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Four inter-related measures of phase are described to study the phase synchronization of cellular oscillators, 
and computation of these measures is described and illustrated on single cell fluorescence data from the 
model filamentous fungus, Neurospora crassa. One of these four measures is the phase shift ϕ in a sinusoid 
of the form x(t) = A(cos(ωt + ϕ), where t is time. The other measures arise by creating a replica of the 
periodic process x(t) called the Hilbert transform x̃(t), which is 90 degrees out of phase with the original 
process x(t). The second phase measure is the phase angle FH(t) between the replica x̃(t) and X(t), taking 
values between -π and π. At extreme values the Hilbert Phase is discontinuous, and a continuous form FC(t) 
of the Hilbert Phase is used, measuring time on the nonnegative real axis (t). The continuous Hilbert Phase 
FC(t) is used to define the phase MC(t1,t0) for an experiment beginning at time t0  and ending at time t1. In 
that phase differences at time t0  are often of ancillary interest, the Hilbert Phase FC(t0)  is subtracted from 
FC(t1). This difference is divided by 2π to obtain the phase MC(t1,t0)  in cycles. Both the Hilbert Phase FC(t) 
and the phase MC(t1,t0) are functions of time and useful in studying when oscillators phase-synchronize in 
time in signal processing and circadian rhythms in particular. The phase of cellular clocks is fundamentally 
different from circadian clocks at the macroscopic scale because there is an hourly cycle superimposed on 
the circadian cycle.
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INTRODUCTION

Recently single cells have been shown to have cir-
cadian oscillators using fluorescent markers in clock-re-
lated genes [1]. These kinds of fluorescent and lumines-
cent measurements on single cells have been made in a 
variety of clock systems recently [2-6]. There are three 
basic properties of oscillators in single cells: the ampli-

tude, period, and phase of each cell’s oscillations. The 
most elusive of these quantities is the phase. How the 
phase behaves can provide information on how circadian 
oscillators synchronize in whole tissues or organisms [7]. 
Oscillators in single cells each appear to have substantial 
variation in phase between cells [1], but at the macro-
scopic level of 107 cells the ensemble of circadian oscil-
lators appear synchronized when assayed in liquid culture 
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or in race tubes, for example [8]. How does this phase 
synchronization arise? In order to address this question 
there is a need for a clear notion of phase and how to 
calculate the phase of a cellular oscillator [9]. Whether or 
not phase synchronization happens may have profound 
consequences for our health and successful aging [10].

One particular notion of phase relied on heavily in 
this work is the Hilbert Phase, which was originally de-
veloped for signal processing applications [11]. It has 
come to the fore recently in the analysis of single cell data 
in Mus musculus [12] and N. crassa [1]. There has also 
been increasing interest in its use for identifying phase 
response curves describing synchronization to light and 
other entrainment signals [13,14].

Here we develop four inter-related notions of phase 
of a cellular oscillator, the phase shift, the Hilbert Phase, 
the continuous Hilbert Phase, and phase in cycles. We 
use single cell oscillators in the model system, N. crassa, 
to illustrate each of these four interrelated measures of 
phase and their function in describing “phase.” We use 
these phase measures to examine: (1) phase variation in 
single cells; (2) the effect of the social environment of 
cellular oscillators on phase; (3) phase as a function of 
time as when there is synchronization of oscillators. Each 

of these topics illustrate how all four notions of phase 
are measured in concert to provide insights into cellular 
oscillators.

MEASURES OF PHASE

A fluorescent or luminescent measurement x(t) at 
each time point t is made on the fluorescence or lumines-
cence of a clock-related gene in single cells. Typically 
these measurements are taken every half hour over ten, 
24 hour days, in the model system, N. crassa, used to 
illustrate the phase calculations [1]. The simplest model 
for these measurements is a sinusoid of the form x(t) = 
Acos(ωt + ϕ), where A is the amplitude of the signal, ω, 
the frequency of the oscillation, and ϕ, the phase shift of 
the process. This is sometimes referred to as the hidden 
periodicity model [15]. If the phase ϕ were constant over 
time, then the phase shift would capture all of the phase 
information about each cell and could be extrapolated 
safely to later times after the zero time point to examine 
phase relations between cells. The challenge is when the 
phase shift is not constant in time, as when cells synchro-
nize their phases in time.

Let us suppose we could create a replica x̃(t)  of the 

Figure 1. Description of Hilbert Phase. (A) The original process x(t) in red is replicated by a Hilbert transform to x̃(t) 
in blue. (B) Creating the replica is analogous to putting two marks on two different tires, which are at 12:00 and 3:00 
o’clock to start. (C) The angle FC(t) between the two marks is the Hilbert Phase. One mark corresponds to the original 
process x(t) in red. The second replica mark corresponds to the Hilbert transform x(̃t) in blue. (D) The pair (x(t), x(̃t)) 
defines a number in the complex plane, and as the tires rotate, the pair form a spiral over the complex plane known 
as the analytic signal.
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original process x(t) that was 90 degrees out of phase with 
the original process. For example, if x(t) were cos (ωt),

 then the replica x̃(t) = sin(ωt) would be 90 degrees out 
of phase (Figure 1A). We can think of each process as a 
mark on a spinning tire on a car; one tire is marked, and 
another tire is marked with its mark at 90 degrees from 
the other mark at time t = 0 (Figure 1B). The two marks, 
x(t) and x̃(t) are followed over time. Then we could ob-
serve how the original process and the replica change 
position with respect to each other in time. This is usual-
ly done by way of an angular measurement between the 
marks on each tire. In other words, we can watch the two 
marks on two tires change position (i.e., angle) with re-
spect to each other in time. The surprise is that under very 
general conditions (described in Materials and Methods) 
such a replica x̃(t) can be created and is called the Hilbert 
Transform of x(t) [11].

The Hilbert Phase FH(t) is then defined as the phase 
angle between the original process x(t) and the replica 
x̃(t) (Figure 1C) [16]:
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This phase angle (i.e., between the two marks on two 

tires) can change over time along with the original fluo-
rescent series x(t) and be computed for the fluorescent 
series on each cell by a Fast Fourier Transform [17]. The 
range of values for the Hilbert Phase by convention are 
usually taken to be from -π to π. If the process were x(t) = 
Acos(ωt + ϕ), then we could calculate the Hilbert Phase:
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In this case of a sinusoidal process the Hilbert Phase 
has a simple linear relation with time with the y-intercept 
being the phase shift ϕ and with the slope being the fre-
quency ω.

To visualize the relation of the process x(t) and its 
replica x̃(t) this pair of values is used to form a complex 
number of the form (x(t), x̃(t)), where x(t) is the real part 
and x̃(t) is the imaginary part in the complex plane at time 
t (Figure 1C). This pair as a function of time is some-
times referred to as the analytic signal [16]. As time t 
advances, the curve (x(t), x̃(t)) traces out a cycle in the 
complex plane about its origin (Figure 1D). As the curve 
approaches -π or π, it tends to have discontinuities (Fig-
ure 2). To stitch together these discontinuities, the Hilbert 

Figure 2. The continuous Hilbert Phase FC(t) as a trajectory for a single cell (top panel) or averaged over all 1,591 
cells is a smooth function of time (in red) while the original Hilbert Phase for cell number 318 (in blue) or averaged 
over all cells is ragged (in blue) and as an angle is confined to the interval -π to π on the upper panel (see bottom 
panel). For the top and middle panels the values of the continuous Hilbert Phase FC(t) are plotted on the left vertical 
axis; the values of the original uncontinuized Hilbert Phase FH(t) are plotted on the right vertical axis. On the lower 
panel is a plot of the original Hilbert Phase FH(t) as a phase angle from -π to π on the unit circle. Only Hilbert Phase 
values at the final time point are displayed.
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Calculating Phase. The calculation of phase is pre-
sented [1]. To make this manuscript self-contained, the 
calculation of phase is detailed again. First a replica x̃(t) 
(of the process x(t)) is created using the Hilbert Trans-
form (available in MATLAB):

			 

( ) ( )1
2

x t
x t PV d

t
τ

π τ
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=

−∫ , where the integral is 
calculated in the principal value sense [19]. This replica  
x̃(t) is 90 degrees out of phase with the original process; 
moreover, it is uniquely specified by the process when it 
exists. In that the replica x̃(t) is purely imaginary in Fig-
ure 1C and completely out of phase with x(t), it can be 
derived from the original x(t) using the convolution theo-
rem:

 ,
where FT denotes the Fourier Transform, where 
1FT −  is the inverse Fourier Transform and where 

1i = −  . This relation is how the replica is computed 
with the commands fft and ifft in MATLAB [17].

The Hilbert Phase is the phase angle between the 
original process x(t) and the replica x̃(t):

( ) ( )
( )

1 
x t

H x t
F t tan−=



Phase FH(t) is continuized as described in Materials and 
Methods and shown in Figure 2 (in red).

The continuous Hilbert Phase is denoted by FC(t)
A plot of this average continuous Hilbert Phase with an 
average (over cells) of the original process is shown in 
the middle panel (Figure 2 in red). With time in the z-di-
rection and the complex plane extending in the x- and y 
directions, the curve (x(t), FC(t)) appears as a spiral (or 
tornado) in time (shown below) (see Figure 1D).

MATERIALS AND METHODS

Data. Fluorescent measurements were made on cells 
with a mCherry recorder gene attached to a clock-con-
trolled gene-2 (ccg-2) promoter in strain MFNC9 of N. 
crassa [18]. Much of the data were published in an excel 
spread sheet for ~1,591 isolated cells, each measured ev-
ery half hour over ten days [7]. Cells are across columns; 
time is down rows. The fluorescent data were Rhodamine 
B normalized to control for uncontrolled periodic and 
aperiodic factors and detrended [1]. Subsequently, im-
proved cell tracking slightly increased the data set to 
1,644 cells. All data were loaded into a MATLAB (The 
MathWorks, Inc., Natick, Massachusetts, USA) work-
space publicly available via GitHub at  https://github.
com/XiaoQiu2019/Matlab-code-for-phase-paper. Run-
ning input_data.mat and then plotcode.m will generate 
the figures with data in this manuscript.

Figure 3. There was considerable variation in phase MC(t1,t0) over ~1,591 cells. The phase MC(t1,t0) was computed 
from t = 0 to t =281 h and is for ~1,591 cells that have no neighbors in a droplet. The mean and standard deviation of 
this histogram of phases for single cells were 74 cycles and 10 cycles, respectively.
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beginning of an experiment. The phase MC(t1,t0) in cycles 
varies with the time interval of the experiment. Allowing 
the phase to vary with time t1

 permits the examination of 
phase synchronization between cells as illustrated in the 
next section.

Analysis. All analyses were done by MATLAB or 
a Python script publicly available in GitHub at https://
github.com/XiaoQiu2019/Matlab-code-for-phase-paper.

RESULTS

Phase Variation in single cells. It is useful to con-
sider whether or not the continuation of the Hilbert Phase 
has any effect. The original Hilbert Phase FH(t) and con-
tinuous Hilbert Phase FC(t) were computed for a single 
cell and for each of the ~1,591 single cell trajectories and 
averaged (Figure 2). A Hilbert Phase FH(t) for a single 
randomly selected cell is shown on the top panel and is 
extremely ragged as it approaches -π or π, but the con-
tinuous curve FC(t) smooths over the discontinuities. The 
Hilbert Phase FH(t) is an angle and confined to the in-
terval from -π to π (as shown in the lower panel of Fig-
ure 2). The average trajectory of the continuous Hilbert 
Phase FC(t) (middle panel) is smoother over time than the 
average of the original Hilbert Phase FH(t) too and is a 
measure of time for a periodic process [20]. The aver-
age Hilbert Phase FH(t) is also ragged due to the stochas-
tic intracellular variation in each cell [9] as well as the 

As an example, if the process x(t) were Acos(ωt + 
ϕ),

 
then the Hilbert transform would be Asin(ωt + ϕ). It 

follows that the Hilbert Phase reduces to FH(t) = ωt + ϕ. 
As the Hilbert Phase passes near -π or π, there are usual-
ly discontinuities in the Hilbert Phase. To surmount this 
problem the Hilbert Phase was continuized. The continu-
ous Hilbert Phase is defined recursively by:

( ) ( ) ( )1 2C C CF t F t m t π+ = + ,
where time t is an integer value indicating the num-

ber of elapsed half hours in each ~ten day experiment 
(containing ~480 half hour time points). The multiple 
mC(t) was chosen to minimize the following differences 
with respect to mC(t):
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This was done by the MATLAB code accessible in 
GitHub.

With the continuous Hilbert Phase FC(t) in hand, then 
the phase MC(t1,t0) in cycles can be calculated:
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where the divisor of 2π ensures that the phase MC(t1,t0) 
counts cycles completed by the continuous phase angle 
FC(t) and where the subtracted quantity acts like a gener-
alized phase shift ϕ to remove the phase differences at the 

Figure 4. The curve (or analytic signal) (x(t), x(̃t)) spiraled over the complex plane for 2-cell (red) and 1-cell (black) 
trajectories over time with more phase variation in the 1-cell trajectories. The (x,y) plane is the complex plane. The 
vertical dimension is time. The trajectory of fluorescence x(t) was detrended after Rhodamine B normalization. The 
red tornado is an average over pairs of cells in the same droplet, and the black tornado is an average over single 
cells in a droplet [1].
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lowed it to complete over seven cycles per 24 hour day 
(Figure 3).

Social environment of cells and its effect on phase. 
In the original experiments cells could be placed in the 
same droplet or in different droplets using a microfluid-
ics device over ten days to observe circadian rhythms, 
thereby placing cells in different neighborhoods or “so-
cial environments” [1]. This feature of the experiments 
also allowed the examination of cellular communication 
between cells in droplets or neighborhoods. Those in the 
same droplet are within 74 microns [21] of each other and 
have the opportunity to communicate and hence perhaps 
synchronize. Those cells in different droplets have no op-
portunity to communicate and continue marching to their 
own drummer. It would be interesting to know wheth-
er or not 2-cell droplets have a different phase trajecto-
ry than 1-cell droplets. The tornado plots of the analytic 
signal (x(t), x̃(t)) are shown (Figure 4). The red tornado 
is an average over 568, 2-cell trajectories in the complex 
plane; the black tornado is an average over 1,644 single 
cell trajectories. While the 2-cell average trajectory very 
closely tracked the average 1-cell trajectory, the average 
2-cell trajectory was consistently closer to the origin than 
the average 1-cell trajectory. This suggests that the 2-cell 
phase trajectories of the analytic signal behave differently 
than 1-cell phase trajectories, but this is analyzed in more 
detail with synchronization measures derived from the 

discontinuity in ( ) ( )
( )

1 
x t

H x t
F t tan−=



 at π and -π. The 
distribution of Hilbert Phase as a consequence appears 
non-uniform on the unit circle (Figure 2).

Each cell may have its own oscillator [1]. The phase 
MC(t1,t0) in cycles as defined above can then be calculated 
for each member of a population of ~1,591 isolated os-
cillators in N. crassa (Figure 3) [1]. The reported phases 
MC(t1,t0) are in cycles completed in the ten day interval 
of the experiment. The cycles completed on average are 
visible in Figure 2. As can be seen, there was substantial 
variation in the phase MC(t1,t0) of the oscillators as mea-
sured in cycles (Figure 3). At the single cell level each 
cell is marching to a different drummer. This raises the 
question of how cells synchronize to generate the coher-
ent behavior at 107 cells.

Cellular clocks are fundamentally different from 
circadian clocks at the macroscopic level. Overlaid on 
the circadian rhythm is high frequency noise from the 
cell, much like an hour hand added on to the tolling of 
bells at the end of a day. The Hilbert Phase and Phase in 
cycles MC(t1,t0) count all cycles from all harmonics. As 
shown earlier an examination of the periods of cellular 
oscillators has demonstrated a major circadian harmonic 
[7] accounts for one cycle per day. The remaining cycles 
come from the high-frequency intracellular noise [1]. For 
example, the high frequency noise in a cellular clock al-

Figure 5. The phases of a sinusoid (in red) and that of the data (in blue) were similar, implying the oscillations are 
approximately sinusoidal. The average frequency ω = 0.3014 was used in x(t) = Acos(ωt + ϕ) to compute the phase 
(in red). The average frequency ω was computed from fitting x(t) = Acos(ωt + ϕ) individually to ~1,591 cell trajectories 
by Least Squares using a Python script. The percentiles in yellow and orange are shown about the mean phase.
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the percentiles of the average phase curve for the cells.
The Hilbert Phase curves can also be used to ex-

amine the synchronization of cells, where phase may 
change with time. Consider 1,136 cells in droplets with 
2-cells per droplet. How do these 568 (=1,136/2) pairs 
of droplets compare in phase with 1,644 cells that have 
never known neighbors? The average Hilbert Phase for 
2-cell droplets steadily diverged from that of the 1-cell 
droplet in Figure 6 and was smaller than the average of 
the 1-cell droplets, as would be expected from Figure 4. 
Yet, the percentiles for both the 2-cell and 1-cell droplets 
still drifted apart with time, indicating an accumulation 
of phase variation with time even when cells have the 
opportunity to talk with each other.

Now consider 10 cells that have been placed in iso-
lated droplets within the same data set [1] and never ex-
perienced neighbors. Also consider 10 droplets each with 
10 cells that have lived together as roommates for 10 
days within the same droplet. The average Hilbert Phase 
curves are shown for the isolated cells and 10 droplets 
each with 10 roommates (Figure 7). As can be seen, the 
average continuous Hilbert Phase for 10 cells in each of 
10 droplets steadily diverged from the average of 10 sin-
gletons, who have never known neighbors. Their phases 
depend on the cell’s social environment. Interestingly the 
10-cell mean drifted outside of the 95 percent confidence 

Hilbert Phase in the next section.
Phase as a function of time. Another feature of the 

phase plots is that they are a function of time. Both the 
continuous Hilbert Phase FC(t) and the phase MC(t1,t0) in 
cycles are plotted as a function of time t1 with t0 = 0 av-
eraged over all ~1,591 cells (Figure 2 and Figure 5). The 
phase MC(t1,t0) in cycles resembles the Hilbert Phase, but 
passes through the origin in Figure 5. As a basis of com-
parison, the phase in cycles MC(t1,t0) for the data without 
a sinusoidal assumption and phase in cycles MC(t1,t0) for 
a sinusoid x(t) = Acos(ωt + ϕ) are plotted as a function 
of time in Figure 5. The parameters in the sinusoid were 
determined by least-squares for all 1,591 cells. As can be 
seen, the phase curves of the cells are approximately si-
nusoidal (Figure 5).

If the cells are in different droplets and unable to 
communicate, the expectation is that these cellular oscil-
lators may drift out of phase with respect to each other. 
To test this hypothesis, the 2.5 percentile and 97.5 per-
centile curves about the mean phase of ~1,591 isolated 
cells (Figure 5) was computed over time. As expected, 
the percentiles drifted away from the mean over time. In-
cidentally the percentiles provide support for the phase 
curve (dotted) of the sinusoid not being statistically dif-
ferent from the average phase curve (in blue) of isolated 
cells. The phase curve for the sinusoid is found between 

Figure 6. The average continuous Hilbert Phase FC(t) for 568 droplets each with 2 cells in one droplet (in red) is plot-
ted against time differs from the average Hilbert Phase FC(t) for 1,644 cells each isolated in a single droplet and never 
having known neighbors. There were a total of 568 curves being averaged in the first case and 1,644 curves, in the 
second case. The 2-cell droplets are coded in red; the 1-cell droplets are coded in black. Percentiles are dotted lines 
with red-dotted lines belonging to the 2-cell droplets and with black-dotted lines belonging to the 1-cell droplets.
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For the 2-cell droplets, the n in the equation above was set 
to 2, and the K was computed for each cell pair in a drop-
let. From the resulting 568 =1,136/2 K values the mean 
(0.7428) and standard error (0.0022) of K was computed.

It is useful to consider the effects of sociality on syn-
chronization [9], and in particular to explain the differ-
ence in phase between 1-cell and 2-cell droplets in Fig-
ure 4 and Figure 5. As a control the Kuramoto K was 
calculated on all 1,644 1-cell droplets with the resulting 
K = 0.0322 +/- 0.0007, which is near zero as expected. 
Then the Kuramoto K was calculated on all 1,136 cells 
with n =2. The Kuramoto K for each pair of cells was 
then averaged over all droplets to yield K = 0.7428 +/- 
0.0022. The conclusion is that for the 2-cell droplets cells 
within droplets are highly synchronized relative to the 
negative control provided by the 1-cell droplets, explain-
ing the phase difference between 1- and 2-cell droplets in 
Figure 4. A z-test of the difference was highly significant 

z X� . . / . .� �� � � � � � ��
7428 0322 6 737 10 0022

4
2 2

= 314.13, (P < .00001). A Wilcoxon Rank Sum test of 
the two unpaired samples of Kuramoto K’s for 1-cell and 
2-cell droplets was also highly significant (P < 0.00001).

Alternatively, a more conservative test is to create a 
sample of 568 pairs drawn randomly with replacement 
from the 1,644 cells in 1-cell droplets. With n=2 for the 
artificially generated pairs, in which strangers are neigh-
bors, the average Kuramoto K for each pair of isolated 

band about the 1-cell droplet mean. Yet the phase varia-
tion also increases with time based on the percentiles of 
both 10 cell droplets and 10 singletons drifting away from 
the mean.

Phase also enters directly into the calculation of 
some synchronization measures [9]. One of the best stud-
ied synchronization measures is the Kuramoto order pa-
rameter(K) [22]:

K n i n i
j

n

j
j

n

j� � � � � ��

�

�

�
� �� � � �1

1

1

1

exp F exp F�

The quantity Fj = Fj
C(t1) is the continuous Hilbert 

Phase for the jth oscillator with t1 = 480 half hours. There 
are n oscillators in a particular social environment, and 
the brackets ���  denote a time-average. As K approaches 
1, the collection of n oscillators approaches being fully 
synchronized. As K approaches 0, the collection of n os-
cillators approaches no synchronization. A striking fea-
ture of biological oscillators is their social environment. 
Cellular oscillators may live together in a droplet or may 
be separated into separate droplets.

The Kuramoto K for the 1-cell and 2-cell droplets 
was computed as follows to examine the effect of sociali-
ty on oscillators. For the 1-cell droplets, the n in equation 
above was set to 1, and the K was computed for each 
isolated cell. From the resulting 1,644 K values the mean 
(0.0322) and standard error (0.0007) of K was computed. 

Figure 7. The average continuous Hilbert Phase FC(t) for 10 droplets each with ten cells in one droplet (in red) is plot-
ted against time differs from the average Hilbert Phase FC(t)  for ten cells each isolated in a single droplet and never 
having known neighbors. There were a total of ~100 curves being averaged in the first case and 10 curves, in the 
second case. The 10-cell droplets are coded in red; the 1-cell droplets are coded in black. Percentiles are dotted lines 
with red-dotted lines belonging to the 10-cell droplets and with black-dotted lines belonging to the 1-cell droplets.
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notion of phase on the circle [20]. In this case the circu-
lar plot reveals a nonuniformity in the phase angle FH(t)  
over the circle. Finally, the phase can be used to evaluate 
various models for how cellular clocks synchronize [7]. 
When studying synchronization, the phase may be used 
to construct additional measures of synchronization [9] as 
illustrated here for the Kuramoto order parameter.

Cellular clocks are fundamentally different from 
circadian rhythms at the macroscopic scale – they have 
a high frequency hour hand in addition to the circadian 
cycle (Figure 3). Much of these high frequency cycles 
are generated by stochastic intracellular noise in reactions 
that go on within the cell [1]. There are multiple frequen-
cies on which cellular clocks keep time, much like the 
two hands on a clock. This can be seen in the upper panel 
of Figure 2, in which cycles completed is greater than 
those generated by circadian oscillations present in single 
cell oscillators [7].

The Hilbert Phase has not only been used to study 
oscillators at the single cell level [1], but has been used to 
study other periodic biological processes, such as through 
monitoring the beating heart [25]. The Hilbert Phase and 
its derivative measure of phase here potentially provide 
useful new information about a variety of biological 
rhythms.

Acknowledgments: We acknowledge the support of the 
UGA Franklin/OVPR seed grant program, UGA College 
of Agricultural and Environmental Sciences, the ARCS 
foundation for support of E. Krach, NSF ECCS-1150042 
from NSF Electrical, Communications and Cyber 
Systems, and NSF MCB-1713746 from NSF Systems 
and Synthetic Biology (SSB) and NSF Physics of Living 
Systems (PoLS).

REFERENCES

1. Deng Z, Arsenault S, Caranica C, Griffith J, Zhu T, Al-Oma-
ri A, et al. Synchronizing stochastic circadian oscillators in 
single cells of Neurospora crassa. Sci Rep. 2016;6:35828.

2. Abraham U, Granada AE, Westermark PO, Heine M, Kram-
er A, Herzel H. Coupling governs entrainment range of 
circadian clocks. Mol Syst Biol. 2010;6(1):438.

3. Carr AJ, Whitmore D. Imaging of single light-responsive 
clock cells reveals fluctuating free-running periods. Nat 
Cell Biol. 2005;7:319.

4. Muranaka T, Oyama T. Heterogeneity of cellular circadian 
clocks in intact plants and its correction under light-dark 
cycles. Sci Adv. 2016;2(7).

5. Gould PD, Domijan M, Greenwood M, Tokuda IT, Rees 
H, Kozma-Bognar L, et al. Coordination of robust single 
cell rhythms in the Arabidopsis circadian clock via spatial 
waves of gene expression. eLife. 2018;7:e31700.

6. Gooch VD, Mehra A, Larrondo LF, Fox J, Touroutoutoudis 
M, Loros JJ, et al. Fully codon-optimized luciferase un-
covers novel temperature characteristics of the Neurospora 
clock. Eukaryot Cell. 2008;7(1):28–37.

cells was K = 0.6853 +/- 0.0015. A z-test of the differ-
ence from cells that have truly experienced another cell 
was highly significant with z = 21.89 ( P < .00001). The 
Wilcoxon Rank Sum test of the two unpaired samples of 
Kuramoto K’s for 2-cell droplets vs artificially created 
2-cell droplets was again highly significant (P <.00001). 
Other synchronization measures that reflect the sociality 
of the oscillators could be used to test for synchronization 
as well [9].

DISCUSSION

The notion of phase used here has been in use since 
the time of Huygens [23,24] in the description of cou-
pled pendula right down to the present [16]. The notion 
of Hilbert Phase appeared early in the 20th Century [11]. 
All four phase measures (ϕ, FH(t), FC(t), and MC(t1,t0)) are 
inter-related and graphically summarized in Figures 2 
and 5. The first two measures (ϕ, FH(t)) are defined on the 
circle, while the last two measures (FC(t), and MC(t1,t0)) 
are defined on the nonnegative part of the real line.

There are several advantages to the notion of phase 
MC(t1,t0) in cycles described here. The phase MC(t1,t0) can 
be computed in an integrated way with the period and 
amplitude of a periodic process using the Fast Fourier 
Transform [17], in for example, MATLAB (see scripts 
on GitHub in Materials and Methods). The phase mea-
sure does not presume a linear relation with time as does 
the phase shift ϕ in a sinusoid. Using the phase shift as a 
measure of phase would be problematic in extrapolating 
to later times, if the phase were nonlinear in time, as it is 
likely to be when there is cellular synchronization. The 
phase measure MC(t1,t0) is functionally independent of 
the period and amplitude derived from the periodogram 
or “power spectrum” [1]. This phase measure represents 
new information about a periodic process not embedded 
in the amplitude and period [1].

The four phase measures are useful in combination. 
For example, the use of the phase shift in combination 
with the phase in cycles allows an assessment of wheth-
er or not a periodic process x(t) is sinusoidal (Figure 
5). There is a generalization of the phase shift, namely 
the continuous Hilbert Phase FC(t) at time t = 0, which 
coincides with the phase shift, if the process x(t) were 
sinusoidal. This generalized phase shift is normally sub-
tracted from the phase because often synchronization ex-
periments are done to minimize this quantity – cells are 
started in a nearly synchronized state at the beginning of 
an experiment. Both the continuous phase FC(t) and phase 
MC(t1,t0) in cycles are smooth and provide information 
on when cellular oscillators synchronize (Figure 6). The 
original Hilbert Phase FH(t)  is also in some sense closer 
to the data and can be plotted on a circle (Figure 2, lower 
panel). Some scientists also feel more comfortable with a 



Caranica et al.: What is phase?178

Meas. 2016;37(11):1885.7. Caranica C, Al-Omari A, Deng Z, Griffith J, Nilsen R, Mao 
L, et al. Ensemble methods for stochastic networks with 
special reference to the biological clock of Neurospora 
crassa. PLoS One. 2018;13(5):e0196435.

8. Dong W, Tang X, Yu Y, Nilsen R, Kim R, Griffith J, et al. 
Systems biology of the clock in Neurospora crassa. PLoS 
One. 2008;3(8):e3105.

9. Deng Z, Arsenault S, Mao L, Arnold J. Measuring synchro-
nization of stochastic oscillators in biology. J. of Physics 
Conference Series, 29th Annual Workshop, 2016, Recent 
Developments in Computer Simulational Studies in Con-
densed Matter Physics, Athens, GA, 22-26 February, 2016. 
2016;750(29th Annual Workshop, 2016, Recent Devel-
opments in Computer Simulational Studies in Condensed 
Matter Physics, Athens, GA, 22-26 Feb, 2016):012001.

10. Judge M, Griffith J, Arnold J. Aging and the biological 
clock. Healthy Aging and Longevity. Circadian Rhythms 
and Their Impact on Aging; 2017. pp. 211–34.

11. Gabor D. Theory of communication. Part 1: The analysis of 
information. Electrical Engineers-Part III: Radio and Com-
munication Engineering. J Instrum. 1946;93(26):429–41.

12. Jeong B, Hong JH, Kim H, Choe HK, Kim K, Lee KJ. 
Multi-stability of circadian phase wave within early post-
natal suprachiasmatic nucleus. Sci Rep. 2016;6:21463.

13. Sisobhan S. Hilbert transform based time series analysis of 
the the circadian gene regulatory network. IET Syst Biol. 
2019: https://doi.org/10.1049/iet-syb.2018.5088.

14. Oprisan SA. A consisten definition of phase resetting using 
Hilbert Transform. Scholarly Research Notices. 2016;2017.

15. Bloomf﻿﻿ield P. Fourier analysis of time series : an introduc-
tion. New York: Wiley; 1976. xiii, 258 p. p.

16. Kreuz T, Mormann F, Andrzejak RG, Kraskov A, Lehnertz 
K, Grassberger P. Measuring synchronization in coupled 
model systems: A comparison of different approaches. 
Physica D. 2007;225(1):29–42.

17. Marple SL. Computing the discrete-time “Analytic” Signal 
via FFT. IEEE Transactions. 1999;47(9):2600–3.

18. Castro-Longoria E, Ferry M, Bartnicki-Garcia S, Hasty J, 
Brody S. Circadian rhythms in Neurospora crassa: dynam-
ics of the clock component frequency visualized using a 
fluorescent reporter. Fungal Genet Biol. 2010;47(4):332–
41.

19. Hille E. Analytic Function Theory. New York, New York: 
Chelsea Publishing Company; 1959.

20. Winfree AT. The Geometry of Biological Time. Springer 
Science & Business Media; 2001.

21. Deng Z. Single-cell analysis on the biological clock using 
microfluidic droplets. University of Georgia PhD Disserta-
tion. 2017.

22. Shinomoto S, Kuramoto Y. Phase Transitions in Active 
Rotator Systems. Prog Theor Phys. 1986;75(5):1105–10.

23. Huygens C. Horologium Oscillatorium sive de motu 
pendulorum, In: English translation by Richard J Blackwell 
(1986) TPCoGDCtMoPaAtC, Iowa State University Press, 
Ames, editor.: F. Muguet, Paris; 1673.

24. Oliveira HM, Melo LV. Huygens synchronization of two 
clocks. Sci Rep. 2015;5:11548.

25. Mojtaba Jafari T, Eero L, Tero H, Juho K, Jonas E, Mikko 
P, et al. A real-time approach for heart rate monitoring 
using a Hilbert transform in seismocardiograms. Physiol 


