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ABSTRACT Bacteria of the genus Shigella, consisting of 4 species and >50 sero-
types, cause shigellosis, a foodborne disease of significant morbidity, mortality,
and economic loss worldwide. Classical Shigella identification based on selective
media and serology is tedious, time-consuming, expensive, and not always accu-
rate. A molecular diagnostic assay does not distinguish Shigella at the species
level or from enteroinvasive Escherichia coli (EIEC). We inspected genomic se-
quences from 221 Shigella isolates and observed low concordance rates between
conventional designation and molecular serotyping: 86.4% and 80.5% at the spe-
cies and serotype levels, respectively. Serotype determinants for 6 additional se-
rotypes were identified. Examination of differentiation gene markers commonly
perceived as characteristic hallmarks in Shigella showed high variability among
different serotypes. Using this information, we developed ShigaTyper, an auto-
mated workflow that utilizes limited computational resources to accurately and
rapidly determine 59 Shigella serotypes using lllumina paired-end whole-genome
sequencing (WGS) reads. Shigella serotype determinants and species-specific di-
agnostic markers were first identified through read alignment to an in-house cu-
rated reference sequence database. Relying on sequence hits that passed a
threshold level of coverage and accuracy, serotype could be unambiguously pre-
dicted within 1 min for an average-size WGS sample of ~500 MB. Validation with
WGS data from 380 isolates showed an accuracy rate of 98.2%. This pipeline is
the first step toward building a comprehensive WGS-based analysis pipeline of
Shigella spp. in a field laboratory setting, where speed is essential and resources
need to be more cost-effectively dedicated.

IMPORTANCE Shigella causes diarrheal disease with serious public health implica-
tions. However, conventional Shigella identification methods are laborious and time-
consuming and can be erroneous due to the high similarity between Shigella and
enteroinvasive Escherichia coli (EIEC) and cross-reactivity between serotyping anti-
sera. Further, serotype interpretation is complicated for inexperienced users. To de-
velop an easier method with higher accuracy based on whole-genome sequencing
(WGS) for Shigella serotyping, we systematically examined genomic information of
Shigella isolates from 53 serotypes to define rules for differentiation and serotyping.
We created ShigaTyper, an automated pipeline that accurately and rapidly excludes
non-Shigella isolates and identifies 59 Shigella serotypes using Illlumina paired-end
WGS reads. A serotype can be unambiguously predicted at a data processing speed
of 538 MB/min with 98.2% accuracy from a regular laptop. Once it is installed, train-
ing in bioinformatics analysis and Shigella genetics is not required. This pipeline is
particularly useful to general microbiologists in field laboratories.
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acteria of the genus Shigella cause bacillary dysentery (shigellosis), one of the

leading diarrheal diseases worldwide, disproportionately affecting children under
5years of age from low- and middle-income countries (1-3). Shigella is transmitted
through the fecal-oral route at an extremely low infectious dose (4) and manifests
clinical symptoms, including fever, abdominal pain, watery or bloody diarrhea, vomit-
ing, and potentially death (5). Although primarily a disease of the poor, shigellosis is still
a public health concern in developed countries. An estimated 450,000 cases occur
annually in the United States (6), bringing an economic loss of $257 million (7). The
actual impact may be higher, as culture-based diagnosis underestimates shigellosis
~2-fold (2), and a substantial increase in culture-confirmed shigellosis cases was
reported in recent years (8). There is no licensed shigellosis vaccine, and >90% of
Shigella isolates are antimicrobial resistant (9), leaving those exposed at risk.

Shigella consists of 4 species (serogroups) and >54 serotypes: Shigella dysenteriae
(15 serotypes), S. flexneri (18 serotypes), S. boydii (20 serotypes), and S. sonnei (1
serotype). These serotypes are distinguished solely through the somatic (O) antigen, or
lipopolysaccharide, expressed on the cell surface. Shigella is believed to acquire the O
antigen from commensal Escherichia coli strains (10). Shigella serodiversity is further
expanded through acquiring genes from other enteric bacteria and mobile genetic
elements to either lose or replace the O-antigen biosynthetic genes or modify the O
antigen (10-15).

It is important to determine the distribution of Shigella species and serotypes in time
and space for disease burden tracking and outbreak investigation and to inform and
evaluate policies aimed for disease reduction and vaccine development (16). Conven-
tional Shigella identification relies on a combination of biochemical and serological
assessment. Biochemical assays are conducted to distinguish Shigella from E. coli, the
results of which roughly identify Shigella to the species level. Serological testing (slide
agglutination) follows to determine the serotype. Serological differentiation is essential
but is laborious, time-consuming, and expensive and can be erroneous. Intra- and
interspecies cross-reactivity is common, and commercial antisera are at best 91%
accurate (17). Rough strains that do not express O antigen and newly emerged Shigella
serotypes without antisera that recognize them are nontypeable, accounting for 6 to
10% of annual Shigella isolates in the United States (8).

Molecular typing has been in development to replace conventional Shigella identi-
fication. The multilocus virulence gene ipaH, which has been employed by many
institutions as a molecular target for Shigella (18, 20), does not differentiate Shigella and
enteroinvasive E. coli (EIEC), a virulence clade of E. coli that shares many biochemical
properties and virulence genes with Shigella (21, 22). Serotypes of the same Shigella
species are not necessarily genetically closer than those from another species. Conse-
quently, methods relying on genetic relatedness often cannot successfully place Shi-
gella into clearly segregated clades by species (23-27). Although multilocus sequence
typing (MLST) showed promise in Shigella classification (28), some MLST sequence
types (STs) consist of multiple serotypes, which can lead to loss of critical information
for vaccine development, as immunity against Shigella O-antigen is associated with
protection from shigellosis (29). Molecular assays directly targeting the O-antigen-
specific biosynthetic genes, such as PCR-restriction fragment length polymorphism
(RFLP) (30), multiplex PCR (31, 32), and microarray (33), have been developed. However,
these methods require additional biochemical assays to differentiate Shigella from E.
coli, as many Shigella serotypes share identical surface O antigens with commensal E.
coli (10).

Whole-genome sequencing (WGS) is a promising technology to replace conven-
tional assays for microbial typing. With the cost of WGS decreasing precipitously (34),
it is increasingly used in clinical diagnosis and disease surveillance. The bottleneck for
adopting WGS, however, resides in WGS analysis, a skill not often possessed by analysts
trained as general microbiologists. Furthermore, interpretation of Shigella serotypes is
complicated, as it is determined by the combination of O-antigen synthesis and
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TABLE 1 Summary of Shigella WGS development set used in this study?

No. of No. (%) with concordant No. of serotypes No. of strains with No. (%) with concordant
Strain designation strains species designation included serotype designation serotype designation
S. boydii 97 79 (81.4) 21 87 68 (78.2)
S. dysenteriae 55 48 (87.3) 15 37 31 (83.8)
S. flexneri 49 47 (95.9) 13 42 33 (78.6)°
S. sonnei 19 17 (89.5) 1 19 17 (89.5)
Shigella sp. 1
EIEC 13 13 (100)
Non-Shigella/EIEC 25 25 (100)
Shigella only 221 191 (86.4) 50 185 149 (80.5)
Total 259 229 (88.4)

aStrains were sequenced from an in-house collection (n = 58) or their WGSs were downloaded from the NCBI (n = 201).
bPartial agreement between designation and in silico serotyping for S. flexneri was considered concordance (e.g., serotype 5 versus 5a).

modification enzymes. An easy, simple serotyping pipeline with a user-friendly interface
is needed for a WGS-based Shigella surveillance program.

Genoserotyping of Shigella requires information on both genetic determinants for
serotype and those that differentiate from E. coli, particularly EIEC. Nevertheless,
Shigella-specific genetic markers were often only studied in common serotypes but not
rare serotypes. As Shigella underwent convergent evolution to arrive at similar pheno-
types (23, 27, 35), conclusions drawn from type strains cannot reflect all serotypes. Here
we report a comprehensive examination of Shigella genomic data covering 53 different
serotypes, from which we derived results for the development of an in silico serotyping
pipeline, ShigaTyper, that can make a direct prediction for 59 Shigella serotypes.
ShigaTyper was specifically designed to meet the need of general microbiologists in
field laboratories, where resources for Shigella identification are often limited. Such a
pipeline is especially useful when species and serotype information is essential in
quickly identifying organisms in outbreak situations.

RESULTS

We examined genetic determinants from a development set of 48 genome assem-
blies and the raw reads of 221 Shigella isolates, 56 of which were generated in-house
and 165 were downloaded from the National Center for Biotechnology Institute (NCBI),
collectively representing 53 different serotypes. There were 97 isolates designated S.
boydii (including 6, 4, 4, 2,2,5,2,4,7,7,5,3,3,3,3,2,3,6,4, 7, and 2 isolates typed
to serotypes 1 to 20 and E1621-54, respectively, and 10 untyped isolates), 55 isolates
designated S. dysenteriae (including 4,5, 2,3,3,1,1, 2,2,2,2,3,3,2,and 2 isolates typed
to serotypes 1 to 15, respectively, and 18 untyped isolates), 49 isolates designated S.
flexneri (including 2, 1,3,2,2,7,3,3,2,2,3,1,1,3,1, 2,and 3 isolates typed to serotypes
Y, X, 1a, 1b, 1c [7a], 2a, 2b, 33, 3b, 3, 4a, 4bv, 4, 5b, 5, 6, and provisional, respectively,
and 7 untyped isolates), and 19 isolates designated S. sonnei. Additionally, 38 isolates
of 14 Gram-positive and -negative foodborne bacteria were used as an exclusion group,
including 13 EIEC isolates, 8 non-EIEC E. coli isolates (including 1 Shiga toxin-producing
E. coli [STEC] isolate), 2 enterobacterial species that share O antigen with Shigella
(Escherichia albertii and Plesiomonas shigelloides), 8 other enterobacteria (Salmonella
enterica, Klebsiella pneumoniae, Enterobacter cloacae, and Yersinia enterocolitica), 3
nonenterobacterial Gram-negative diarrheagenic bacteria (Vibrio parahaemolyticus and
Campylobacter jejuni), and 4 Gram-positive pathogens (Staphylococcus aureus, Listeria
monocytogenes, and Enterococcus faecium). The distribution of species and serotypes of
these strains (the development set) is described in Table 1 and in Tables S1 and S2.

Genetic determinants for Shigella serotypes. Genetic determinants for most Shi-
gella O antigens have been characterized. Within the O-antigen biosynthetic gene
cluster (rfb), genes encoding O-antigen flippase, wzx, and polymerase, wzy, are serotype
specific; their sequences were obtained from published reports (10, 12-15, 36-53). For
serotypes without O-antigen information, rfb sequence located between the conserved
galF and gnd genes was first extracted from assembled genomes (54). Sequences of wzx
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and wzy on rfb were determined by gene annotation, BLAST search, and protein
secondary structure analysis. S. dysenteriae 14 and S. boydii 19 each possessed a unique
rfb sequence with no close homolog in another bacterial species. The rfb sequences
from S. dysenteriae 15 and provisional serotypes 96-265, E670-74, and S. boydii E1621-54
were nearly identical to those of enterotoxigenic E. coli (ETEC) OgN15 strain E819, E.
albertii strain SP140152, E. coli 0170, and E. coli O7. S. boydii 20 shares identical rfb
sequences with S. boydii 1. A chromosomally carried rfo gene was not found for S.
dysenteriae 93-119 and 204-96.

To further differentiate between serotypes, we collected the sequences of O-antigen
modification enzymes of S. flexneri (12, 15, 52, 53), a chromosomally encoded S.
sonnei-specific putative methylase (this sequence is hereafter referred to as Ss_methy-
lase) (55), wbaM of S. boydii 10 (48), and the plasmid-borne rfp of S. dysenteriae 1 (14,
38). Genome comparison of S. boydii 1 and 20 revealed a unique, nonchromosomal
heparinase gene in all S. boydii 20 isolates (n = 7) but not S. boydii 1 (n = 6), which we
tentatively included as the S. boydii 20 marker.

Source, coordinates, and references for sequences included in the reference se-
quence database are listed in Table 2.

Genetic determinants to differentiate Shigella and EIEC. Differentiation of Shi-
gella from E. coli is an indispensable part of Shigella identification. The highly conserved
3’ end of ipaH genes (ipaH_C) was employed as an indicator for Shigella/EIEC (56-62).
Most Shigella organisms are impaired for lactose fermentation and lysine decarboxyl-
ation. Therefore, sequences of E. coli lacY (EclacY) and lysine decarboxylase (cadA) were
used as differentiation markers for Shigella from EIEC. These sequences were also
included in the reference sequence database (Table 2).

We hypothesized that genetic markers ipaH_C, EclacY, cadA, and Ss_methylase can
be used for EIEC differentiation and Shigella identification. As the same defective
phenotype in Shigella can be caused by different types of mutations and in different
genes, we sought to identify exceptions in the Shigella and EIEC genomes, summarized
in Table 3.

(i) ipaH. We detected ipaH_C in all Shigella and EIEC strains as expected, except S.
boydii 13 (n = 3). This is consistent with previous findings that S. boydii 13 is noninva-
sive and more closely related to E. albertii than to Shigella (35, 63).

(ii) lacY. EclacY was reported to be absent from Shigella organisms except S. sonnei
and S. dysenteriae 1 while present in most EIEC isolates (64). A remnant from the 5’ end
of EclacY was detected in 21 of 22 S. sonnei (107 to 270 bp) and 8 of 8 S. dysenteriae 1
(361 to 475 bp) genomes, respectively. We observed full-length EclacY in 4 S. boydii
serotype 9 isolates (n = 7) and 373 bp of 5'-EclacY in the other 3. S. boydii serotype 15
(n = 3) carried nearly full-length EclacY except a 72-bp deletion at the 5’ end. Eleven
EIEC isolates carried full-length EclacY (n = 14).

(i) cadA. It was reported that cadA was deleted in most Shigella isolates but present
in the genomes of 70% of EIEC isolates (65). We observed that all S. sonnei (n = 22) and
S. dysenteriae (n = 8) isolates carry full-length cadA as previously reported (66, 67). S.
dysenteriae 8 (n = 5) also harbored full-length cadA. S. dysenteriae 10 (n = 3) carried a
3’ remnant of cadA. Among S. boydii 11 isolates (n = 5), 4 harbored full-length cadA and
1 carried a 258-bp remnant at the 3’ end. Ten EIEC isolates harbored full-length cadA
(n=14).

(iv) Ss_methylase. We detected Ss_methylase in all 22 S. sonnei genomes. However,
Ss_methylase was also detected in all S. dysenteriae 10 (n =3) and 2 EIEC (n = 14)
isolates that we examined.

Virulence factors. Virulence of Shigella/EIEC is attributed to pINV (56), an invasion
plasmid that carries genes allowing enteroinvasion. Sequence of ipaB, an essential gene
for invasion, was included as a marker for pINV. Shiga toxin expressed from S. dysen-
teriae 1 is associated with hemolytic-uremic syndrome. Both type 1 (stx,) (57-60) and
type 2 (stx,) (61) Shiga toxins have been reported for other Shigella serotypes. There-
fore, we included the reference sequences of stx, (stx/stx;,) and stx, (stx,,) (62). In
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Pair-ended WGS raw reads
(lllumina MiSeq, HiSeq)

Y
| Quality inspection (fastp) |

A

Mapping to Shigella reference
sequence database (minimap2)

'\
" . Not
| Checkpoint exclusions I—) Shigella
'\
| Shigella serotype prediction |
Y Y

| Report generation

FIG 1 Summary of workflow for ShigaTyper. A detailed description can be found in Results (“Develop-
ment of an automated in silico Shigella serotyping pipeline”).

addition, sequences encoding the Shigella enterotoxins 1 and 2 (ShET1 and ShET2) and
the N terminus of autotransporter toxin Sat (sat_N) were included (Table 2).

Comparison of results from conventional and molecular Shigella serotyping.
We manually inspected WGS reads of 259 isolates in the development set to molecu-
larly determine their species and serotype based on their O-antigen synthesis and
modification genes, Shigella/EIEC differentiation markers, and MLST profile. Overall, a
serotype can be assigned to 253 isolates (97.7%) based on their molecular profiles.
Sequences of wzx gene for multiple serotypes were observed in 30 (11.6%) isolates.
Nevertheless, reads mapped to minor wzx genes were usually <2% of that mapped to
a dominant wzx gene, indicating low levels of contamination, and a serotype could be
assigned in 25 cases. Five genomes had multiple wzx genes present at comparable
levels and 1 had no recognizable serotype determinant genes. By molecular profiling,
there were 83 S. boydii isolates, with 8, 5, 4,6,2,1,2,4,6,7,4,1,3,3,2,2,2,5,4,9,
and 3 isolates belonging to serotypes 1 to 20 and E1621-54, respectively (21 serotypes),
55 S. dysenteriae isolates, with 6, 10, 6, 2, 3, 2, 1, 5, 4, 2, 2, 3, 3, 3, 2, and 1 isolates
belonging to serotypes 1 to 15 and 96-265, respectively (16 serotypes), 50 S. flexneri
isolates, with 3,1, 2,3,4,11,3,7,3,1,3,1, 3,6, 1 isolates belonging to serotypes Y, Xv
(4c), 1a, 1b, 1c (7a), 2a, 2b, 33, 3b, 4a, 4av, 4bv, 53, 6, and 7b, respectively (15 serotypes),
20 S. sonnei isolates, and 14 EIEC isolates. Six isolates designated Shigella were ipaH
negative and therefore considered non-Shigella/EIEC. No isolates carried wzx and wzy
belonging to different O antigens as was reported for E. coli (68).

We compared in silico and conventional designations for these 259 strains (Table 1).
All 24 non-Shigella/EIEC isolates were identified by the absence of ipaH_C. Twelve of the
13 EIEC isolates (92.3%) were identified as EIEC except 1 isolate that carried S. dysen-
teriae 3 wzx and wzy but lacked EclacY and cadA. As this strain was typed to ST270 by
MLST, it is likely to be an EIEC isolate. For the 221 Shigella genomes, 191 (86.4%) were
congruent at species level and 6, 1, and 17 were molecularly determined as not
Shigella/EIEC, EIEC, and another Shigella species. Of the 185 isolates with a serotype
designation, 149 (80.5%) had concordant serotype determinants.

Development of an automated in silico Shigella serotyping pipeline. Molecular
serotyping of Shigella requires careful consideration of multiple gene determinants,
which can be daunting for inexperienced analysts. To automate such a process in a
rapid and efficient way, we developed ShigaTyper, an integrative workflow for in silico
Shigella serotyping using lllumina paired-end WGS reads (Fig. 1). Jupyter Notebook was
used as the user interface so that all command line tools could be prerecorded and
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Gene hits from read mapping to
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FIG 2 Schematic illustration of a decision tree for Shigella differentiation before serotype prediction
employed in ShigaTyper. ShigaTyper was designed to differentiate and exclude non-Shigella or contam-
inated isolates before predicting serotype for Shigella isolates. Distantly related non-Shigella/EIEC species
(such as Listeria) usually have no read mapped to any of the genes in the reference sequence database
and fail at checkpoint 1. Enterobacterial species (such as Salmonella) may have one or more hits but not
ipaH_C and fail at checkpoint 2. Checkpoint 3 excludes EIEC based on the presence of full-length EclacY
gene, with the exception of S. boydii 9 and 15. Last, if there are more than one wzx genes present in the
WGS reads, it indicates multiple serotypes and fails checkpoint 4. Details on serotype prediction are
provided in Results.

executed in one place with the click of a button and output directly printed below each
step. A recently reported WGS reads preprocessing package, fastp, was used for quality
inspection (69). Comparing results from 95 isolates with and without quality filtering
and trimming showed 100% consistency in prediction outcomes. Therefore, quality
filtering and trimming were omitted. WGS raw reads were directly aligned to the
reference sequence database using minimap2 (70). Shigella differentiation was con-
ducted through exclusion steps before serotype prediction (Fig. 2). Strains that did not
carry ipaH_C were considered “not Shigella/EIEC" and eliminated. For ipaH™ strains,
length coverage and number of variants for each of the gene hits were determined
using samtools (71) and bcftools. Threshold values were set to eliminate gene hits that
did not achieve sufficient coverage and accuracy. Gene coverage and accuracy were
defined as the fraction of gene length covered by WGS reads (breadth of coverage) and
fraction of nucleotide identity to the reference sequence, respectively. We tested 80%
and 50% for gene coverage and 80% for gene accuracy. The list of gene hits passing
threshold filtering was screened for Shigella/EIEC differentiation markers. Strains
deemed to belong to Shigella were then subjected to serotype prediction. In this
method, a report is automatically generated for each sample, including name, quality
attributes of the WGS reads, a serotype prediction, and a summary table for each of the
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4. Shigella serotype prediction

SRR1811686 is predicted to be Shigella flexneri serotype 5a.
" . . i Additionally, this strain is ipaB+, suggesting that it retains the virulent invasion plasmid.
2.1. summary of quality attributes of the two fastq files (read1 and read2), no filtering:

Enterotoxin, ShET2 , was detected

Please consult the table below for further information:

read1 read2 Total
Hit Number of reads | Length Covered (bp) | reference length (bp) | % covered | Number of variants | % accuracy
Number of reads 344042 344042 688084
0|ipaH_C (2095 779 780 99.9 8 99
Number of bases 50865482 51019938 101885420
1|ipaB 259 1696 1743 97.3 1" 99.4
Q20 bases 49372202 (97.06%) | 45341940 (88.87%) | 94714142 (92.96%)
2| Sf_wax | 127 1249 1257 99.4 1 095
Q30 bases 47791739 (93.96%) [ 41701983 (81.74%) | 89493722 (87.84%) —
3| Sf_wzy [43 1101 1149 95.8 1 99.9
Average read length | 147.85 1483 148.07
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5| Oac 170 973 1002 97.1 b 99.9
2.2. Visualization of base quality b e and position
a ty by typ P 6|Oactb (1 0 1002 0 0 nan
Read1: Base Quality Read2: Base Quality 7| ShET2 | 298 1707 1710 99.8 1 999
© - Note: colored in blue are gene hits that passed threshold length coverage. ( 50 % )

Date and time of analysis: 2019-01-14 90-06

®
o

The raw code for this IPython notebook is by default hidden for easier reading. To toggle on/off the raw code, click here.

]
]

Average Quality Score

— redl A Summary of serotype prediction results:
— rmadl G 2

— readl T

— readl C Date of analysis: 20190114

15 15 Threshold level for gene coverage: 50 %
[} 0 mapmmxso 200 20 0 0 1oapmmxso 200 20 7 samples were analyzed:

Sample Size (MB) | Serotype prediction Invasion plasmid | Shiga Toxin | Enterotoxin

2.3. Average depth of covarage ‘ERR1762062 1186 lShigelIa sonnei, form | | Detected Not detected | ShET2

Depth of coverage (Assuming a genome size of ~5 Mbp): 20.4 fold SRR1811677 |85.2 Shigella boydii serotype 2 Not detected Not detected | ShET2
SRR1811686 | 74.1 Shigella flexneri serotype 5a Detected Not detected | ShET2
‘SRR3020570 12555 .EIEC Detected Not detected | ShRET2
SRR3124088 | 740.1 Not Shigella or EIEC Not detected stx1, stx2 Not detected
SRR6373753 |375.2 Shigella dysenteriae serotype 1| Detected stx1 ShET2
SRR7690590 | 131.4 Not Shigella or EIEC Not detected Not detected | Not detected

: The raw code for this notebook is by default hidden for easier reading. To toggle on/off the raw code, click here.

FIG 3 A representative output for ShigaTyper. (A) QC inspection of WGS reads. Quality inspection results were parsed from reports generated by fastp and are
summarized in a table showing number of reads, number of bases, number of bases with >Q20 and >Q30 scores, and average read length. A visual
representation of average quality score of each of the 4 bases over sequencing cycle and an estimated average depth for genome coverage are given below
the table. (B) Serotype prediction for the sample. A direct serotype prediction is made by ShigaTyper based on threshold filter values passed by gene
determinants as described in Results. A warning signal is given if sequence of the pINV-encoded virulence factor IpaB, a Shiga toxin, or an enterotoxin is
detected in the WGS reads. The table summarizes characteristics of each of the genetic determinants identified from the WGS data. Those that passed the
threshold filter values are shown in blue. All the codes are hidden from view for clarity of reporting but can be toggled to show for examination if needed.
(C) Report of ShigaTyper batch processing. The summary table lists outcomes for serotype prediction, invasion plasmid, Shiga toxin, and enterotoxin.

identified gene hits for final review. In addition, when the virulence plasmid pINV or a
toxin is detected, a warning message is also included. An example of report is shown
in Fig. 3A and B. An additional summary table listing serotype prediction for each of the
strains is listed in the batch processing notebook (Fig. 3C).

Serotyping prediction by ShigaTyper. Serotype prediction for ShigaTyper was
made primarily through the serotype-specific wzx gene, as O-antigen expression is
absolutely dependent on wzx but not wzy (10, 46, 72). Additionally, we observed better
gene coverage for wzx than wzy (93.4% *= 8.9% versus 81.7% * 19.1% for the 46
in-house samples under 1 GB), presumably because of the higher GC content of wzx
than wzy (30.2% = 1.95% versus 28.6% = 1.52%), as the transposase-based library
generation in the current MiSeq workflow disfavors AT-rich sequences (73, 74). For
serotypes that cannot be predicted solely by wzx, additional criteria were applied as
follows.

S. boydii 1 (Sb1) and 20 contain identical chromosomal rfb genes. For strains carrying
Sb1_wzx, those that also carried a heparinase were assigned to S. boydii 20, while those
that did not were designated S. boydii 1.

S. boydii 6 and 10 contain identical rfb genes; however, wbaM in S. boydii 6 is
disrupted with an insertional element between positions 252 and 253 (48). Therefore,
read alignment to wild-type wbaM is expected to be poor at the insertional junction for
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S. boydii 6, and quality filtering should remove a significant fraction of these bases.
Indeed, for the S. boydii 6 strain we examined, only 18.6% of bases passed quality
filtering at the junction, while 57.4% of bases did for the overall wbaM gene. In contrast,
in S. boydii 10 (n = 3), the percentage of bases passing quality filtering at the junction
was comparable to that for the overall wbaM gene (50.0% = 0.0% versus 51.7% =
4.3%). A threshold ratio of percent passing filtering at the junction over the entire wbaM
was therefore set at 0.5. An isolate with a ratio below the threshold was considered S.
boydii 6, and an isolate with a ratio above 0.5 was considered S. boydii 10. We identified
another 4 S. boydii isolates that were wbaM™. Sequence alignment showed a contig-
uous, undisrupted wbaM gene consistent with S. boydii 10 for all 4 strains. All of them
had a junction-to-overall ratio above 0.5 (0.955 = 0.087), validating the use of wbaM
junctional quality to distinguish S. boydii 6 and 10. There was only 1 S. boydii 6 isolate
in our development set (even though 5 were designated S. boydii 6). However, this
strategy later successfully distinguished S. boydii 6 from S. boydii 10 in our validation
study.

All S. flexneri serotypes except S. flexneri 6 share the same rfb gene cluster but have
different O-antigen modifications by enzymes encoded on bacteriophages or plasmids
(12, 75). For strains containing the S. flexneri 1 to 5 wzx gene (Sf_wzx), the list of
O-antigen modification genes identified was searched in a Python dictionary contain-
ing gene formulas of 19 S. flexneri serotypes. When a serotype had two or more possible
gene formulas, all were included for interpretation. (For example, S. flexneri 5a is
defined as S. flexneri modified by the glucosyltransferase, GtrV, regardless of the
presence of the O-antigen acetylase, Oac. Both gene formulas “gtrV" and “gtrV, oac”
were considered S. flexneri 5a.)

S. sonnei carries its rfb on pINV, which is lost at high frequency (76). Therefore, we
used the chromosomal Ss_methylase as a diagnostic marker. To distinguish S. sonnei
from S. dysenteriae 10 and EIEC, only strains positive for both cadA and Ss_methylase but
negative for any wzx except S. sonnei wzx (Ss_wzx) were considered S. sonnei. A strain
carrying Ss_wzx or pINV marker ipaB was assigned virulent S. sonnei form I. Otherwise,
such a strain was considered form Il. Only 5 (25%) S. sonnei strains were form |,
consistent with the reported high plasmid instability.

Performance of ShigaTyper. We determined the prediction accuracy for Shi-
gaTyper, excluding the 6 uninterpretable samples from the development set. When we
used 80% as the threshold level for gene length coverage and accuracy, as previously
reported for S. flexneri (77), we achieved 95.7% (242/253) and 94.5% (239/253) accura-
cies at the species and serotype levels. Sequence accuracy was >97% for all serotype
determinants identified. In 9 out of the 11 isolates with inaccurate species designation,
it could be attributed to low length coverage of one or more gene hits, leading to no
prediction (n = 7) or misdesignation (n = 2). Prediction accuracies increased to 98.8%
(250/253) and 98.0% (248/253) at the species and serotype levels, respectively, when
the threshold gene coverage was reduced to 50%. Isolates that could not be serotyped
at 50% gene coverage by ShigaTyper were manually examined. Two isolates had
low-level contamination of the genetic determinant(s) from another serotype or EIEC
that were >50% covered. One isolate did not have a wzx gene and therefore could not
be typed. One isolate was predicted to be S. flexneri 5b because it carried O-antigen
modification genes gtrV, gtrX, and oac. However, this strain was phenotypically S.
flexneri 3a due to a 1-bp insertion in gtrV. Another isolate was a S. flexneri carrying
unconventional gene formula not included in the prediction script and was designated
“S. flexneri novel serotype.”

The turnaround time for ShigaTyper was directly proportional to the size of the
paired end fastq files irrespective of the prediction outcome (Fig. 4A). On average, the
pipeline processed WGS raw reads at 538.1 MB/min, translating to a time to prediction
of ~1 min for an average-size sample (509.9 = 538.1 MB). Most of the time was spent
on executing the three command line tools, fastp, minimap2 and samtools, accounting
for 35.8% = 4.9% and 45.7% * 4.8% of the total time. As a result, 36.6% * 4.9% and
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FIG 4 Speed for serotype prediction is directly proportional to the size of WGS files. (A) Total time spent for Shigella
serotyping was plotted against the sum of size of the paired-end WGS reads in fastq.gz format. Outcomes of serotype
prediction are indicated on the right. A linear regression line is shown in black. (B) Total time, time spent on quality (QC)
inspection, and time spent on mapping and prediction are plotted against the sum of size of the paired-end WGS reads in
fastq.gz format. Linear regression lines of the same color are also shown. The average size for the sum of the paired-end
WGS reads was 509.9 * 538.1 MB and ranged from 30.7 to 3,436.7 MB.

63.4% = 4.9% of the total time were spent on quality inspection and mapping and
prediction, respectively (Fig. 4B).

Validation of ShigaTyper. ShigaTyper was validated using a separate collection of
Shigella strains, including 62 well-designated clinical isolates (16), 33 reference strains,
and WGS reads of 287 isolates downloaded from the NCBI, comprising 49 designated
serotypes and 32 non-Shigella isolates. Specifically, the validation set included 94
isolates designated S. sonnei and 87 isolates designated S. boydii, of which 10, 8, 2, 9,
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TABLE 4 Summary of Shigella WGS validation sets used in this study?

Applied and Environmental Microbiology

Prediction accuracy, no. of strains (%)

80% length coverage

50% length coverage

Strain designation (molecular) No. of strains No. of serotypes included Species Serotype Species Serotype
S. boydii 90 19 79 (87.7) 76 (84.4) 87 (96.7) 87 (96.7)
S. dysenteriae 74 13 72 (97.3) 72 (97.3) 74 (100) 74 (100)
S. flexneri 87 15 87 (100) 82 (88.9) 87 (100) 84 (96.6)
S. sonnei 93 1 92 (98.9) 92 (98.9) 92 (98.9) 92 (98.9)
Shigella subtotal 344 49 330 (95.9) 322 (93.6) 340 (98.8) 337 (98.0)
EIEC 14 14 (100) 14 (100)
Non-Shigella/EIEC 22 22 (100) 22 (100)

Overall 380 366 (96.3) 373 (98.2)

aStrains were sequenced from an in-house collection of 62 clinical isolates and 33 reference strains (n = 95), or their WGSs were downloaded from the NCBI (n = 255).

2,1,1,50,3,2,4,3,6,3,0,0,6,4, 11, 3, 2, and 2 isolates typed to serotypes 1 to 20,
E1621-54, E140634-99, and E25411-82 (20 serotypes), respectively. Eighty-four isolates
designated S. dysenteriae included 3,9, 8,7,2,1,1,3,2,5,1, 1, and 1 isolate typed to
serotypes 1 to 4, 6 to 9, 11, 12, 14, E11207-96 (96-265), and E670-74 (13 serotypes),
respectively, and 40 untyped isolates. Eighty-five isolates designated S. flexneri included
1,1,29917,3,7,3,2,1,1,2,7,and 1 isolate typed to serotypes Y, Xv (4c), 1a, 1b,
1c (7a), 2a, 2b, 3a, 3b, 4a, 4b, 4, 53, 5b, 6, and 7 (15 serotypes), respectively, and 19
untyped isolates. Thirty-two isolates that were common diarrheagenic or foodborne
bacteria were selected as the exclusion group, including 26 E. coli isolates (of which 10,
3, and 1 were designated EIEC, ETEC, and STEC), 1 P. shigelloides isolate, 1 Salmonella
enterica isolate, 1 K. pneumoniae isolate, 2 S. aureus isolates, and 1 L. monocytogenes
isolate. After correction by manual inspection, there were 90 S. boydii isolates, with 9,
9,3,11,2,1,1,40,4,2,2,2,7,3,1,0,5, 6,13, and 5 isolates belonging to serotypes
1 to 20 and E1621-54, respectively, 74 S. dysenteriae isolates, with 5, 19, 12, 11,0, 2, 1,
1,7,0,2,8,1,1,0, 3,and 1 isolate belonging to serotypes 1 to 15, 96-265, and E670/74,
respectively, 87 S. flexneri isolates, with 1,2,1,17,12,27,1,3,8,4,2,1, 1,6, and 1 isolate
belonging to serotypes Y, Xv (4c), 1a, 1b, 1c (7a), 2a, 2av, 2b, 3a, 3b, 4av, 5a, 5b, 6, and
7b, respectively, 93 S. sonnei isolates, and 14 EIEC isolates. Two isolates designated
Shigella were ipaH negative and therefore considered non-Shigella/EIEC. One isolate
had gene determinants from multiple serotypes (wzx or wzy) and another had no gene
determinants, and the two were deemed uninterpretable. This corresponded to 95.7%
concordance rate at the species level and 90% at the serotype level. After correction
and removal of the 2 uninterpretable isolates, the validation set contained 344 Shigella
isolates of 49 serotypes, 14 EIEC isolates, and 22 non-Shigella/EIEC isolates (Table 4).

The validation set was subjected to automated serotype prediction by ShigaTyper.
At the 80% gene coverage threshold, the accuracy rates for the 344 Shigella strains were
95.9% and 93.6% at species and serotype levels, respectively. At the 50% gene coverage
level, the accuracy rates increased to 98.8% and 98.0% at the species and serotype
levels, respectively. At both threshold levels ShigaTyper differentiated 14 out of 14 EIEC
isolates and 22 out of 22 non-Shigella/EIEC isolates (100%). The overall accuracies for
the 380 isolates were 96.3% and 98.2% at 80% and 50% gene coverage thresholds,
respectively. Of the 7 Shigella isolates that could not be identified at the 50% gene
coverage level, 4 had low-level contamination of another serotype, 1 was an S. sonnei
isolate without a full-length cadA, 1 was an S. flexneri 3b isolate carrying an unconven-
tional O-antigen acetylase gene (oac7b instead of oac), and 1 was an S. flexneri 4av
carrying Ss_methylase, rendering the algorithm unable to make a correct prediction.
The presence of Ss_methylase was not due to contamination with S. sonnei, S. dysen-
teriae 10, or EIEC, because no read was mapped to EclacY, cadA, Sd10_wzx, or Sd10_wzy.

Four of the 10 clinical S. sonnei isolates (40%) were completely devoid of EclacY
sequence, while only 6 (5.8%) out of the remaining 103 S. sonnei isolates from the
developed world did not carry an EclacY remnant. This allelic polymorphism did not
affect the serotype prediction outcome.
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The ability of Shigella to absorb Congo red to form red colonies is linked to its
virulence plasmid pINV (56). We examined the predictive value of ipaB and ShET2 as a
pINV-indicative marker in 83 in-house Shigella isolates. Sixty-four of the 83 isolates
formed red or dark pink colonies (pINV™) in the presence of Congo red, and 59 and 61
of them were positive for jpaB and ShET2, respectively. Sixty-one of them were positive
for either ipaB or ShET2. Of the 19 isolates that formed light pink or white colonies
(pINV™), 8 and 10 were positive for ipaB and ShET2, respectively. Twelve of them were
positive for either ipaB or ShET2. Both ipaB and ShET2 had an overall accuracy of 84.3%.
However, ipaB has a slightly higher positive predictive value (88.1%) than ShET2 (85.9%)
or ipaB or ShET2 (83.6%) in predicting pINV.

A subset of 68 S. sonnei isolates in the validation set were characterized for the
presence of Shiga toxin-producing bacteriophage (78). ShigaTyper detected stx, in 42
out of the 42 Shiga toxin-positive isolates and did not detect stx, in 26 out of the 26
Shiga toxin-negative isolates, 100% consistent with the previous report.

Genetic variation due to bacteriophages. Ss_methylase was observed in the ge-
nomes of all S. sonnei (n = 115) and S. dysenteriae 10 (n = 3) isolates, 4 EIEC isolates
(n = 28), and 1 S. flexneri 4av isolate (n = 5). Therefore, we investigated if this gene is
associated with mobile genetic elements. Ss_methylase in S. sonnei was present within
an ~9.7-kbp contig flanked by insertion sequence 1 (IS1) sequence between the ynff
and ydf loci, suggesting a transposon-mediated insertion event in the founding ances-
tor. In contrast, Ss_methylase in S. dysenteriae 10, 2 EIEC, and the S. flexneri 4av resided
in an ~40-kbp lambdoid prophage integrated between the potB and potC loci. The
prophage from another EIEC isolate (SRA accession number SRR6049563) was inte-
grated between the mtfA and zinT loci. Prophages from the EIEC and S. flexneri 4av
isolates shared gene organizations similar to the one from the S. dysenteriae 10 genome
but were nonconserved in genes encoding structural phage proteins.

Shiga toxin has never been reported for S. boydii. We observed stx, in 3 S. boydii 19
(n =10). Sequence comparison of the assembled genomes revealed that the stx,
coding sequence resided within a prophage integrated between the ynfG and ynfF loci
that is 99.9% identical to the POCJ13 phage, a lysogenic bacteriophage that infects and
converts S. dysenteriae 4 and S. flexneri into Shiga toxin producers (58).

Shigella identification through MLST and biochemical analyses. All isolates from
the development and validation sets were screened for their MLST profiles (n = 637).
Most Shigella serotypes belonged to STs previously reported (28), except that ST1753
was previously assigned to S. flexneri, while we observed that only S. boydii E1621-54
typed to this ST (n = 7). ST groups for some Shigella serotypes were not known. Isolates
from some serotypes returned no or previously unreported STs. Overall, 78 of the 552
Shigella isolates (14.1%) could not be properly categorized by MLST (Table S4).

Fifty-one Shigella isolates from 42 different serotypes were selected for auto-
mated microbial identification through biochemical properties. Except S. sonnei
isolates that could be identified to species level, most Shigella isolates were
identified as “Shigella group” (non-S. sonnei Shigella). Five (9.8%) isolates from 3
serotypes were identified as E. coli and 2 isolates from 2 serotypes showed low
confidence in discrimination between Shigella and E. coli. A control isolated iden-
tified as EIEC by molecular profiling was subjected to the same analysis and was
identified as E. coli (Table S5).

DISCUSSION

Shigella is a serious threat to public health, despite the low number of cases in
developed countries. However, it can be expensive to maintain a pathogen-specific
surveillance program, factoring in the time required for analyst training, reagent
preparation, and maintenance, especially for rare Shigella serotypes. Conventional
Shigella identification method is labor-intensive, potentially subjective, and not suffi-
ciently accurate. Using molecular profiling, we showed that conventional Shigella
serotyping was at best 90% accurate, consistent with a previous report of an upper limit
at 91% (17). Similarly, biochemical identification could erroneously assign some Shigella
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isolates as E. coli. A WGS-based identification method has a universal workflow for all
pathogens and provides high-resolution data with better accuracy. Therefore, it is ideal
to replace the conventional methods. The same sequencing data can be used in
screenings for virulence genes and antimicrobial resistance (AMR), MLST, and single
nucleotide polymorphism (SNP) analysis, further reducing the cost in pathogen char-
acterization and outbreak investigation.

In this study, we conducted a comprehensive examination of genome information
from 56 Shigella serotypes. By identifying gene determinants for novel Shigella sero-
types, as well as setting criteria for E. coli and EIEC differentiation, we provided
information enabling in silico Shigella serotyping. We further demonstrated the feasi-
bility of this approach with a proof-of-concept WGS serotyping pipeline, ShigaTyper,
using bioinformatic and programming tools freely available online. ShigaTyper pro-
vides a prototype for simple and rapid identification of clinical Shigella isolates with
high accuracy.

The lack of lactose fermentation and the lack of lysine decarboxylation represent
two hallmark traits of Shigella. Nevertheless, we observed considerable variation in
the gene structure of the EclacY and cadA, confirming the previous observation that
Shigella is not a homogeneous group and the seemingly identical phenotype was
often caused by different inactivation mechanisms (67, 79). Variability was even
present within serotype (Table 3), suggesting further genome rearrangement post-
speciation. This high genome variability, together with the observation that the
putative S. sonnei-specific marker, Ss_methylase (2, 55), was present in multiple
Shigella and EIEC serotypes associated with bacteriophages, suggests that no single
genetic marker alone should be used for Shigella identification at the species or
serotype level. Rather, a combination of genes should be taken into consideration
for proper EIEC differentiation and Shigella designation. WGS is an especially
valuable tool for this purpose, as it provides abundant information and the data can
always be reevaluated with additional gene makers. For example, serotype deter-
minants of EIEC can be included for better differentiation.

Shigella is a highly dynamic group of bacteria. Annually, 6 to 10% of Shigella
isolates are untypeable (8), suggesting that novel serotypes are constantly emerg-
ing and Shigella evolution is an ongoing process. We identified serotype determi-
nants from six previously uncharacterized Shigella serotypes. Four of them had
nearly identical O-antigen genes of another enterobacterium and likely arose from
horizontal transfer. The absence of rfb in some serotypes (S. dysenteriae 93-119 and
204-96) and the presence of additional serotype determinants on mobile elements
(S. boydii 20) indicate that there are multiple mechanisms at work for Shigella
serotype diversification.

Direct target mapping using WGS reads has been successfully employed for pre-
dicting bacterial serotypes for E. coli, S. flexneri, and Salmonella (68, 77, 80) and for
inferring AMR (81, 82). We developed a similar pipeline for Shigella using a short-read
mapping approach that has been used for microbial MLST (83) and Salmonella sero-
typing (80). The assembly-free approach reduced analysis time and is less computation
intensive, enabling resource-limited field labs to perform in silico serotyping on a
regular office laptop. The average fastq file for validation was 446.7 = 296.7 MB, and
took 49.8 * 33.1s to prediction, or 31.6 = 21.0 s had quality inspection been omitted.
We attribute the higher speed than SeqSero for Salmonella (80) to the fact that Shigella
serotype determinants are unique enough and did not require subsequent rounds of
alignment/BLAST to discriminate multiple probable alleles. Because the sequence
aligner in ShigaTyper, minimap2, is capable of aligning long DNA sequences efficiently
(70), assembled genomes in fasta format can be used for serotype prediction in a similar
fashion. We included codes processing genome assemblies in ShigaTyper. However, it
might not be as time-effective, as genome assembly usually takes more than 1 min to
complete.

ShigaTyper is particularly suitable for general microbiologists. The use of Jupyter
Notebook consolidated all codes in one place. Once installed, there will be no need for
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bioinformatic and programming skills. A direct serotype prediction is made without
operator interpretation, reducing user subjectivity and ensuring reproducibility. This
pipeline is highly flexible. For example, by including sequences of Shiga toxins in the
reference sequence database, we identified S. boydii 19 as another Shiga toxin-
producing serotype. Detection of novel serotypes or additional virulence genes can be
easily achieved by updating the reference sequence database. We determined the
current threshold setting optimal at 50% gene length coverage, as this setting captured
most of the serotype gene determinants but allowed tolerance for low-level contam-
ination. Additional filter settings can be adopted to meet regulatory requirement as
necessary.

The scope of our work was limited by the availability of well-designated Shigella
WGS raw reads. Of the 59 serotypes that ShigaTyper was designed to identify, we were
unable to obtain WGS reads of S. flexneri Yv, X, and 4b for examination. As our cohort
was small and some serotypes were represented by only a few strains, larger-scale
confirmation and validation are needed for the implementation of in silico Shigella
serotyping. Nevertheless, our work contributed to the transition of public health
surveillance into molecular technologies and can be integrated with other WGS-based
tools for detection and investigation of enteric pathogens.

MATERIALS AND METHODS

Strains. In-house strains used in this study are described in Table S1. Most strains used for ShigaTyper
development were provided by the FDA Pacific Regional Laboratory Southwest. Shigella strains used for
validation were generously provided by the Global Enteric Multicenter Study consortium (16) and
California Department of Public Health. Strains were propagated in brain heart infusion or on tryptic soy
agar (TSA) with 0.1 mg/ml of Congo red. All strains were screened by PCR for the presence of ipaH and
Ss_methylase. Selected isolates were examined using serotype-specific PCR primers. Strains correspond-
ing to the sequences downloaded from the National Center for Biotechnology Institute (NCBI) are
described in Tables S2 (genomes or sequence assemblies) and 3 (WGS reads).

Whole-genome sequencing. Genomic DNA was extracted from 1 to 2 ml of overnight culture using
QlAamp DNA minikit on a QiaCube (Qiagen, Hilden, Germany) and fragmented and indexed using
Nextera XT DNA sample preparation and DNA index kits (Illumina, San Diego, CA). DNA concentration
was determined using a Qubit dsDNA BR Assay system (Thermo Fisher, Waltham, MA). Libraries were
normalized and pooled for sequencing on an lllumina MiSeq system using 500 V.2 reagent cartridges.

Bioinformatic analyses. Local computational analyses were conducted on a Dell laptop (Intel core
i7-6600U CPU, 16 GB of memory) with a Windows 7 host and an Ubuntu 18.04 guest addition (4
processor cores, 4.3 GB of memory) on a VMware Player 14.1.1. Bioinformatic packages were installed and
managed by Anaconda 4.4.11 with Python 3.6.5 through Bioconda, including fastp 0.12.2 (69), minimap2
2.13 (70), and htslib/samtools/bcftools 1.7 (71, 84). All command line and python codes were maintained
in Jupyter Notebooks and run on Jupyter 1.0.0 and nbconvert 5.3.1. Papermill 0.14.2 was used for batch
processing of samples. MLST of scheme “ecoli1” was determined using stringMLST 0.5.1 (85) with 12 GB
memory allocation. When needed, de novo genome assembly, gene annotation, and E. coli serotyping
were performed using Spades 3.11.1 (86) on GalaxyTrakr, RAST (87-89), and SerotypeFinder (68). Mauve
(90) 2015-02-26 was used for genome comparison.

Biochemical identification. A Vitek 2 Compact automated system with GN ID card (bioMérieux,
Marcy-I'Etoile, France) was used for microbial identification per manufacturer’s instruction.

Data availability. Sequences generated in this study have been deposited in the NCBI Sequence
Read Archive under the BioProject number PRJINA490540; accession numbers for each of the strains are
listed in Table S1. The stand-alone Shigella serotyping pipeline, together with instructions for system
setup and running, is available by request or at https://github.com/CFSAN-Biostatistics/shigatyper. An
online version will be made available soon on GalaxyTrakr (https://galaxytrakr.org).

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/AEM
.00165-19.

SUPPLEMENTAL FILE 1, PDF file, 0.2 MB.

SUPPLEMENTAL FILE 2, XLSX file, 0.02 MB.

SUPPLEMENTAL FILE 3, XLSX file, 0.01 MB.

SUPPLEMENTAL FILE 4, XLSX file, 0.04 MB.
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