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Abstract

The pericyclases are a growing superfamily of enzymes that catalyze pericyclic reactions. We 

report a pericyclase IccD catalyzing an inverse-electron demand Diels–Alder (IEDDA) reaction 

with a rate acceleration of 3 × 105 fold in the biosynthesis of fungal natural product ilicicolin H. 

We demonstrate IccD is highly periselective towards the IEDDA cycloaddition over a competing 

normal electron demand Diels-Alder (NEDDA) reaction from an ambimodal transition state. A 

predicted flavoenzyme IccE was identified to epimerize the IEDDA product 8-epi-ilicicolin H to 

ilicicolin H, a step that is critical for the observed antifungal activity of ilicicolin H. Our results 

reveal the ilicicolin H biosynthetic pathway and add to the collection of pericyclic reactions that 

are catalyzed by pericyclases.
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Diels-Alder (DA) reactions, involving the cycloaddition between a 1,3-diene and a 

dienophile to form an unsaturated six-membered ring, are among the most powerful 

synthetic transformations to construct complex natural products.1 Depending on 

substituents, the reaction can proceed via the normal- or inverse-electron demand Diels-

Alder (NEDDA or IEDDA) pathways that differ in relative frontier molecular orbital (FMO, 

HOMO–LUMO) energies (Figure 1A). Hundreds of natural products with unsaturated 

cyclohexenes or octahydrodecalins have been identified. 2 Many of these are products of 

pericyclic reactions, and it is now known that a variety of pericyclases—enzymes that 

catalyze pericyclic reactions—exist.3 PyrE3,4 CghA5 and MycB,6 and others,7,8 are all 

decalin-forming pericyclases that catalyze NEDDA reactions (Figure 1A). In contrast, no 

enzyme-catalyzed IEDDA reaction has been reported to date. Structural examination and 

biomimetic synthesis of natural products, however, suggest enzyme-catalyzed IEDDA 

reaction should exist in Nature.9

One potential IEDDA pericyclase candidate is in the biosynthetic pathway of ilicicolin H (1) 

(Figure 1B).10 The decalin-containing 1 was isolated from Cylindrocladium ilicicola 
MFC-870 and other fungi. 10,11 1 is a 4-hydroxy-2-pyridone alkaloid, and has a potent (sub 

μg/mL) and broad (Candida, Aspergillus and Cryptococcus) antifungal activities by 

inhibiting the mitochondrial respiration chain.12 While the biosynthesis of 1 has remained 

unresolved, a biomimetic total synthesis of (±)-1 was reported by Williams et al. using an 

intramolecular IEDDA step to form the trans-octahydrodecalin.13 A model study using an 

ethyl ester of the acyclic precursor showed that heating the bis-diene compound in boiling 

water or refluxing toluene afforded opposite selectivity towards IEDDA or NEDDA reaction 

(Figure 1B).14 Pericyclic reaction selectivity can be rationalized by FMOs, and selectivity 

for a specific pericyclic reaction is referred to as periselectivity.15 The synthetic results 

therefore indicated that NEDDA and IEDDA reactions are competitive, and periselectivity 

depends on solvent polarity (Figure 1B). The synthetic studies were not able to afford only 

the desired IEDDA product. This led us to hypothesize that an enzyme must control the 

IEDDA periselectivity in biosynthesis of 1.

To identify the responsible enzyme, we first searched for candidate genes that are likely to 

participate in the biosynthesis of 1 in the genome sequence of a producing fungus, Nectria 
sp. B-13.11b As with other fungal 2-pyridone compounds, we propose biosynthesis of 1 
starts with formation of the tetramic acid 3 by a polyketide non-ribosomal peptide synthetase 

(PKS-NRPS) with a partnering enoylreductase (ER), followed by a P450-catalyzed ring 

expansion of the tetramate to the acyclic 4.16 This led to the identification of one candidate 

cluster ncc that contains five genes, encoding a PKS-NRPS (nccA), a partnering ER (nccB), 

a P450 (nccC), a predicted C-methyltransferase (C-MT, nccD), and a predicted old yellow 

enzyme (OYE, nccE) (Figure 2A, Table S3). We searched for homologs of this five-gene 

cassette computationally, which revealed this combination is widely distributed in fungi: 41 

different sequenced fungal strains in the NCBI database were found to minimally contain the 

five-gene pathway (Figure S1). For example, we identified the icc cluster that contains the 

five genes from the recently sequenced Penicillium variabile (Figure 2A, Table S3).17 The 

cDNA library of P. variable was available to us, and the icc cluster was therefore used to 

study the functions and products of the conserved five-gene cassette.
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We heterologously expressed the five icc genes in Aspergillus nidulans A1145 followed by 

metabolite isolation and structural characterization. Co-expression of the PKS-NRPS IccA 

and ER IccB yielded tetramate 3 (20 mg/L) (Figure 2B, trace ii) (Table S4, Figures S16–

20). Further coexpression of ring-expansion P450 IccC led to the production of 2-pyridone 4 
that contains the trans bis-diene chain (20 mg/L) (Figure 2B, trace iii) (Table S5, Figures 

S21–25). The two remaining enzymes, C-MT IccD and OYE IccE, were then expressed in 

A. nidulans. Adding IccD to the strain that produced 4 yielded a new prominent product 2 
(10 mg/L)(Figure 2B, trace iv). Structure characterization by NMR demonstrated 2 as the 

endo IEDDA product 8-epi-ilicicolin H (Table S6, Figures S26–31). This result confirmed 

that IccD is responsible for the transformation of bis-diene 4 to 2, thus suggesting IccD acts 

as a pericyclase for this IEDDA reaction. After identifying 2, we found trace amounts of 2 
can be detected in IccA-C expression strain (Figure 2B, trace iii). Finally, adding IccE led to 

near complete conversion of 2 to the final product 1 (10 mg/L)(Figure 2B, trace v, Table S7, 

Figure S32–37). This assigns the role of IccE in the epimerization of 2 to 1. The gene-by-

gene reconstitution in A. nidulans therefore confirmed i) the five conserved enzymes IccA-

IccE are necessary and sufficient to biosynthesize 1; ii) the acyclic bis-diene is relatively 

unreactive under culturing conditions, and enzymatic acceleration of the IEDDA reaction is 

required; and iii) the C-MT homolog, IccD, catalyzes the IEDDA cycloaddition.

We then assayed the activities of IccD using C-His-tagged enzyme heterologously expressed 

and purified from E. coli BL21(DE3) (Figure S3). When 0.1 mM 4 was incubated with 1 μM 

IccD in Tris-HCl (pH 7.0), more than 60% of 4 was converted to 2 within 2 hr (Figure 3A), 

after which IccD denatured rapidly. The catalytic efficiency of IccD was determined by 

assaying the initial velocity of the transformation. IccD exhibited KM of 54 ± 0.5 µM 

towards 4 and kcat of 54 ± 7.8 min−1 (Figure S4). In the absence of IccD, the uncatalyzed 

reaction was nearly undetectable at room temperature in aqueous solution (Figure S5). We 

were able to measure the rate of uncatalyzed cycloaddition in toluene (Figure S6), with a 

knon = 1.8 × 10−4 min−1. Therefore, IccD is able to significantly accelerate the reaction rate 

by 3 × 105 fold (compared with nonenzymatic reaction measured in toluene). IccD belongs 

to the C-MT superfamily, with an intact S-adenosyl-L-methionine (SAM) binding motif 

GXGXG.18 IccD shows 24 % homology to SpnF, also a predicted C-MT that catalyzes the 

[4+2] NEDDA cycloaddition in the biosynthesis of spinosyn.19 Unlike the recently 

characterized SAM-dependent O-MT-like pericyclase LepI,20 IccD did not copurify with 

SAM bound in the active site (Figure S7). Addition of exogenous SAM to the reaction of 4 
to 2 had no effect on the reaction kinetics or product profile (Figure S8). Therefore, the 

IccD-catalyzed IEDDA reaction is most likely SAM-independent.

To investigate the periselectivity of IccD, we quantified product distribution resulting from 

IEDDA versus NEDDA reactions with and without IccD. Consistent with synthetic studies 

with model substrate (Figure 1B), the reaction of 4 in toluene gave 2 and 5 in a ratio of 3:1 

(Figure 3B). The minor product 5 was characterized as the NEDDA product ilicicolin I (5) 

(Table S8, Figure S9 and S38–39).11c The reaction with IccD yielded <1% 5 (Figure 3A,B). 

5 can also be detected in trace amounts from in vivo reconstitution using extracted ion 

chromatogram. This raised the possibility that 5 might be an intermediate in the IccD-

catalyzed reaction of 4 to 2. Since 5 and 2 are derived from the same facial- and endo-
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NEDDA and IEDDA reactions, respectively, conversion of 5 to 2 could be envisioned via a 

[3,3]-sigmatropic Cope rearrangement (Figure 3C). However, when 5 was directly added to 

IccD in the reaction buffer, no 2 was formed (Figure S10). Heating 5 in water at 100°C also 

did not form 2 (Figure S9). Therefore, we concluded that 5 is not an intermediate. In turn, 

our data point to IccD catalyzing a direct IEDDA reaction of 4 to 2 with high periselectivity.

To understand the origin of periselectivity and the potential mode of catalysis for IccD-

catalyzed reaction, we performed density functional theory (DFT) calculations at the 

ωB97X-D/6-311+G(d,p)/CPCM(H2O)//ωB97X-D/6-31G(d)/SMD(H2O) and ωB97X-D/

6-311+G(d,p)//ωB97X-D/6-31G(d) levels of theory.21–24 We calculated the energy surface 

from 4 to 2 in the gas phase to model the hydrophobic enzyme pocket (Figure 3C). The 

lowest energy transition state is the ambimodal TS-1 (ΔG‡=23.3 kcal·mol−1) (Figure S11). 

Ambimodal transition states sequentially connect to a second transition state lower in energy 

that interconverts two products.25 This allows TS-1 to form both IEDDA-adduct 2 (forming 

C11–C16 and C8–C17) and NEDDA-adduct 5 (forming C11–C16 and C10–C19, Figure 3C) 

via post-transition state bifurcation. The possible Cope-rearrangement TS-2 (ΔG‡=18.1 

kcal·mol−1) is 5.2 kcal·mol−1 lower in energy than TS-1 (Figure 3C). However, cycloadducts 

5 and 2 are much more stable than bis-diene 4. Thus, the barrier to convert 5 to 2 (ΔG‡=44.2 

kcal·mol−1) is too large for the enzyme to overcome. Hence, the enzyme must control the 

post-TS-1 bifurcation dynamics to achieve high IEDDA periselectivity. Since transition state 

theory cannot determine the kinetic product ratio, quasi-classical reaction dynamics 

trajectories in gas phase were initiated from TS-1 and found to give products 2 and 5 in a 

ratio of 98:2, respectively (Figure 3C, Figure S12). This ratio of 2 to 5 reproduces 

experimental enzymatic reactions (Figure 3B). This suggests that IccD-catalyzed reaction 

takes place in a hydrophobic pocket to direct the near-exclusive formation of 2 by 

ambimodal TS-1.

We also characterized the OYE homolog IccE in vitro to verify its role in the final 

epimerization step. The enzyme was expressed and purified as N-His-tagged protein from E. 
coli BL21(DE3)(Figure S3). When 2 was incubated with IccE in Tris-HCl (pH 7.0), the 

epimerization from 2 to 1 occurred readily within 2 h (Figure 2D, Figure S13). Since 8-H of 

1 and 2 is relatively acidic, deprotonation of 8-H would lead to epimerization. This was 

demonstrated by the pH-dependent nonenzymatic epimerization from 2 to 1, in which the 

epimerization rate increases as the reaction pH increases (Figure S14). IccE, as with other 

OYE enzymes, is predicted to be a flavin-dependent enzyme. However, no clear role of the 

flavin is evident in the proposed epimerization mechanism. This unexpected reactivity of 

IccE therefore adds to a list of nonredox reactions catalyzed by predicted flavoenzymes.26

The IccE-catalyzed epimerization reaction is critical for the antifungal activities of 1, as 

demonstrated in our assay of 1 and 2 against Candida albicans SC5314. The antifungal 

activity of 2 (MIC = 40 μg/mL) is ~100-fold less potent compared to that of 1 (MIC = 0.4 

μg/mL)(Figure S15). The epimerization reaction catalyzed by IccE can be considered as an 

activation step in which inversion of one stereocenter in 2 led to drastically enhanced 

activities. The icc gene cluster in P. variabile encodes additional redox enzymes in addition 

to the five conserved enzymes that synthesize 1 (Table S3). In the native host, these 
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additional enzymes could potentially perform modifications on 1 to further enhance its 

activity. In summary, our efforts uncovered the concise ilicicolin H biosynthetic pathway, 

featured by the pericyclase IccD that catalyzes a challenging IEDDA reaction of 4 to 2. Our 

findings further expand the catalytic repertoire of naturally-occurring pericyclases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
NEDDA and IEDDA reactions. (A) General scheme of both reactions. EWG: electron 

withdrawing group; EDG: electron donating group; (B) Proposed enzyme-catalyzed IEDDA 

reaction in ilicicolin H (1) biosynthesis, as demonstrated in total synthetic effort towards 1.
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Figure 2. 
Characterization of ilicicolin H (1) biosynthesis. A) The icc cluster encodes a PKS-NRPS 

(KS-AT-DH-MT-KR-ERo-ACP-C-A-T-R. KS, ketosynthase; AT, acyltransferase; DH, 

dehydratase; MT, methyltransferase; KR, ketoreductase; ACP, acyl carrier protein; C, 

condensation; A, adenylation; PCP, peptidyl carrier protein; R, reductase) IccA, a trans-ER 

IccB, a ring expansion P450 IccC, a putative C-methyltransferase IccD and a putative old 

yellow enzyme IccE; B) Product profiles from heterologous expression of different 

combinations of icc cluster in A. nidulans A1145. Control in trace i is A. nidulans 
transformed with empty vectors only; C) Proposed biosynthetic pathway of 1; D) In vitro 
characterization of IccE-catalyzed epimerization. The assays were conducted in 50 mM Tris-

HCl at pH 7.0, in the presence of 0.2 mM 2 and 0.1 μM IccE.
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Figure 3. 
Characterization of IccD-catalyzed pericyclic reaction. (A) HPLC profile of time-course 

reaction of IccD. The assays were conducted at 28°C from 0 to 120 min; (B) Comparison of 

relative IEDDA and NEDDA product ratio starting from 4; (C) Calculated reaction surface 

energies and dynamics results from 4 converting to 2 and 5. RDY: reaction dynamics yield 

from TS-1.
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