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ABSTRACT In addition to SecA of the general Sec system,
many Gram-positive bacteria, including mycobacteria, express
SecA2, a second, transport-associated ATPase. SecA2s can be
subdivided into twomechanistically distinct types: (i) SecA2s that
are part of the accessory Sec (aSec) system, a specialized
transporter mediating the export of a family of serine-rich repeat
(SRR) glycoproteins that function as adhesins, and (ii) SecA2s that
are part of multisubstrate systems, in which SecA2 interacts with
components of the general Sec system, specifically the SecYEG
channel, to export multiple types of substrates. Found mainly in
streptococci and staphylococci, the aSec system also contains
SecY2 and novel accessory Sec proteins (Asps) that are required
for optimal export. Asp2 also acetylates glucosamine residues on
the SRR domains of the substrate during transport. Targeting of
the SRR substrate to SecA2 and the aSec translocon is mediated
by a specialized signal peptide. Multisubstrate SecA2 systems are
present in mycobacteria, corynebacteria, listeriae, clostridia, and
some bacillus species. Although most substrates for this SecA2
have canonical signal peptides that are required for export,
targeting to SecA2 appears to depend on structural features of
the mature protein. The feature of the mature domains of these
proteins that renders them dependent on SecA2 for export may
be their potential to fold in the cytoplasm. The discovery of aSec
and multisubstrate SecA2 systems expands our appreciation of
the diversity of bacterial export pathways. Here we present our
current understanding of the mechanisms of each of these
SecA2 systems.

INTRODUCTION
The protein export systems of bacteria deliver proteins
from the cytoplasm to the cell envelope or extracellular
environment, and in doing so, they play critical roles in
bacterial physiology and pathogenesis. In bacteria, the
majority of protein export is carried out by the general
Sec system (1, 2). The core components of the Sec system
are the integral membrane proteins SecY, SecE, and

SecG, which form the SecYEG channel through which
unfolded proteins traverse the membrane, and the SecA
ATPase, which provides energy for export (Fig. 1A).
SecA shuttles between the cytoplasm and SecYEG in its
role in export. SecDFYajC are auxiliary components
that enhance export efficiency. Proteins exported by the
Sec pathway are synthesized as preproteins with N-
terminal signal peptides that are recognized by the Sec
machinery and removed during export to produce the
mature protein. Some Gram-positive bacteria, including
high-GC Gram-positive actinobacteria such as myco-
bacteria, possess two SecA proteins. In these cases, SecA
(sometimes called SecA1) is the canonical SecA of the Sec
pathway, while SecA2 functions in a specialized path-
way that exports one or a few proteins. There are at least
two evolutionarily and mechanistically distinct types of
SecA2 systems: the accessory Sec (aSec) system, which
has also been referred to as the SecA2/SecY2 system, and
the multisubstrate SecA2 system, which was initially
called the SecA2-only system.
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ACCESSORY SEC SYSTEM
Many species of Gram-positive bacteria express an aSec
system. Along with SecA2, the aSec system invariably
includes SecY2 (a paralogue of SecY) and three to five
accessory Sec proteins (Asps) (Fig. 1B) (3). The latter
proteins are essential for substrate transport and are
exclusively associated with aSec systems (4, 5). aSec
systems transport large, heavily glycosylated cell wall-
anchored proteins, known as serine-rich repeat (SRR)
glycoproteins (6–8). These substrates undergo extensive

O-linked glycosylation intracellularly prior to their
transport to the bacterial cell surface, where they func-
tion as adhesins important for commensal and patho-
genic behavior (9–19).

The gene organization of aSec loci is highly conserved
across species and genera (Fig. 2A). Along with the
transport components, each aSec locus typically encodes
one transported substrate (although up to three have
been described) and two or more glycosyltransferase
(Gtf) proteins that modify the preprotein in the cyto-

FIGURE 1 Models for the general Sec system, the aSec system, and the multisubstrate
SecA2 system. (A) General Sec system. SecA uses ATP hydrolysis to export cytoplasmic
preproteins through the SecYEG channel in an unfolded state. SecDFYajC are auxiliary
components that enhance export efficiency. Sec signal peptides (black rectangle) target
preproteins (blue ribbon) for export through SecYEG. Following export across the
membrane, the signal peptide is cleaved by a signal peptidase (SP) and the resulting
mature protein folds into its proper conformation. (B) aSec system. The model depicted is
largely based on studies of the S. gordonii SecA2 system. Glycosylation of the preprotein
(pink ribbon) with GlcNAc (blue squares) and Glc (blue circles) likely occurs cotrans-
lationally. The positively charged N region of the signal peptide (black rectangle) targets
the preprotein to anionic phospholipids, which aids the localization with SecA2. Transport
through the SecY2/Asp4/5 channel requires a specific sequence in the mature region of
the preprotein, as well as Asp1 to Asp3. Asp2 is a bifunctional protein that also mediates
O-acetylation of GlcNAc moieties (red square). Cleavage of the signal peptide is thought
to be carried out by the general SP. (C) Multisubstrate SecA2 system. The model depicted
is largely based on studies of the mycobacterial SecA2 system. SecA2 works with the
canonical SecYEG channel and possibly SecA1 to export its specific subset of preproteins
(green ribbon). The majority of SecA2 substrates are synthesized as preproteins with a
signal peptide (black rectangle) that is cleaved in association with export. The mature
domain, not the signal peptide, of a preprotein determines if a protein is exported by this
SecA2 system. It is proposed that the mature domain of a SecA2 substrate has the pro-
pensity to fold in the cytoplasm and that the role of SecA2 is to facilitate the export of such
proteins, in an unfolded state, through the SecYEG channel. Additional factors are likely to
work with SecA2 in the pathway (purple symbol). The role of SecA2 in exporting moon-
lighting proteins that lack signal peptides is unclear and not depicted in the model.
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plasm prior to export (3, 20–22). It is not entirely clear
why a dedicated system is necessary for the export of the
SRR glycoproteins. One longstanding explanation is that
the aSec system transports these unusual substrates be-
cause the canonical SecA or SecYEG cannot accommo-
date glycosylated proteins. Indeed, many aSec substrates
cannot undergo canonical Sec transport if glycosylated
(23, 24). As discussed below, however, recent studies
indicate a more complex role for the aSec system in co-
ordinating transport and posttranslational modification
of the SRR glycoprotein, thereby ensuring proper ad-
hesin function.

Substrates of the aSec System
The SRR glycoproteins comprise a unique family of
adhesins that bind a wide range of ligands and impact
biofilm formation and virulence (10, 12, 18, 19, 25–29).
The adhesins have a conserved domain organization,
with a 90-amino-acid signal peptide at the N terminus

followed by a short SRR domain, a ligand binding
region (BR), a long SRR domain, and a C-terminal
LPXTG cell wall anchoring motif (Fig. 3). The BRs can
vary significantly, reflecting their considerable reper-
toire of ligands. For example, several species of oral
streptococci express SRR adhesins with “Siglec (sialic
acid-binding immunoglobulin-type lectins)-like” binding
regions that mediate binding to sialoglycans (30, 31),
while Streptococcus agalactiae expresses SRR glyco-
proteins that interact with proteins (e.g., human keratin 4
and fibrinogen) (16, 32, 33). This diversity of ligands
most likely reflects specific targets for microbial adhesion
in different biological niches.

Preprotein Recognition and Trafficking
to the aSec System
The preprotein signal peptide of aSec substrates has a
tripartite structure similar to that of general Sec system
substrates, but the N region is approximately three times

FIGURE 2 Genomic regions encoding aSec and multisubstrate SecA2 proteins. (A) aSec
loci. Shown are representative aSec loci in Gram-positive bacteria. The secA2 gene is
shown in black and the other genes encoding core components of the aSec translocase
(SecY2 and Asps) are colored yellow. Genes encoding glycosyltransferases (Gtf) and
proteins involved in carbohydrate modifications are shown in orange. Genes encoding
exported SecA2 substrates are shown in blue. In Streptococcus parasanguis, the Asp
orthologues are called Gap1 to Gap3. In Streptococcus salivarius, the gtfEF genes are
located distal to the secA2 locus but are required for the first step of O-GlcNAcylation of
the substrate (89) and thus may be functionally analogous to the gtfAB pairs found in other
aSec loci. (B) Multisubstrate SecA2 loci. Shown are representative multisubstrate secA2
genes and neighboring genomic regions in Gram-positive bacteria. The secA2 gene is
shown in black, and genes encoding SecA2 substrates are shown in blue. Candidate genes
for additional SecA2 substrates are shown with blue stripes. Substrates encoded else-
where in the genome are not shown. Additional proteins with roles in SecA2-dependent
export are encoded by genes shown in pink. Genes encoding proteins with no known
connection to export are shown in gray.
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longer and includes a KxYKxGKxW motif (Fig. 3). This
polybasic motif, along with additional basic residues in
the extended N region, aids in targeting of the preprotein
to anionic phospholipid patches in the membrane and
is important for the Asp-independent colocalization of
the preprotein with SecA2 (34). The hydrophobic core
(the H region) of the signal peptide is also important
for trafficking to the aSec system and contains three
glycine residues essential for substrate delivery to the
aSec pathway and away from the canonical Sec system.

In addition to the signal peptide, the SRR adhesin
GspB of Streptococcus gordonii has a specific segment
(the accessory Sec transport [AST] domain) at the amino
terminus of the mature region that is required for trans-
port. Deletion of the AST domain abolishes aSec export
(24, 35), and even single amino acid substitutions within
the domain can impair this process. The AST domain
interacts directly with SecA2 during transport (36),
which affects substrate targeting to the translocon and
perhaps opening of the Y2 channel. The requirement of a
specific segment in the mature region of the preprotein,
along with the involvement of the Asps (see below), is
a unique feature of aSec transport that may ensure the
selectivity of this pathway for SRR glycoproteins.

The aSec Translocase
SecA2 proteins belonging to the aSec system have a 45-
amino-acid truncation of the C-terminal domain (CTD),
compared with canonical SecAs, and typically have a
proline residue at the C terminus (3) (Fig. 4). These
SecA2 proteins have 70% similarity (35 to 40% identity)
to SecA of Escherichia coli, which includes a high simi-

larity in the preprotein cross-linking domain (PPXD)
and the nucleotide binding motifs NBD1 and NBD2 (3).
In S. gordonii, SecA2 has a lower basal rate of ATP
hydrolysis than its SecA paralogue, and SecA2 requires
higher magnesium concentrations for activity (37).
These and other findings indicate that streptococcal
SecA2 may be more tightly regulated than SecA, which
supports the possibility that one or more of the Asps may
be required to stimulate ATP binding or hydrolysis, as
discussed below.

SecY2 likely forms the transmembrane channel for
aSec transport and likely functions similarly to SecY (38,
39). The predicted topology of SecY2 is nearly identical
to that of SecY (3), even though SecY2 homologues have
low primary sequence similarity to the SecY paralogues
(20% identity and 60% similarity). Like its paralogue,
SecY2 is likely to interact directly with SecA2 to mediate
transport (35). It remains unclear how SecY2 can
transport an extensively glycosylated protein, in contrast
to SecY.

In most species of streptococci with aSec systems, one
or two additional small proteins (Asp4 and Asp5) are
likely to form a complex with SecY2 in vivo (5, 39).
Although the roles of Asp4 and Asp5 in transport are
uncertain, these proteins are predicted to have structural
features resembling those of SecE and SecG of other

FIGURE 3 GspB domains and features of the N-terminal
signal peptide (SP). (Top) Domains of the SRR glycoprotein
GspB. AST, aSec transport domain; SRR1 and SRR2, serine-rich
repeat regions 1 and 2, respectively; BR, ligand binding region;
CWA, cell wall-anchoring domain. The CWA includes a
transmembrane segment, an LPxTG motif, and a charged C-
terminal tail (90). (Bottom) The GspB signal peptide has the
tripartite structure of canonical signal peptides: the N-terminal
(N), hydrophobic core (H), and cleavage (C) regions. However,
the N region is substantially longer than typical signal peptides
and includes a KxYKxGKxWmotif (red). Glycine residues in the
H region are also indicated in red.

FIGURE 4 Domain organization in the canonical SecA of
Escherichia coli and SecA2 proteins of S. gordonii and M. tu-
berculosis. Domains were identified in SecA2 proteins by
alignment with E. coli SecA using published domain bound-
aries (91). NBD, nucleotide binding domain; PPXD, preprotein
cross-linking domain; HSD, helical scaffold domain; HWD,
helical wing domain; IRA, intramolecular regulator of ATPase
activity; CTD, C-terminal domain. Compared to the canonical
SecA, SecA2 proteins have deletions in the HWD and CTD
regions. Amino acid number in the protein sequence is shown
below each schematic.
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organisms, respectively, suggesting analogous functions.
In complex with SecY2, these proteins enhanced the
ATPase activity of streptococcal SecA2 in proteolipo-
somes, paralleling the effects of SecYEG on SecA (39).
Asp4 is partially dispensable for the export of truncated
or nonglycosylated GspB variants via the aSec route
(40), consistent with a role for Asp4 in stabilizing the
open state of the transmembrane channel, rather than a
role in the initiation of translocation. Some species lack
Asp5 (e.g., S. agalactiae) or both Asp4 and Asp5 (e.g.,
Staphylococcus aureus). It is possible that members of
the canonical system substitute for these Asps, and in-
deed, in S. aureus, there is evidence for interaction be-
tween SecY2 and SecG (41).

Asp1 to Asp3
Asp1 to Asp3 are invariable components of the aSec
system and are essential for substrate transport by this
pathway. These Asps are located in the cytosol but have
an affinity for anionic lipids and can localize as a complex
with SecA2 at the inner membrane (38, 42, 43). Al-
though Asp1 to Asp3 lack homology to other transport-
associated proteins and their roles in aSec transport are
not well defined, their interactions provide some insights
as to function. Asp2 and Asp3 directly bind the SRR
regions of the GspB preprotein (44). This interaction does
not require glycosylation of the SRR domain or specific
amino acid motifs. Instead, Asp2 and Asp3 appear to
recognize the unstructured or nonfolded sections of the
preprotein. Although these Asps bind GspB directly, they
do not seem to function as conventional chaperones,
since they are not required for GspB stability or targeting
to the membrane or translocon (42, 43). However, these
Asps augment the physical engagement of the AST do-
main of substrates with SecA2, as indicated by more
extensive AST domain-SecA2 cross-linking in vivo, when
Asp1 to Asp3 are present (35). Since these interactions
are essential for aSec transport, one key role of Asp1 to
Asp3 appears to be the enhancement of substrate inter-
actions with the motor protein.

aSec Transport and Posttranslational
Modification Are Coordinated Processes
Glycosylation and transport of aSec substrates were
initially viewed as independent and sequential processes.
Recent studies indicate, however, that these events
are coordinated to ensure the proper posttranslational
modification and function of the SRR glycoproteins.
In addition to its role in transport, Asp2 has been
shown to be an acetyltransferase that modifies N-
acetylglucosamine moieties on the SRR domains of

GspB (45). Targeted mutations of the predicted Asp2
catalytic domain had no effect on transport but abolished
acetylation of GspB. Moreover, acetylated GspB was
detected only when the glycoprotein had undergone aSec
transport, not among cytosolic forms (when aSec trans-
port was blocked) or when GspB was engineered to
undergo canonical Sec transport. Thus, Asp2 is a bi-
functional protein involved in both the posttranslational
modification and transport of SRR glycoproteins. More-
over, these processes appear to be coordinated during the
biogenesis of SRR glycoproteins, such that the adhesin is
optimally modified for binding. This requirement to
couple substrate modification and export may explain
the coevolution of the SRR glycoproteins with their
specialized glycan modification and export systems.

MULTISUBSTRATE SecA2 SYSTEMS
Multisubstrate SecA2 systems export more than one
substrate, although the number of exported substrates is
still small compared to that of the general Sec system.
The multisubstrate SecA2 systems of Mycobacterium
tuberculosis (46, 47), Listeria monocytogenes (48, 49),
and likely Bacillus anthracis (50, 51) are required for
pathogenesis. In Corynebacterium glutamicum (52) and
Clostridium difficile (53) the multisubstrate systems are
essential for bacterial viability. There is no SecY2 in
multisubstrate SecA2 systems. Instead, the canonical
SecYEG channel is used (Fig. 1C) (54, 55). A common
finding across multisubstrate systems is that secA2
mutations diminish but do not completely abolish ex-
port of SecA2 substrates (56–59). Given that SecA2
works with SecYEG, the residual export observed in the
absence of SecA2 may be attributable to the general Sec
pathway, although this is unproven.

Unlike for aSec systems, phylogenetic analysis of
multisubstrate SecA2 proteins and the genomic regions
flanking the secA2 gene do not indicate evolutionary
relatedness (Fig. 2B) (3). Thus, there is risk in assuming
that there is a single type of multisubstrate SecA2 system
with a common mechanism. Nonetheless, there are
some intriguing similarities between systems, such that
multisubstrate SecA2 systems might be examples of
convergent evolution.

Substrates of Multisubstrate SecA2 Systems
Proteomics has been the primary method for identifying
substrates of multisubstrate SecA2 systems (48, 56, 58, 60,
61). Proteins exported by multisubstrate systems exhibit a
relatively wide variety of functions, with some common
themes. Recently, the multisubstrate SecA2 systems of
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M. tuberculosis and L. monocytogeneswere identified as
functioning in RNA secretion as well as protein export
(62, 63). While the role for SecA2 in secreting RNA is a
complete mystery, this discovery emphasizes the sub-
strate diversity of multisubstrate systems.

Actinobacteria (mycobacteria and
corynebacteria)
At least 15 mycobacterial proteins clearly depend on
SecA2 for their export to the cell wall or extracellular
environment (56, 58, 60). While no corynebacterial
SecA2 substrates have been identified, the essentiality of
secA2 in C. glutamicum predicts SecA2 substrates with
vital functions in this species.

In mycobacteria, one category of SecA2 substrates is
cell wall proteins involved in importing solutes, such as
solute binding proteins (SBPs) andMce proteins (56, 60).
SBPs deliver solutes to ABC transporters in the mem-
brane (64), andMce proteins are thought to deliver lipids
to Mce transporters (65). A second category of SecA2
substrates is proteins with roles in growth and survival
of mycobacteria in macrophages, such as SapM, PknG,
and LipO, which prevent delivery of mycobacteria to
phagolysosomes (56, 58, 66), and SodA and KatG,
which protect against oxygen radicals (47). As discussed
below, peptidoglycan hydrolases are SecA2 substrates in
other multisubstrate systems. While this is not clearly the
case in mycobacteria, in M. marinum a peptidoglycan
hydrolase (IipA) was identified as SecA2 dependent (58).

Listeria
In listeriae, the secA2 gene is adjacent to the gene en-
coding the p60 protein (Fig. 2B) (57, 67). p60 is one of a
group of listeriae SecA2 substrates that are peptidoglycan
hydrolases, including NamA (MurA), SspB, and MltD
(57, 61, 67, 68). Another functional category of listeriae
SecA2 substrates is adhesins, such as Cbp and LAP (61,
69). Finally, similar to the mycobacterial SecA2 system,
export of SBPs and superoxide dismutase (SodA) is as-
sociated with SecA2 of L. monocytogenes (48, 61, 70).

Clostridium
In C. difficile, the secA2 gene is in a locus with genes
encoding the major S-layer protein (SlpA) and S-layer-
related proteins, called cell wall proteins (CwpV, Cwp2,
Cwp66, and Cwp84) (Fig. 2B) (53, 71). SlpA and Cwps
are exported as SecA2 substrates (53). The finding that
slpA is required for C. difficile viability explains, at least
in part, why the SecA2 system is essential in this bacte-
rium (71). Peptidoglycan hydrolase and adhesin activi-
ties have been assigned or predicted for SlpA and/or

Cwp proteins (71–74), which is reminiscent of func-
tional categories of listeriae SecA2 substrates.

Bacillus
Similar to the case with C. difficile, in B. anthracis the
SecA2 system exports S-layer proteins (EA1 and Sap)
(59), and the secA2 gene is adjacent to genes encoding
these proteins (Fig. 2B). While B. anthracis has a secY2
gene, it is not clustered with secA2 in the genome and a
secY2mutant does not exhibit a Sap or EA1 export defect.
Thus, there appears to be no SecY2 involvement in SecA2
transport (59). Both Sap and EA1 possess peptidoglycan
hydrolase activity (75). Only members of the Bacillus
cereus sensu lato group have secA2 or an S-layer (51).

Substrate Recognition by Multisubstrate
SecA2 Systems
Most substrates of multisubstrate SecA2 systems have
signal peptides that are indistinguishable from canonical
Sec signal peptides. Experiments with mycobacteria
demonstrate that the signal peptide of a SecA2 substrate
is required for export (60, 76). However, the signal
peptide does not determine whether a protein is ex-
ported by the SecA2 pathway versus another pathway.
When signal peptides of SecA2-dependent and SecA1-
dependent substrates are swapped, the proteins are still
exported by their respective pathways (76). Thus, it is
the mature domain of a SecA2-exported protein that
determines its transport pathway. These details have been
studied only with mycobacterial SecA2 substrates; simi-
lar studies are needed for other multisubstrate systems.

In mycobacteria and listeriae there are also examples
of proteins lacking signal peptides that depend on SecA2
for export (i.e., PknG, SodA, and KatG in mycobacteria
and SodA, LAP, and phosphomannose isomerase in
listeriae) (47, 48, 56, 69, 70). For these cases, the proteins
are exported as well as localized to the cytoplasm, and
they are likely to be “moonlighting” proteins that func-
tion in both locations. Nothing is known about the rec-
ognition of these proteins by the SecA2 system. Further,
it remains possible that the effect of SecA2 on these
proteins is indirect. One possibility is that moonlighting
proteins might be released from the cytoplasm as a sec-
ondary consequence of SecA2-dependent export of pep-
tidoglycan hydrolases that affect cell wall integrity (77).

The Multisubstrate SecA2 Translocase
The mycobacterial SecA2 pathway is the most-studied
multisubstrate system, in terms of mechanism. The
mycobacterial SecA2 has a role that is distinct from that
of SecA1. Even when overexpressed, SecA1 and SecA2
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are unable to fulfill the function of one another (78). In
addition, M. tuberculosis SecA1 and SecA2 share only
38% identity (54% sequence similarity). Thus, it was a
surprise to discover broad similarity between the crystal
structures of M. tuberculosis SecA1 and SecA2 (79).
However, compared to SecA1, the CTD of SecA2 is
truncated, similar to what was found for SecA2 of the
aSec system (Fig. 4) (3). In addition, the helical wing
domain (HWD) is missing in the mycobacterial SecA2.
The lack of an HWD is a conserved feature of actino-
bacterial SecA2 proteins, but small HWD truncations
may also exist in other SecA2 proteins (79). The signif-
icance of CTD and HWD truncations to SecA2 function
remains to be investigated.

Like canonical SecAs, SecA2 is an ATPase, and amino
acid substitutions in the nucleotide binding domain
(NBD1) of SecA2 abolish export (53, 80). However,
mycobacterial SecA1 and SecA2 differ in ATPase activ-
ity. SecA2 has a lower ATPase rate than SecA1 and also
binds ADP and ATP with a higher affinity and releases
ADP more slowly (80, 81). Moreover, ADP binding to
SecA2 induces a structural rearrangement involving the
precursor-binding domain (PPXD) that is not observed
in ADP-bound SecA1 or conventional SecA proteins.
These differences in nucleotide interactions might reflect
the existence of additional proteins that stimulate ATP
hydrolysis or ADP release or distinct mechanisms of
substrate recognition by SecA2.

Data indicate that SecA2 works with the canonical
SecYEG. In mycobacteria and listeriae, suppressors of
secA2 mutants map to the sole secY gene in these bac-
teria, which argues for the canonical SecY being used by
SecA2 for export (54, 55). In C. difficile, there are also
data for SecA2 working with the same SecYEG channel
as used by SecA1 (53). Because proteins must be in an
unfolded state to transit SecYEG (82, 83), the discovery
that SecYEG is used by multisubstrate SecA2 systems
implies that the substrates of these systems need to be
unfolded for translocation. In mycobacteria, it is dem-
onstrated that the mature domain of a protein dictates
the need for SecA2 for export (i.e., not the signal pep-
tide) (76). Further, the mature domain of a mycobacte-
rial SecA2 substrate can be engineered to be exported by
the Tat system, a pathway requiring proteins be folded
in order to be exported (76). Thus, one possibility is
that the mature domain of SecA2 substrates has a pro-
pensity to fold or aggregate in the cytoplasm and that the
SecA2 system, through currently unknown mechanisms,
enables export of such proteins. For example, SecA2 or
other players in the multisubstrate system might keep
substrates from folding prior to or during export.

Theremay also be a role for SecA1 in SecA2-dependent
export. M. tuberculosis SecA1 and SecA2 form hetero-
dimers in vitro (84). Additionally, in mycobacteria and
listeriae, if SecA1 is depleted or inhibited, SecA2-
dependent export is compromised (85, 86). However,
further studies are required because the effect of SecA1
on SecA2 export could instead be due to a function of
SecA1 in transporting SecYEG proteins to the mem-
brane. In C. difficile, SecA1 depletion does not impact
SecA2 export, indicating that in this species there is no
role for SecA1 in SecA2 transport (53).

Additional Factors Involved in Multisubstrate
SecA2 Systems
In mycobacteria, SatS is a cytoplasmic chaperone that
works with SecA2 to export a subset of SecA2 substrates
(87). SatS stabilizes and prevents aggregation of sub-
strates in the cytoplasm and potentially delivers them to
the export machinery. In B. anthracis SlaP and SlaQ,
which are encoded by genes adjacent to secA2 (Fig. 2B),
are cytoplasmic proteins required for export of SecA2
substrates. The functions of SlaP and SlaQ are unknown
(59, 88). In L. monocytogenes, the DivIVA protein
that recruits proteins to the poles and septum of Gram-
positive bacteria is necessary for septal localization and
secretion of the p60 and MurA SecA2 substrates (68).
The connection between DivIVA and SecA2 export re-
quires further studies to understand.

CONCLUSION
Many Gram-positive bacteria have SecA2 systems that
export a small set of proteins and contribute to patho-
genesis. However, it is important to recognize that at least
two types of SecA2 systems exist (aSec andmultisubstrate
systems), each with a distinctive mechanism. In the
future, it will be important to clarify the defining features
of the respective SecA2 substrates as well as the recog-
nition and translocation events of each type of pathway.
For multisubstrate systems, in particular, more studies
are needed to determine the degree of mechanistic simi-
larity in the absence of evolutionary relatedness.
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