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Abstract

Background—Word embeddings have been prevalently used in biomedical Natural Language 

Processing (NLP) applications due to the vector representations of words capturing useful 

semantic properties and linguistic relationships between words. Different textual resources (e.g., 

Wikipedia and biomedical literature corpus) have been utilized in biomedical NLP to train word 

embeddings and these word embeddings have been commonly leveraged as feature input to 

downstream machine learning models. However, there has been little work on evaluating the word 

embeddings trained from different textual resources.

Methods—In this study, we empirically evaluated word embeddings trained from four different 

corpora, namely clinical notes, biomedical publications, Wikipedia, and news. For the former two 

resources, we trained word embeddings using unstructured electronic health record (EHR) data 

available at Mayo Clinic and articles (MedLit) from PubMed Central, respectively. For the latter 

two resources, we used publicly available pre-trained word embeddings, GloVe and Google News. 

The evaluation was done qualitatively and quantitatively. For the qualitative evaluation, we 

arbitrarily selected medical terms from three medical categories (i.e., disorder, symptom, and 

drug), and manually inspected the five most similar words computed by word embeddings for each 

of them. We also analyzed the word embeddings through a 2-dimensional visualization plot of 377 

medical terms. For the quantitative evaluation, we conducted both intrinsic and extrinsic 

evaluation. For the intrinsic evaluation, we evaluated the medical semantics of word embeddings 

using four published datasets for measuring semantic similarity between medical terms, i.e., 

Pedersen’s dataset, Hliaoutakis’s dataset, MayoSRS, and UMNSRS. For the extrinsic evaluation, 

we applied word embeddings to multiple downstream biomedical NLP applications, including 

clinical information extraction (IE), biomedical information retrieval (IR), and relation extraction 

(RE), with data from shared tasks.

Results—The qualitative evaluation shows that the word embeddings trained from EHR and 

MedLit can find more relevant similar medical terms than those from GloVe and Google News. 

The intrinsic quantitative evaluation verifies that the semantic similarity captured by the word 

embeddings trained from EHR is closer to human experts’ judgments on all four tested datasets. 
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The extrinsic quantitative evaluation shows that the word embeddings trained on EHR achieved 

the best F1 score of 0.900 for the clinical IE task; no word embeddings improved the performance 

for the biomedical IR task; and the word embeddings trained on Google News had the best overall 

F1 score of 0.790 for the RE task.

Conclusion—Based on the evaluation results, we can draw the following conclusions. First, the 

word embeddings trained on EHR and MedLit can capture the semantics of medical terms better 

and find semantically relevant medical terms closer to human experts’ judgments than those 

trained on GloVe and Google News. Second, there does not exist a consistent global ranking of 

word embeddings for all downstream biomedical NLP applications. However, adding word 

embeddings as extra features will improve results on most downstream tasks. Finally, the word 

embeddings trained on biomedical domain corpora do not necessarily have better performance 

than those trained on general domain corpora for any downstream biomedical NLP task.
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I. Introduction

Word embeddings have been prevalently used in Natural Language Processing (NLP) 

applications due to the vector representations of words capturing useful semantic properties 

and linguistic relationships between words using deep neural networks [1], [2], [3]. Word 

embeddings are commonly utilized as feature input to machine learning models, which 

enables machine learning techniques to process rew text data. There has been an increasing 

number of studies applying word embeddings in common NLP tasks, such as information 

extraction (IE) [4], [5], [6], information retrieval (IR) [7], sentiment analysis [8], [9], 

question answering [10], [11], and text summarization [12], [13]. Recently, in the 

biomedical domain, word embeddings have been remarkably utilized in applications such as 

biomedical named entity recognition (NER) [14], [15], medical synonym extraction [16], 

relation extraction (RE) (e.g., chemical-disease relation [17], drug-drug interaction [18], [19] 
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and protein-protein interaction [20]), biomedical IR [21], [22] and medical abbreviation 

disambiguation [23].

There are two main text resources utilized to train word embeddings for the biomedical NLP 

applications: internal task corpora (e.g., training data) [21] and external data resources (e.g., 

Wikipedia) [24]. The use of the former resource is straightforward as the internal corpora 

capture the nuances of language topic specific to the task [25]. Exploiting external data 

resources is based on an implicit assumption that the external resources contain knowledge 

that could be used to enhance domain tasks [26], [27], [28]. In addition, a number of pre-

trained word embeddings are publicly available, such as the embeddings of Google News1 

and GloVe2. These embeddings could capture the semantics of general English words from a 

large corpus. However, one question remains unanswered: do we need to train word 

embeddings for a specific NLP task given a number of public pre-trained word embeddings? 

This question becomes more significant for domain areas, and particularly more important 

for the clinical domain. The reason is that little electrical health record (EHR) data is 

publicly available due to the Health Insurance Portability and Accountability Act (HIPAA) 

requirements, while biomedical literature is more widely available through resources such as 

PubMed3. However, to the best of our knowledge, there has been little work done to evaluate 

word embeddings trained from these textual resources for biomedical NLP applications.

In this study, we empirically evaluated word embeddings trained from four different corpora, 

namely clinical notes, biomedical publications, Wikipedia, and news. For the former two 

resources, we utilized clinical notes from the EHR system at Mayo Clinic and articles from 

PubMed Central (PMC)4 to train word embeddings. For the latter two resources, we used 

publicly available pre-trained word embeddings, GloVe and Google News. We performed 

the evaluation qualitatively and quantitatively. For the qualitative evaluation, we adopted the 

method used in Levy and Goldberg’s study [3], and manually inspected five of the most 

similar medical words to each of arbitrarily selected medical words from three medical 

categories (disorder, symptom, and drug). In addition, we analyzed word embeddings 

through a 2-dimensional visualization plot of 377 medical words. For the quantitative 

evaluation, we conducted both intrinsic and extrinsic evaluation. The intrinsic evaluation 

directly tested semantic relationships between medical words using four published datasets 

for measuring semantic similarity between medical terms, i.e., Pedersen [29], Hliaoutakis 

[30], MayoSRS [31], and UMNSRS [32], [33]. For the extrinsic evaluation, we applied word 

embeddings to downstream NLP applications in the biomedical domain including clinical 

IE, biomedical IR, and RE, and measured the performance of word embeddings.

II. Related work

Due to the success of word embeddings in a variety of NLP applications, some existing 

studies evaluate word embeddings in representing word semantics quantitatively. Most of 

them focus on evaluating the word embeddings generated by different approaches. Baroni et 

1https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit
2https://nlp.stanford.edu/projects/glove/
3https://www.ncbi.nlm.nih.gov/pubmed/
4http://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
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al. [34] presented the first systematic evaluation of word embeddings generated by four 

models, i.e., DISSECT5, CBOW [1] using word2vec6, Distributional Memory model7, and 

4) Collobert and Weston model8 using a corpus of 2.8 billion tokens in the general English 

domain. They tested these models on fourteen benchmark datasets in five categories, 

including semantic relatedness, synonym detection, concept categorization, selectional 

preferences, and analogy. They found that the word2vec model, CBOW, performed the best 

for almost all the tasks.

Schnabel et al. [35] trained the CBOW model of word2vec [1], C&W embeddings [36], 

Hellinger PCA [37], GloVe [38], TSCCA [39], and Sparse Random Projections [40] on a 

2008 GloVe dump, and tested on the same fourteen datasets. They found that the CBOW 

outperformed other embeddings on 10 datasets. They also conducted an extrinsic evaluation 

by using the embeddings as input features to two downstream tasks, namely noun phrase 

chunking and sentiment classification. They found the results of CBOW were also among 

the best.

Ghannay et al. [41] conducted a similar intrinsic evaluation, they additionally evaluated the 

skip-gram models of word2vec [1], CSLM word embeddings [42], dependency-based word 

embeddings [3], and combined word embeddings on four NLP tasks, including Part-Of-

Speech tagging, chunking, named entity recognition, mention detection, and two linguistic 

tasks. They trained these word embeddings on the Gigaword corpus composed of 4 billion 

words and found that the dependency-based word embeddings gave the best performance on 

the NLP tasks and that the combination of embeddings yielded significant improvement. 

Nayak et al’s study [43] recommended that the evaluation of word embeddings should test 

both syntactic and semantic properties, and that the evaluation tasks should be closer to real-

word applications. However, few of these studies evaluated word embeddings for tasks in the 

biomedical domain.

As most of the aforementioned studies evaluate word embeddings in the general (i.e., non-

biomedical) NLP domain, only one recent study by Pakhomov et al. [33] evaluates word 

embeddings in the biomedical domain, to the best of our knowledge. They trained the 

CBOW model on two biomedical corpora, namely clinical notes and biomedical 

publications, and one general English corpora, namely GloVe. The word embeddings were 

evaluated on subsets of UMNSRS dataset, which consisted of pairs of medical terms with 

the similarity of each pair assessed by medical experts, and on a document retrieval task and 

a word sense disambiguation task. They found that the semantics captured by the 

embeddings computed from biomedical publications were on par with that from clinical 

notes. We extended their evaluation of word embeddings by: 1) utilizing four datasets to 

evaluate word embeddings on capturing medical term semantics; 2) conducting a qualitative 

evaluation; and 3) examining word embeddings on more downstream applications with data 

provided by shared biomedical NLP tasks.

5http://clic.cimec.unitn.it/composes/
6https://code.google.com/p/word2vec/
7http://clic.cimec.unitn.it/dm/
8http://ronan.collobert.com/senna/
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III. Word Embeddings and Parameter Settings

We utilized word2vec in this study as it has been shown that word2vec generates better word 

embeddings for most general NLP tasks than other approaches [34], [35]. Since no evidence 

shows that the CBOW architecture outperforms the skip-gram architecture or vice versa, we 

arbitrarily chose the skip-gram architecture for word2vec.

Word embeddings can be represented as a mapping V ℝD:w θ, which maps a word w 
from a vocabulary V to a real-valued vector θ in an embedding space with the dimension of 

D. The skip-gram architecture, proposed by Mikolov et al. [1], uses the focus word as the 

single input layer, and the target contextual words as the output prediction layer. To avoid 

expensive computation over every word in V, Mikolov et al. [1] proposed a technique called 

“negative-sampling” that samples a few output words and updates embeddings for this small 

sample in each iteration. We formulate the model mathematically in the following. Given a 

sequence of target word w1, w2,…, wT and its contextual word h1, h2, …, hT, the training 

objective is to maximize the conditional log probability of observing the actual output 

contextual word given the input target word, i.e.,

max J = max 1
T ∑

t = 1

T
log P(ht ∣ wt) . (1)

where J is the objective function, and P(h∣w) is the conditional probability in the neural 

probabilistic language model. P(h∣w) is usually defined by

P(h ∣ w) = e
θh
⊺θw′

∑h ∈ V e
θh
⊺θw′

, (2)

where θ′ and θ are the input and output word embeddings, respectively. Accordingly, the 

log probability can be written as:

log P(h ∣ w) = θh
⊺θw′ − log( ∑

h ∈ V
e

θh
⊺θw′ ) . (3)

We can take the derivative of J to obtain the embeddings, updating the equation iteratively. 

However, the computation is extremely expensive as in each iteration, the algorithm needs to 

go through the vocabulary V. By using negative-sampling, Mikolov et al. [1] defined an 

empirical log probability P′(h∣w) to approximate P(h∣w):

P′(h ∣ w) = log σ(θh
⊺θw′ ) + ∑

i

k
𝔼h~Pn(h)[log σ( − θh

⊺θw′ )], (4)

Wang et al. Page 5

J Biomed Inform. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where σ(x) = 1/(1 + exp(−x)) is a softmax function that normalizes a real vector into a 

probability vector, Pn(hi) =
f (hi)

3 ∕ 4

∑i
∣ V ∣ f (hi)

3 ∕ 4  is an empirical distribution that generates k 

negative samples with f(hi) being the term frequency for term hi. The word embeddings θ 
can be computed by maximizing the objective function in Equation (1) by replacing P(h∣w) 

with P′(h∣w).

We tested different vector dimensions of D (i.e., 20, 60, 100) for the vector representation 

trained on EHR and MedLit and chose 100 for EHR and 60 for MedLit according to the 

performance in our intrinsic evaluation. Similarly, we chose the dimension of 100 for GloVe, 

and 300 for Google News since only 300 was publicly available for Google News. The 

experimental results of using different vector dimensions for the word embeddings are 

provided in Appendix A. For training word embeddings on the EHR and MedLit, we set the 

window size to 5, the minimum word frequency to 7 (i.e., the words that occurred less than 7 

times in the corpus were ignored), and the negative sampling parameter to 5. These 

parameters were selected based on previous studies [1], [3], [19].

IV. Data and Text Pre-prosessing

The first corpus, denoted as EHR, contains textual clinical notes for a cohort of 113k 

patients receiving their primary care at Mayo Clinic, spanning a period of 15 years from 

1998 to 2013. The vocabulary size of this corpus is 103k. The second corpus, denoted as 

MedLit, is obtained from a snapshot of the Open Access Subset9 of PubMed Central 

(PMC)10 in March 2016, which is an online digital database of freely available full-text 

biomedical literature. It contains 1.25 million biomedical articles, and 2 million distinct 

words in the vocabulary. As a comparison, additional public pre-trained word embeddings 

from two general English resources, i.e., Google News 11 and GloVe 12, were utilized in the 

evaluation. The Google News embeddings have vector representations for 3 million words 

from Google News, trained by the word2vec [1]. The GloVe embeddings were trained by the 

GloVe model [38], and have 400k unique words in the vocabulary from a snapshot of 

Wikipedia in 2014 and Gigaword Fifth Edition13.

The MedLit and EHR corpora were pre-processed minimally by removing punctuation, 

lowercasing, and replacing all digits with ”7”. One exception is that we replaced ‘-’ with ‘–’ 

if two or more words were connected by ‘-’ and treated these words as one. For the MedLit 

corpus, we additionally removed website urls, email addresses, and twitter handles. For the 

EHR corpus, the clinical narratives are written by medical practitioners, and thus contain 

more incomplete sentences than research articles. Therefore, we conducted additional pre-

processing on the EHR corpus specific for the clinical notes from Mayo Clinic. Specifically, 

the section of “Family history” in the corpus was removed if it was semi-structured [44]. As 

shown by an example in Table I, the semi-structured “Family history” section does not 

9http://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
10http://www.ncbi.nlm.nih.gov/pmc/
11https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?usp=sharing
12http://nlp.stanford.edu/data/glove.6B.zip
13https://catalog.ldc.upenn.edu/LDC2011T07
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provide much valuable semantic information. The section of “Vital Signs” was totally 

removed since it did not contain contextual information for training word embeddings. Table 

II shows an example of the “Vital Signs” section in the EHR corpus. Moreover, we replaced 

all text contractions with their respective complete text (e.g., “can’t” is replaced with “can 

not”), and removed all the clinical notes metadata and note section headers, dates, phone 

numbers, weight and height information, and punctuation.

V. Qualitative Evaluation

We arbitrarily selected medical words from three medical semantic categories, namely 

disorder, symptom, and drug. Word embeddings trained from four different corpora were 

utilized to compute the five most similar words to each selected medical word according to 

the cosine similarity. Then we adopted the method used in Levy and Goldberg’s study [3] 

and manually inspected the conceptual similarity between the target word and the most 

similar words. Suppose w1 and w2 are two words, the similarity between w1 and w2 is 

defined as

similarity(w1, w2) =
θ1 ⋅ θ2

‖θ1‖‖θ2‖, (5)

where θ1 and θ2 are vector representations for w1 and w2 in the embedding space, 

respectively. If the target word is a medical phrase s1 consisting of multiple words, i.e., s1 = 

w1, w2, …, wn, the similarity function becomes

similarity(s1, w2) =
Θ1 ⋅ θ2

‖Θ1‖‖θ2‖ (6)

where Θ1 = 1
n ∑i

nθi is the representation for s1 in the embedding space. This is different from 

Pakhomov et al’s study [33] where only single word terms were considered. We ranked the 

words in the vocabulary based on the similarity to the target word and chose the five top 

ranked words.

Table III lists eight target words from the three medical categories, and the corresponding 

five most similar words computed by using the word embeddings trained from different 

resources.

For the first target word describing a disorder, diabetes, EHR and MedLit find its synonym, 

mellitus, in the most similar words while GloVe and Google News fail to find it. EHR finds 

two terms related to co-morbidities of diabetes, which are cholesterolemia and dyslipidemia, 

and a common adjective modifier term, uncontrolled. MedLit finds terms relevant to co-

existing conditions for diabetes, such as cardiovascular (possibly from cardiovascular 
disease), nonalcoholic (possibly from nonalcoholic fatty liver disease), obesity, and 

polycystic (possibly from polycystic ovary syndrome which is a hyperandrogenic disorder 

that is associated with a high-risk of development of Type 2 diabetes). Most of these terms 
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are related with medical research topics and occur frequently in the biomedical research 

articles. GloVe finds two related terms, hypertension and obesity, while three other terms, 

i.e., arthritis, cancer and alzheimer, are less relevant disease names. Google News finds two 

morphological terms, diabetics and diabetic, relevant to the target words, one synonym, 

diabetes_mellitus, and one related disease name, heart disease. We can draw similar 

conclusions for the second and third disorder words.

The dyspnea example in the symptom category demonstrates the advantage of EHR and 

MedLit. EHR finds palpitations, a common cause of dyspnea, and orthopnea, exertional, and 

doe (dyspnea on exertion) are synonyms or specific conditions for dyspnea. MedLit finds 

related symptoms, sweats and orthopnea, a synonym breathlessness, a relevant disorder 

hypotension, and a term relevant to the symptom rhonchi. GloVe finds synonyms shortness 
and breathlessness, and less relevant symptoms cyanosis and photophobia. Google News 

finds less relevant symptoms pruritus and rhinorrhea and less relevant disease 

nasopharyngitis. Similar observations can be found for sore throat and low blood pressure as 

well.

We can further observe that the semantics captured by the word embeddings trained from 

different corpora is disparate for the medical terms in the drug category. For opioid, EHR 

finds opiate, benzodiazepine, sedative, polypharmacy, which are very relevant medications. 

MedLit finds nmda_receptor, affective_motivational, nalox-one_precipitated, 
hyperlocomotion, which are related to the mechanism of action of opioid. GloVe finds 

analgesic and less relevant anti-inflammatory, and Google News finds opioid-related phrases 

and relevant term antipsychotics. For the target term aspirin, EHR also finds very clinically 

relevant used terms and MedLit finds relevant terms in research articles while GloVe and 

Google News only find medication names.

It is obviously shown from these target words and the corresponding similar words that EHR 

and MedLit can capture the semantics of medical terms better than GloVe and Google News 

and find more relevant similar medical terms. However, EHR and MedLit find similar 

medical terms from different perspectives due to their focus difference. EHR contains 

clinical narratives and thus it is closer to clinical language. It contains terms with different 

morphologies and even typos, such as melitis, caner and thraot as listed in Table III. 

Differently, MedLit contains more medical terms used in research articles, and finds similar 

words mostly from a biomedical research perspective.

In order to show different aspects of medical concepts captured by word embeddings trained 

from different corpora, we extracted 377 medical terms from the UMNSRS dataset [32], 

[33] and visualized the word embeddings for these medical terms in a two-dimensional plot 

using t-distributed stochastic neighbor embedding (t-SNE) [45]. Example clusters of medical 

terms in the word embeddings are shown in Figure 1. Figure 1a depicts a cluster of 

symptoms, such as heartburn, vomiting and nausea, from the word embeddings trained on 

EHR. Figure 1b shows a cluster of antibiotic medications, such as bacitracin, cefoxitin, and 
chloramphenicol, based on MedLit embeddings. Figures 1c and 1d illustrate clusters of 

symptoms from the GloVe and Google News embeddings, respectively. Since we did not 

employ any clustering method, these clusters were intuitively observed from the two-
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dimensional plot. The visualization of the entire set of 377 medical terms using word 

embeddings trained from four different corpora is provided in the supplementary file.

VI. Quantitative Evaluation

We conducted both extrinsic and intrinsic quantitative evaluation, where the former used 

four published datasets for measuring semantic similarity between medical terms and the 

latter used downstream biomedical NLP tasks to evaluate word embeddings.

A. Intrinsic Evaluation

We tested word embeddings on four published biomedical measurement datasets commonly 

used to measure semantic similarity between medical terms. The first is Pedersen’s dataset 

[29] that consists of 30 medical term pairs that were scored by physician experts according 

to their relatedness. The second is Hliaoutakis’s dataset [30] consisting of 34 medical term 

pairs with similarity scores obtained by human judgments. The third, the MayoSRS dataset 

developed by Pakhomov et al. [31], consists of 101 clinical term pairs whose relatedness was 

determined by nine medical coders and three physicians from Mayo Clinic. The relatedness 

of each term pair was assessed based on a four point scale: (4.0) practically synonymous, 

(3.0) related, (2.0) marginally related and (1.0) unrelated. We evaluated the word 

embeddings using the mean score of the physicians and medical coders. The fourth, 

UMNSRS similarity dataset developed by Pakhomov et al. [32], consists of 566 medical 

term pairs whose semantic similarity was determined independently by eight medical 

residents from the University of Minnesota Medical School. The similarity and relatedness 

of each term pair was annotated based on a continuous scale by having the resident touch a 

bar on a touch sensitive computer screen to indicate the degree of similarity or relatedness.

For each pair of medical terms in the testing datasets, we used Equations (5) and (6) to 

calculate the semantic similarity for each pair. Since some medical terms may not exist in 

the vocabulary of word embeddings, we used fastText [46] to compute word vectors for 

these out-of-vocabulary (OOV) medical terms. Specifically, we built character n-gram 

vectors analogous to fastText’s output by converting each word (e.g., “abcdef”) in the word 

embeddings to 3-gram (i.e., trigram) format (i.e., “abc”, “bcd”, “cde”, “def”) with vector 

representation of each trigram the same as that of the original word. After converting all the 

words, we utilized the averaged vector for the identical trigram extracted from different 

words (e.g., the vector for “abcdef” is θ1 and that for “defg” is θ2, the final vector for 

trigram “def” is 1
2 (θ1 + θ2) since “def” is a shared trigram between the two words). Since 

each word with the number of characters greater than or equal to 3 can be represented as a 

bag of character trigrams, fastText represents an OOV medical term as the normalized sum 

of the vector representations of its trigrams [46]. The Pearson correlation coefficient was 

employed to calculate the correlation between similarity scores from human judgments and 

those from word embeddings.

Table IV lists the Pearson correlation coefficient results for the four datasets. Overall, the 

semantic similarity captured by the word embeddings trained on EHR are closer to human 

experts’ judgments, compared with other word embeddings. MedLit performs worse than 
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EHR but has a comparative result for the UMNSRS dataset. GloVe and Google News are 

inferior to EHR and MedLit, and perform similarly in representing medical semantics. Note 

that the four datasets and corresponding semantic similarity scores from both human experts 

and word embeddings are provided in the supplementary Excel file.

B. Extrinsic Evaluation

Extrinsic evaluations are used to measure the impact of word embeddings to specific 

biomedical NLP tasks. In this evaluation, we tested the word embeddings on three 

biomedical NLP tasks, namely clinical IE, biomedical IR, and RE.

1) Clinical Information Extraction: Two clinical IE tasks were utilized to evaluate the 

word embeddings. The first task is an institutional task while the second is a shared task. 

Using the first task, we would like to examine whether the word embeddings trained on our 

institutional corpus perform better than external pre-trained word embeddings on a local 

institutional IE task. We also would like to investigate whether the results are consistent on a 

global shared task.

In the first experiment, we evaluated the word embeddings on an institutional IE task at 

Mayo Clinic. In this task, a set of 1000 radiology reports was given to detect whether a hand 

and figure/wrist fracture could be identified. Reports were drawn from a cohort of residents 

of Olmsted County, aged 18 or older, who experienced fractures in 2009-2011. Each report 

was annotated by a medical expert with multiple years of experience abstracting fractures by 

assigning “1” if a hand and figure/wrist fracture was found, or “0” otherwise.

In our experiment, the word embeddings were employed as features for machine learning 

models and evaluated by precision, recall, and F1 scores [47]. For a clinical document d = 

{w1, w2,.., wM} where wi i = 1, 2, …, M is the ith word and M is the total number of words 

in this document, the feature vector x of document d is defined by

x = 1
M ∑

i

M
xi,

where xi is the embedding vector for word wi from the word embedding matrix. Then x was 

utilized as input to a conventional machine learning model, which is Support Vector 

Machine (SVM) in this experiment. We performed 10-fold cross validation on the dataset. 

The means of precision, recall, and F1 scores from the 10-fold cross validation was reported, 

which are defined below:

Precision = 1
10 ∑

i
Precisioni = 1

10 ∑
i

TPi
TPi + FPi

,

Recall = 1
10 ∑

i
Recalli = 1

10 ∑
i

TPi
TPi + FNi

,

F1 score = 1
10 ∑

i
F1 scorei = 1

10 ⋅ ∑
i

2TPi
2TPi + FPi + FNi

,
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where TP, TN, FP, and FN represent true positives, true negatives, false positives, and false 

negatives, respectively, and i = 1, 2, …, 10 represents the ith fold cross validation. As a 

comparison, the baseline method used term frequency features as input.

The experimental results are listed in Table V. The word embeddings trained on EHR are 

superior to other word embeddings in terms of all metrics (precision: 0.974, recall: 0.972, F1 

score: 0.972) with statistical significance using t-test (p<0.01). The fracture dataset in this 

experiment is curated from the same EHR system as the EHR corpus used to train word 

embeddings, and thus they have identical sublanguage characteristics. The word embeddings 

trained on MedLit also have comparable results (precision: 0.946, recall: 0.943, F1 score: 

0.942). Since this task is a medical task with specific medical terminologies, the word 

embeddings trained on Google News have the worst performance. However, the word 

embeddings trained on GloVe are close to those trained on EHR with 0.02 difference on F1 

score without statistical significance (p<0.01). This experiment shows that word embeddings 

trained on a local corpus have the best performance for a local task but those trained on an 

external Wikipedia corpus also have comparable performance.

Secondly, we tested the word embeddings on the 2006 i2b2 (Informatics for Integrating 

Biology to the Bedside) smoking status extraction shared task [48]. Participants of this task 

were asked to develop automatic NLP systems to determine the smoking status of patients 

from their discharge records in Partners HealthCare. For each discharge record, an automatic 

system should be able to categorize it into five pre-determined smoking status categories: 

past smoker, current smoker, smoker, non-smoker, and unknown, where a past and a current 

smoker are distinguished based on temporal expressions in the patient’s medical records. 

The dataset contains a total of 389 documents, including 35 documents of current smoker, 

66 of non-smoker, 36 of past smoker, and 252 of unknown. The settings of this shared task 

are identical to those of the previous local institutional IE task: SVM was utilized as the 

machine learning model; 10-fold cross validation was performed; term frequency features 

were used as input in the baseline; and the means of precision, recall and F1 scores were 

obtained as metrics.

The experimental results are shown in Table VI. First, it is obvious that the word embedding 

features perform better than term frequency features due to the semantics embedded in word 

embeddings, which is consistent with the previous local institutional IE task. The word 

embeddings trained on EHR produced the best performance with a F1 score of 0.900. The 

reason might be that the smoking dataset has the similar sublanguage characteristics as the 

EHR corpus. This result indicates that the effective word embeddings can be shared across 

institutions for clinical IE tasks. Another interesting observation is that the performance of 

word embeddings trained on Google News is close to that trained on EHR corpus with a 

comparable F1 score and a better recall. The performance difference is not statistically 

significant (p<0.01). This implies that word embeddings trained on a public dataset may not 

be definitely inferior to these trained on a medically specific dataset for a medical IE task. 

The likely cause is that the terminology used in the smoking status extraction task also 

appears frequently in the news, such as medications and advice for smokers.
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2) Biomedical Information Retrieval: To evaluate word embeddings for biomedical 

IR, we utilized the dataset provided by the Text REtreival Conference 2016 Clinical 

Decision Support (TREC 2016 CDS) track. The TREC 2016 CDS track focuses on 

biomedical literature retrieval that helps physicians find the precise literature information 

and make the best clinical decision at the point of care [49]. The query topics were generated 

from EHRs in the MIMIC-III dataset [50]. Those topics were categorized into three most 

common types, Diagnosis, Test and Treatment, according to physicians’ information needs, 

and 10 topics were provided for each type. Each topic is comprised of a note field 

(admission note), a description field (jargons and clinical abbreviations are removed) and a 

summary field (simplified version of the description). The participants were required to use 

only one of these three fields in their submissions and at least one submission must utilize 

the note field. Submitted systems should retrieve relevant biomedical articles from a given 

PMC article collection for each given query topic to answer three corresponding clinical 

questions: What is the patient’s diagnosis? What tests should the patient receive? How 
should the patient be treated?. Each IR system can retrieve up to 1000 documents per query.

In order to make the comparison as fair as possible, we first implemented a simple IR 

system as the baseline system using the original queries following the study in [22], and then 

employed the simplest query expansion method using the word embeddings. We used the 

summary field in the query, removed the stop words, and expanded each of the left query 

terms with five most similar terms from word embeddings. Take the query “A 78 year old 

male presents with stools and melena” as an example, the term “male” was expanded by 

“female gentleman lady caucasian man”, “stools” by “stooling liquidy voluminous 

semiformed tenesmus”, and “melena” by “hematemesis hematochezia melana brbpr 

hematemasis”. We assigned weight 0.8 to the original query and 0.2 to the expanded query. 

Indri [51] was utilized as our indexing and retrieval tool. The preprocessing for the corpus 

included stopword removal and Porter stemming. The stopword list was based on the 

MedLit stopwords 14. The article-id, title, abstract, and body fields of each document in the 

corpus were indexed. Language models with two-stage smoothing [52] was used to obtain 

all the retrieval results. Four official metrics, namely Inferred Normalized Discounted 

Cumulated Gain (infNDCG)[53], Inferred Average Precision (infAP)[53], Precision at 10 

(P@10), and Mean Average Precision (MAP), were utilized to measure the IR performance. 

infNDCG measures the document ranking quality of an IR system; infAP measures the 

retrieval effectiveness given incomplete judgments for an IR system; P@10 is the number of 

relevance documents among the top 10; and MAP is the mean of the average precision 

scores for each query in a set of queries.

Table VII lists the results of using the word embeddings trained from different resources for 

query expansion on the TREC 2016 CDS track. It is interesting that the word embeddings 

based query expansion method failed to improve the retrieval performance, and even 

worsened the performance when infAP and MAP were metrics. By comparing the retrieval 

performance, we observe that EHR and MedLit perform slight better than GloVe and Google 

News without statistical significance (p<0.01). This result implies that applying word 

14http://www.ncbi.nlm.nih.gov/books/NBK3827/table/pubmedhelp.T.stopwords/
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embeddings trained from different resources has no significant improvement for the 

biomedical IR task.

3) Relation Extraction: For the RE task, we considered drug-drug interaction (DDI) 

extraction, which is a specific RE task in the biomedical domain. DDI is an unexpected 

change in a drug’s effect on the human body when the drug and a second drug are co-

prescribed and taken together. Automatically extracting DDI information from literature is a 

challenging and important research topic since the volume of the published literature grows 

rapidly and greatly. In this experiment, we evaluated the word embeddings on the 

DDIExtraction 2013 challenge corpus [54]. The dataset for DDIExtraction 2013 was 

composed of sentences describing DDIs from the DrugBank database and MedLine 

abstracts. In this dataset, drug entities and DDIs were annotated at the sentence level and 

each sentence could contain two or more drugs. An RE system should be able to 

automatically extract DDI drug pairs from a sentence. We exploited the baseline system 

introduced in [19] where features include words and word bigrams with binary values 

indicating their presence or absence in a sentence, cosine similarity between centroid vector 

of each class and the instance, negation (three features indicating negation before the first 

main drug, between two main drugs, and after the two main drugs). We concatenated the 

word embeddings to the baseline features and tested the performance. Since Random Forest 

[55] has the best performance in [19], we utilized it as the classifier with 10-fold cross 

validation.

Table VIII shows the F1 scores of Random Forest using word embeddings trained from 

different resourceson the DDIExtraction 2013 challenge. We can see that the overall 

performance of word embeddings trained on Google News is the best. The reason is that the 

semantics of general English terms in the context of drug mentions are more important for 

determining the drug interactions. For example, in the sentence “Acarbose may interact with 

metformin”, the term “interact” is crucial to classify the relation. Since these crucial terms 

are generally not medical terminology, word embeddings trained on Google News where the 

corpus represents general English are able to capture the semantics of these terms. However, 

Google News outperformed other resources but not conclusive in statistical significance 

using t-test (p<0.01). Another interesting observation is that word embeddings trained from 

MedLit have the best performance for the DrugBank corpus while these from Google News 

perform the best for the MedLine corpus. Though MedLine abstracts are from MedLit 

articles, this result shows that word embeddings trained from the same corpus are not 

necessarily superior to other embeddings.

VII. Conclusion and Discussion

In this study, we provide an empirical evaluation of word embeddings trained from four 

different corpora, namely clinical notes, biomedical publications, Wikipedia, and news. We 

performed the evaluation qualitatively and quantitatively. For the qualitative evaluation, we 

selected a set of medical words and impressionistically evaluated the five most similar 

medical words. We then analyzed word embeddings through the visualization of those word 

embeddings. We conducted both extrinsic and intrinsic evaluation for the quantitative 

evaluation. The intrinsic evaluation directly tested semantic relationships between medical 
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words using four published datasets for measuring semantic similarity between medical 

terms while the extrinsic evaluation evaluated word embeddings in three downstream 

biomedical NLP applications, i.e., clinical IE, biomedical IR, and RE.

Based on the evaluation results, we can draw the following conclusions. First, the word 

embeddings trained on EHR and MedLit can capture the semantics of medical terms better 

than those trained on GloVe and Google News, and find more relevant similar medical 

terms. However, EHR finds similar terms vis a vis clinical language while MedLit contains 

more medical terminology used in medical articles, and finds similar words mostly from a 

medical research perspective. second, the medical semantic similarity captured by the word 

embeddings trained on EHR and MedLit are closer to human experts’ judgments, compared 

to these trained on GloVe and Google News. Third, there does not exist a consistent global 

ranking of word embeddings for the downstream biomedical NLP applications. However, 

adding word embeddings as extra features will improve results on most downstream tasks. 

Finally, word embeddings trained from biomedical domain corpora do not necessarily have 

better performance than those trained on other general domain corpora. That is, there might 

be no significant difference when word embeddings trained from an out-domain corpus are 

employed for a biomedical NLP application. However, the performance of word embeddings 

trained from a local institutional corpus might perform better for local institutional NLP 

tasks.

Our experiments implicitly show that applying word embeddings trained from corpora in a 

general domain, such as Wikipedia and news, is not significantly inferior to applying those 

obtained from biomedical or clinical domain, which is usually difficult to access due to 

privacy. This result is consistent with but more general than the conclusion drawn in [33]. 

Thus, a lack of access to a domain-specific corpus is not necessarily a barrier for the use of 

word embeddings in practical implementations.

As a future direction, we would like to evaluate word embeddings on more downstream 

biomedical NLP applications, such as medial named entity recognition and clinical note 

summarization. We will investigate whether word embeddings trained from different 

resources represent language characteristics differently for a corpus, such as term frequency 

and medical concepts. We also want to assess word embeddings across health care 

institutions using different EHR systems and investigate how sublanguage characteristics 

affect the portability of word embeddings. Moreover, we want to apply clustering methods 

on word embeddings and compare the word-level and concept-level difference between 

clusters of medical terms.

There are a few limitations in this study. First, we only examined the word embeddings 

trained on the EHR from Mayo Clinic, which might have introduced bias into the conclusion 

as the EHR quality may vary by institutions. However, it is challenging to obtain word 

embeddings trained on EHR data from multiple sites. We are currently exploring the use of 

privacy-preserving techniques for obtaining embeddings from multiple sites leveraging our 

prior work [56] to have more generalizable embeddings. Second, we tested only two widely 

used public pre-trained word embeddings. There are a number of word embeddings publicly 

available15. Third, the generalizability of the results for the biomedical IR and RE tasks may 
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be questionable since we only used one shared task dataset for each task to evaluate the 

word embeddings.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A: Intrinsic evaluation of word embeddings with different 

dimensions.

Table IX shows the intrinsic evaluation results of word embeddings using different 

dimensions.

TABLE IX:

Pearson correlation coefficient between the similarity scores computed by word embeddings 

using different dimensions (d) and those assigned by human experts on four datasets.

Dataset EHR
(d=20)

EHR
(d=60)

EHR
(d=100)

MedLit
(d=20)

MedLit
(d=60)

MedLit
(d=100)

GloVe
(d=50)

GloVe
(d=100)

Google News
(d=300)

Pedersen’s 0.390 0.542 0.632 0.304 0.569 0.363 0.334 0.403 0.357

Hliaoutakis’s 0.333 0.417 0.482 0.117 0.311 0.164 0.159 0.247 0.243

MayoSRS 0.192 0.296 0.412 0.177 0.300 0.154 0.001 0.082 0.084

UMNSRS 0.310 0.375 0.440 0.295 0.404 0.396 0.190 0.177 0.154
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Highlights (for review)

• Word embeddings trained from four textual resources, clinical notes, 

biomedical publications, Wikipedia, and news, were empirically evaluated for 

the biomedical natural language processing.

• The word embeddings trained on clinical notes and biomedical publications 

can capture the semantics of medical terms better han those trained on 

Wikipedia and news.

• There does not exist a consistent global ranking of word embeddings for all 

downstream biomedical natural language processing applications.

• The word embeddings trained on biomedical domain corpora do not 

necessarily have better performance than those trained on general domain 

corpora for the downstream biomedical natural language processing tasks.
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Fig. 1: 
Examples of word clusters in the visualization of word embeddings trained from four 

corpora using t-SNE.
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TABLE I:

An example of the semi-structured “Family history” section from the EHR corpus.

MOTHER

Stroke/TIA

BROTHERS

4 brothers alive 1 brother deceased

SISTERS

2 sisters alive

DAUGHTERS

1 daughter alive

Heart disease
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TABLE II:

An example of the “Vital Signs” section from the EHR corpus.

Height: 149.1 cm. Weight: 44.5 kg. BSA(G): 1.3573 M2. BMI: 20.02 KG/M2.

J Biomed Inform. Author manuscript; available in PMC 2019 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 23

TABLE III:

Selected medical words from three medical semantic categories (i.e., disorder, symptom, and drug) and the 

corresponding five most similar words induced by the word embeddings trained from different resources.

Semantic
Category

Target Word EHR MedLit GloVe Google News

diabetes mellitus, cardiovascular, hypertension, diabetics,

Disorder uncontrolled, nonalcoholic, obesity, hypertension,

cholesterolemia, obesity, arthritis, diabetic,

dyslipidemia, mellitus, cancer, diabetes_mellitus,

melitis polycystic alzheimer heart_disease

peptic ulcer disease scleroderma, gastritis, ulcers, ichen_planus,

duodenal, alcoholism, arthritis, Candida_infection,

crohn, rheumatic, diseases, vaginal_yeast_infections,

gastroduodenal, ischaemic, diabetes, oral_thrush,

diverticular nephropathy stomach dermopathy

colon cancer breast, breast, breast, breast,

ovarian, mcf, prostate, prostate,

prostate, cancers, cancers, tumor,

postmenopausally, tumor_suppressing, tumor, pre_cancerous_lesion,

caner downregulation liver cancerous_polyp

dyspnea palpitations, sweats, shortness, dyspnoea,

Symptom orthopnea, orthopnea, breathlessness, pruritus,

exertional, breathlessness, cyanosis, nasopharyngitis,

doe, hypotension, photophobia, symptom_severity,

dyspnoea rhonchi faintness rhinorrhea

sore throat scratchy, runny, shoulder, soreness,

thoat, rhinorrhea, stomach, bruised,

cough, myalgia, nose, inflammed,

runny, swab_fecal, chest, contusion,

thraot nose neck sore_triceps

low blood pressure readings, dose, because, splattering_tombstones,

pressue, cardio_ankle, result, Zapping_nerves_helps,

presssure, ncbav, high, pressue,

bptru, preload, enough, Marblehead_Swampscott_VNA,

systolically gr higher pill_Norvasc

Drug
opioid opiate, opioids, analgesic, opioids,

benzodiazepine, nmda_receptor, opiate, opioid_analgesics,

opioids, affective_motivational, opioids, opioid_painkillers,

sedative, naloxone_precipitated, anti-inflammatory, antipsychotics,

polypharmacy hyperlocomotion analgesics tricyclic_antidepressants

aspirin ecotrin, chads, ibuprofen, dose_aspirin,

uncoated, vasc, tamoxifen, ibuprofen,

nonenteric, newer, pills, statins,
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Semantic
Category

Target Word EHR MedLit GloVe Google News

effient, cha, statins, statin,

onk angina medication calcium_supplements
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TABLE IV:

Pearson correlation coefficient between similarity scores from human judgments and those from word 

embeddings on four measurement datasets. The asterisk indicates that difference between word embeddings 

trained on EHR and those on other resources is statistically significant using t-test (p<0.01).

Dataset EHR MedLit GloVe Google News

Pedersen’s 0.632* 0.569 0.403 0.357

Hliaoutakis’s 0.482* 0.311 0.247 0.243

MayoSRS 0.412* 0.300 0.082 0.084

UMNSRS 0.440* 0.404 0.177 0.154
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TABLE V:

Results of the institutional fracture extraction task using word embeddings trained from four different corpora. 

The asterisk indicates that the difference between word embeddings trained on EHR and those on other 

resources is statistically significant using t-test (p<0.01).

Metric baseline EHR MedLit GloVe Google News

Precision 0.612 0.974* 0.946 0.951 0.809

Recall 0.612 0.972* 0.943 0.950 0.856

F1 score 0.609 0.972* 0.942 0.950 0.823
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TABLE VI:

Results of the i2b2 2006 smoking status extraction task using word embeddings trained from four different 

corpora.

Metric baseline EHR MedLit GloVe Google News

Precision 0.692 0.919 0.878 0.893 0.910

Recall 0.486 0.903 0.871 0.889 0.905

F1 score 0.539 0.900 0.867 0.884 0.897
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TABLE VII:

Information retrieval results of using word embeddings trained from four different corpora for query expansion 

on the TREC 2016 CDS track.

Metric baseline EHR MedLit GloVe Google News

infNDCG 0.249 0.250 0.249 0.249 0.238

infAP 0.058 0.056 0.055 0.051 0.052

P@10 0.247 0.243 0.248 0.233 0.243

MAP 0.067 0.063 0.065 0.063 0.059
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TABLE VIII:

F1 scores of the DDIExtraction 2013 challenge using word embeddings trained from four different corpora.

Category baseline EHR MedLit GloVe Google News

DrugBank (5265 pairs) 0.590 0.708 0.715 0.714 0.705

MedLine (451 pairs) 0.690 0.696 0.690 0.699 0.708

Total (5716 pairs) 0.760 0.789 0.788 0.787 0.790
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