleAlign: module-based global alignment of PPI networks 2016 http://ttic.uchicago.edu/
�hashemifar/ModuleAlign.
html

[180]

Fuse: multiple network alignment via data fusion 2016 http://www0.cs.ucl.ac.uk/staff/
natasa/FUSE/index.html

[181]

The SMAL web server: global multiple network alignment from pair-
wise alignments

2016 http://haddock6.sfsu.edu/smal/ [182]

Mergeomics: a web server for identifying pathological pathways, net-
works and key regulators via multidimensional data integration

2016 http://mergeomics.research.
idre.ucla.edu/

[183]

MAGNAþþ: Maximizing accuracy in global network alignment via
both node and edge conservation

2015 http://www3.nd.edu/�cone/
MAGNA6þ/

[184]

ZoomOut: analysing multiple networks as single nodes 2015 http://bioserver-3.bioacademy.
gr/Bioserver/ZoomOut/

[185]

RegNetwork: an integrated database of transcriptional and post-tran-
scriptional regulatory networks in human and mouse

2015 http://www.regnetworkweb.
org/

[186]

Systems biology and modelling
FAIRDOMHub: a repository and collaboration environment for sharing

systems biology research
2017 https://fair-dom.org/publica

tion/fairdomhub-a-reposi
tory-and-collaboration-envi
ronment-for-sharing-sys
tems-biology-research/

[187]

The systems biology format converter 2016 https://www.ebi.ac.uk/biomo
dels/tools/converters/

[188]

SBtab: a flexible table format for data exchange in systems biology 2016 https://www.sbtab.net/
PeTTSy: a computational tool for perturbation analysis of complex

systems biology models
2016 http://www2.warwick.ac.uk/

fac/sci/systemsbiology/
research/software/

[189]

AMIGO2: a toolbox for dynamic modelling, optimization and control in
systems biology

2016 https://sites.google.com/site/
amigo2toolbox/

[190]

ComPPI: a cellular compartment-specific database for PPI network
analysis

2015 http://comppi.linkgroup.hu/ [191]

JSBML 1.0: providing a smorgasbord of options to encode systems biol-
ogy models

2015 http://sbml.org/Software/JSBML [192]

MpTheory Java library: a multi-platform Java library for systems biol-
ogy based on the Metabolic P theory

2015 http://mptheory.scienze.univr.
it/

[193]

SYSBIONS: nested sampling for systems biology 2015 http://www.theosysbio.bio.ic.
ac.uk/resources/sysbions/

[194]

Dizzy-Beats: a Bayesian evidence analysis tool for systems biology 2015 https://sourceforge.net/p/baye
sevidence/home/Home/

[195]
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methodologies for analysing and understanding these networks
using mathematical algorithms and approaches derived from
graph theory and information theory [6]. Using these methods
for extracting biologically meaningful information from multi-
ple levels of the omics spectrum can provide the integrated sys-
temic knowledge for the development of a comprehensive
Human System profile, which increases diagnostic accuracy
and concurrently allows for novel therapeutic advances and
assess response to therapy.

Nevertheless, the network-based approaches, either for
evidence-based or for statistically inferred molecular net-
works, have a number of limitations. Specifically, networks
based on experimental evidence are not complete as experi-
ments are only a snapshot of the real biological world.
Moreover, statistically inferred networks represent an unde-
termined computational problem because the number of the
inferred relationships is much larger than the number of the
independent measurements [196]. Owing to the lack of suffi-
cient ground truth to validate the reconstructed molecular
networks, special attention must be given when choosing
benchmark data sets (e.g. existing curated databases with
experimental information, medium-throughput experimental
information and simulated data sets that mimic real data). To
this extent, the DREAM (Dialogue on Reverse Engineering
Assessments and Methods) initiative facilitates researchers
from the Systems Bioinformatics field to assess the validity of
the networks they are using and proceed with optimization
and parameter-tuning regarding network reconstruction [197].
A subsequent limitation of the network-based approaches is
the low overlap that the various network reconstruction
approaches have, and the inadequacy in selecting the proper
network each time. It is likely that computational approaches
checking and exploiting complementarities and providing
ensemble solutions of a network construction consensus will
maximize the information content.

In our opinion, Systems Bioinformatics might currently
appear rather aspirational, yet, considering its potential it is
likely to have a major impact on medicine and pharmacology in
the next decade. The field of medicine is expected to benefit
from the invaluable knowledge attained from Systems
Bioinformatics methodologies. The molecular basis of complex,
polygenic diseases is highly heterogeneous and affected by mul-
tiple factors simultaneously. These include genetic predisposi-
tion, multipart molecular mechanisms and effects of the
environment, diet, drug administration/response and numer-
ous other factors. Although it might not be possible to replace
the use of traditional approaches for therapeutics and diagnosis
with computational methods, yet, it is likely that Systems
Bioinformatics will provide revolutionary approaches and tools
to clinicians in order to demystify the complex nature of these
diseases. Computational diagnostics and therapeutics,
enhanced by Systems Bioinformatics approaches, will not only
aid clinicians in patient consultation and care but will also cata-
lyse significant breakthroughs in prognostic measures, detec-
tion of disease at an early onset and overall disease prevention.

Key Points

• Systems Bioinformatics is an emerging field, which
integrates information across different levels by com-
bining the systems biology bottom-up approach with a
data-driven top-down approach as in classical
bioinformatics.

• The advent of omics technologies has provided the
stepping-stone for the emergence of Systems Bioinformatics
as a holistic and systems approach in investigating complex
biological systems.

• The key approach in Systems Bioinformatics is the con-
struction of multiple networks representing each level
of the omics spectrum and their integration in a layered
network that exchanges information within and
between layers.

• The network approach in Systems Bioinformatics
comes with limitations including the lack of ground
truth for the constructed biological network.

• Systems Bioinformatics methods can enhance compu-
tational therapeutics and diagnostics hence, paving the
way to precision medicine.
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Supplementary data are available online at http://bib.oxford
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