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Abstract

Background: Electroencephalography can elucidate neurobiological mechanisms underlying 

heterogeneity in ASD. Studying the full range of children with ASD introduces methodological 

challenges stemming from participants’ difficulties tolerating the data collection process, leading 

to diminished EEGdataretentionandincreasedvariabilityin participant ‘state’ during the recording. 

Quantifying state will improve data collection methods and aide in interpreting results.

Objectives: Observationally quantify participant state during the EEG recording; examine its 

relationship to child characteristics, data retention and spectral power.

Methods: Participants included 5–11 year-old children with D (N=39) and age-matched TD 

children (N=16). Participants were acclimated to the EEG environment using behavioral strategies. 

EEG was recorded while participants watched a video of bubbles. Participant ‘state’ was rated 

using a Likert scale (Perceived State Rating: PSR).

Results: Participants with ASD had more elevated PSR than TD participants. Less EEG data 

were retained in participants with higher PSR scores, but this was not related to age or IQ. TD 

participants had higher alpha power compared with the ASD group. Within the ASD group, 

participants with high PSR had decreased frontal alpha power.
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Conclusions: Given supportive strategies, EEG data was collected from children with ASD 

across cognitive levels. Participant state influenced both EEG data retention and alpha spectral 

power. Alpha suppression is linked to attention and vigilance, suggesting that these participants 

were less ‘at rest’. This highlights the importance of considering state when conducting EEG 

studies with challenging participants, both to increase data retention rates and to quantify the 

influence of state on EEG variables.
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Introduction

Although defined by core features of impaired social communication and the presence of 

restricted and repetitive patterns of behavior, autism spectrum disorder (ASD) includes a 

wide range of clinical characteristics and developmental courses. This heterogeneity stems, 

in part, from the fact that a range of etiologies and neural mechanisms contribute to the ASD 

phenotype (Chahrour et al., 2016; De Rubeis & Buxbaum, 2015; Jeste & Geschwind, 2014; 

Masi, DeMayo, Glozier, & Guastella, 2017). As a measure of synchronized post-synaptic 

neuronal activity, electroencephalography (EEG) provides a method to quantify 

neurophysiological characteristics underlying neurodevelopmental disorders such as ASD 

(Mohammad-Rezazadeh, Frohlich, Loo, & Jeste, 2016). EEG measures of neural activity 

(such as resting state oscillations) can potentially serve as powerful stratification biomarkers, 

linking genetic and biological mechanisms to clinical characteristics (Jeste, Frohlich, & Loo, 

2015). Discovering sources of heterogeneity in ASD requires studying participants who 

represent the full range of the autism spectrum, including those with significant cognitive 

and/or language impairments (minimally verbal – MV) (McPartland, 2017). However, 

inclusion of this portion of the ASD population introduces methodological challenges rooted 

in participants’ inherent difficulties understanding and complying with the data collection 

process, potentially leading to increased variability in participant ‘state’ during the 

recording. These challenges can contribute to both diminished EEG data quality (signal to 

noise ratio) and alterations in the EEG variables of interest (such as spectral power) (Webb 

et al., 2013). In this study, we created an observational rating system to quantify participant 

state during the EEG recording, and we applied it to a large, heterogeneous group of 

children with ASD as well as age matched typically developing participants (TD). Our state 

rating captured overt behavioral signs of vigilance and agitation, such as verbal protest or 

pulling on the EEG net. We examined the impact of child characteristics (cognitive and 

language level) and state on EEG data retention, as well as the relationship between our 

observational measure of state and EEG alpha spectral power.

EEG Data Collection in Pre-Verbal Children

Spontaneous EEG (also described as resting-state) is recorded in the absence of an overt task 

or event-related stimuli and reflects aspects of baseline neural function. In addition to 

representing intrinsic neuronal activity, spontaneous EEG also includes modulations induced 

by unconstrained behavior or ‘state’ (Duncan & Northoff, 2013). In studies of adults and 

typically developing children, spontaneous EEG is often recorded in an eyes-closed 
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condition, in order to approximate a true “resting state” and ensure that the EEG variables 

reflect underlying neurobiological traits. In studies of infants and young children, it is not be 

feasible to collect data under eyes-closed conditions, due to the child’s inability to 

understand and follow such directions, so other methods must be employed to reduce the 

impact of state (Figure 1).

Studies of these populations use non-social visual stimuli such as bouncing soap bubbles or 

spinning colored balls (e.g. Muller, Kühn-Popp, Meinhardt, Sodian, & Paulus, 2015; Mundy, 

Card, & Fox, 2000; Marshall, Bar-Haim, & Fox, 2002), which facilitate testing by providing 

a consistent, non-stimulating framework for the recording session. Additionally, participants 

are generally seated on a caregiver’s lap or in an infant car seat, in order to limit their 

movements (DeBoer, Scott, & Nelson, 2007). Finally, data processing includes strategies for 

removing periods of the recording where the participant does not appear to be in a state of 

rest. For example, Orekhova and colleagues (Orekhova, Stroganova, Posikera & Elam, 2006) 

report removing periods of “overt emotional expression” from the recording before analysis. 

These data collection strategies serve the dual purpose of reducing inter-participant 

variability in state as well as the amount of artifact (e.g. muscle movement) in the data. 

While these data collection methods provide a foundation for studying older participants 

with disabilities, additional considerations are necessary.

Similar to studies of pre-verbal infants, studies of older children with disabilities have also 

successfully used passive visual stimuli to collect resting-state EEG data (e.g. Dawson, 

Klinger, Panagiotides, Lewy, & Castelloe, 1995; Tierney, Gabard-Durnam, Vogel-Farley, 

Tager-Flusberg, & Nelson, 2012). Reducing movement can prove more challenging in this 

population, compared to infants and toddlers, due to physical size and challenging 

behaviors. Some studies have reported the successful use of behavior modification and 

desensitization strategies in order to increase compliance with the testing procedures (e.g. 

Cantiani et al., 2016; Roesler et al., 2013; Tager-Flusberg et al., 2016). Identifying periods of 

“non-rest” based on participant affect for removal from the dataset presents unique 

challenges. The high comorbidity of anxiety with ASD (van Steensel, Bögels, & Perrin, 

2011; Vasa & Mazurek, 2015) and sensory sensitivities (Baum, Stevenson, & Wallace, 2015; 

Neil, Olsson, & Pellicano, 2016) may result in participants being more likely to experience 

agitation during the recording than typically developing toddlers, but due to increased 

exposure to intensive intervention this may manifest as relatively subtle signs of state 

differences (e.g. repeatedly touching the net, frequently turning to look at the experimenter). 

Finally, when studying the MV portion of the ASD population, any comparison group will 

likely have a better understanding of the testing situation. Thus discomfort with the EEG 

recording may systematically differ between groups, necessitating careful consideration.

Resting State EEG in ASD

Several studies have sought to quantify resting state EEG in children with ASD, with the 

primary goal of identifying patterns that might discriminate ASD from typically developing 

children. In a recent review, Wang and colleagues (Wang et al., 2013) compiled data from 14 

studies of EEG in ASD and identified a possible “U shaped” profile of EEG power 

alterations, with excess power displayed in low and high frequency bands and reduced 
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power in mid frequency bands compared to typically developing (TD) individuals. The 

resting state paradigms varied across studies, including eyes open, eyes closed and passive 

visual stimuli. The majority of studies included only individuals with IQ’s in the normal 

range, making it difficult to determine the effect of cognitive and language ability on EEG 

data retention (Table 1). This is a crucial issue, given that discovering clinically relevant 

stratification biomarkers in this heterogeneous population necessitates research with a wide 

range of participants.

One relatively consistent finding across studies was altered (primarily decreased) alpha band 

power in children with ASD compared with TD individuals. As an index of cortical 

inhibition (Mo, Liu, Huang, & Ding, 2013), alpha power likely reflects inhibitory top-down 

control (Klimesch, Sauseng, & Hanslmayr, 2007). Additionally, the alpha rhythm is thought 

to play an active role in the timing of cortical processes (Klimesch, 2012), as well as 

communication within and between brain regions (Edgar et al., 2015). Alpha oscillations 

show a well-defined developmental profile associated with cognitive competence, as the 

oscillations provide an infrastructure for neural communication between increasingly 

distributed brain regions (Fries, 2005; Klimesch et al., 2007). Recent research found that 

peak alpha power was associated with cognitive ability (rather than chronological age) in a 

heterogeneous sample of children with ASD (Dickinson, DiStefano, Senturk, & Jeste, 2017), 

suggesting that it may be a good candidate for a stratification biomarker. Alpha power is also 

strongly modulated by both cognitive and affective states. Alpha oscillations are dominant at 

rest (particularly in the eyes-closed condition) and during states of emotion regulation 

(Dennis & Solomon, 2010; Tortella-Feliu et al., 2014). Alpha attenuation occurs during tasks 

requiring attention, vigilance and memory (Edgar et al., 2015; Klimesch, 1999). Given its 

relationship to cognitive and emotional states, alpha power may be especially sensitive to the 

child’s state during the EEG recording, thus limiting the interpretability of group 

differences. Careful characterization of participant state during the EEG recording will 

strengthen the conclusions that can be drawn.

In this study, we sought to quantify and examine state during the EEG recording in a 

heterogeneous group of children with ASD, through the development of a Likert Scale 

called the Perceived State Rating (PSR), and to compare the PSR in ASD to that of an age-

matched group of TD children. We then asked whether child characteristics (age, IQ, 

language, diagnosis) and/or state during the recording affected EEG data quality (percent of 

data retained). Finally, we examined how state related to alpha spectral power, given its 

documented relationship with attention and emotion regulation. We hypothesized that as a 

group, children with ASD would demonstrate a more agitated state (higher PSR) during the 

EEG recording than TD children, and that state would be significantly related to data quality. 

Within the ASD group, we hypothesized that neither state nor data retention would be 

related to cognitive or language ability, given the use of supportive behavioral strategies 

(Figure 1). We also hypothesized that children with higher levels of agitation during the 

EEG recording session would show reduced alpha spectral power.
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Methods

Participants

Data for this analysis were drawn from participants enrolled in ongoing studies at a large, 

university autism research center. Inclusion criteria included chronological age between 5–

11 years and a primary clinical diagnosis of ASD (ASD group) or no neurodevelopmental 

diagnosis (TD group). Exclusionary criteria included other neurological abnormalities 

(including active epilepsy), birth-related complications and uncorrected vision or hearing 

impairment. Additional exclusionary criteria for the TD group included history of 

developmental delays, need for special services in school, diagnosis of psychiatric 

conditions, or a first-degree relative with an ASD diagnosis. All ASD participants had a 

prior clinical diagnosis of ASD, made through the California State Regional Center, 

independent clinical psychologists, child psychiatrist, and/or developmental pediatricians. 

Diagnosis was confirmed by the research team using the Autism Diagnostic Observation 

Schedule (ADOS) and Social Communication Questionnaire (described in the 

“Assessments” section below). All components of this study were approved by the 

University of California, Los Angeles Institutional eview Board. Informed consent was 

collected from parents of all participants. hild assent was collected from children who had 

sufficient language and cognitive abilities to understand the study procedures.

A total of 39 children with ASD and 16 TD children (age-matched) were included in this 

study. Of these, 34 children with ASD (Male = 28) and 16 TD children (Male = 12) provided 

sufficient EEG data to be included in analyses. The remaining 5 ASD participants were 

unable to complete the EEG recording due to behavioral dysregulation. The ASD group 

included children across a wide range of cognitive and language levels. Groups did not 

significantly differ on chronological age (t=0.96, p=0.35). The ASD group had a 

significantly lower verbal IQ (t=7.09, p<.001) and non-verbal IQ (t=5.16, p<.001).

Assessments

Cognitive and language assessments varied based on the ability and age of the child. 

Assessments included the Mullen Scales of Early Learning (MSEL; Mullen, 1995), 

Differential Abilities Scale-Second Edition (DAS-II; Elliot, 2007), and the Wechsler 

Preschool and Primary Scale of Intelligence-Third Edition (WPPSI-III; Wechsler, 2002). 

From these measures, ratio scores for full scale IQ (FSIQ), non-verbal IQ (NVIQ) and verbal 

IQ (VIQ) were calculated for each child and based on the age-equivalent score and 

chronological age. Ratio scores were used to account for the scores of children who 

performed outside of the standardized norms for their chronological age. For children who 

were tested with the WPPSI-III or DAS-II, NVIQ and VIQ were calculated from the 

protocol-specific sub-scores. For children who were administered the MSEL, VIQ was 

calculated using the average of the Receptive Language and Expressive Language subscale 

scores, and NVIQ was calculated using the average of the Visual Reception and Fine Motor 

subscale scores (Akshoomoff, 2006). Several studies have demonstrated the convergent 

validity of the WPPSI-III with other cognitive assessments such as the MSEL and the DAS-

II, supporting the combination of assessments through standard scores (Bishop, Guthrie, 

Coffing, & Lord, 2011).
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Perceived State Rating (PSR)

We developed a 5-point Likert scale to quantify the state of the participant during the EEG 

recording (Table 3), based on behavioral observation during the testing 

session.scoreof1indicatesthatthe participant appeared consistently calm and relaxed 

throughout the recording. Higher scores correspond to increasing levels of agitation, with a 

score of 5 indicating that a participant displayed a high level of agitation throughout the 

EEG recording. Similar Likert scale ratings have been developed to quantify pain in non-

verbal children (Solodiuk & Curley, 2003), anxiety during dental visits (Venham, Gaulin-

Kremer, Muster, Bengston-Audia, & Cohan, 1980) and agitation in elderly patients (Finkel, 

Lyons, & Anderson, 2015). Perceived state ratings (PSR) were drafted by a postdoctoral 

fellow (CD) and a research assistant (EB) experienced in collecting EEG data in children 

with ASD. Behavioral anchors were written to describe the range of behaviors observed 

during the EEG session. Ratings were then pilot tested by having additional staff rate sample 

videos of EEG sessions. Scores were discussed until consensus was reached, and revisions 

were made where necessary to clarify ratings. Once the rating system was finalized, 

undergraduate volunteers blind to participant diagnosis were then trained in the PSR and 

completed the ratings by watching a video of the EEG recording session. The rater watched 

the two-minute EEG recording and then assigned the PSR rating that best reflected the full 

segment. 20% of the sessions were rated by a second rater, and inter-rater reliability was 

calculated as percent agreement in ratings across the double coded sessions. Inter-rater 

reliability was 87%.

EEG Procedure

Behavioral strategies were used to acclimate participants to the testing environment, 

including modeling, incremental practice and positive reinforcement. Similar strategies have 

been described in previous EEG studies of children with ASD (Jeste et al., 2015b; Tager-

Flusberg et al., 2016; Webb et al., 2015). Prior to the day of testing, parents of participants 

were interviewed regarding their child’s preferences and interests so that the testing 

environment could be made as comfortable as possible with the child’s preferred reinforcers 

available (e.g. a favorite snack). Pictures of a child undergoing EEG testing were also sent 

ahead of the session for parents to review with their child. On the day of testing, the 

following steps were followed:

1. Initial acclimation. Participants were free to explore the testing environment, 

while interacting with the examiner. A favorite movie was played on the testing 

monitor during this time and participants were given preferred reinforcers in the 

testing room. This step is crucial for building rapport between the child and 

experimenter, as well as reducing any anxiety to the testing environment.

2. Netting.Children were first shown a training EEG net, which mimics the 

tightness and feel of the actual EEG net, with plastic pedestals replacing the 

sensors. The parent or experimenter modeled putting it on, and the training net 

was then incrementally placed on the child’s head, with reinforcement and praise 

after each step. After the child successfully wore the training net, the process was 

repeated with the actual EEG net. Throughout the netting process (including 
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adding electrolyte solution to sponges and final adjustments), the child watched a 

favorite move and received frequent reinforcement and praise.

3. Recording. During the EEG recording, an experimenter remained with the child 

to provide behavioral support (verbal and physical re-direction). The parent was 

given the option to sit with the child or remain behind the curtain. Many parents 

reported that their child would be distracted by their presence and so opted to 

stay out of view. Reinforcers were not available during the recording. However, 

if the child became agitated, the recording could be paused so that the child 

could briefly have a favorite snack or toy before continuing.

EEG Acquisition and Processing

Two minutes of resting G was recorded while children watched a video of bouncing soap 

bubbles in a dark, sound-attenuated room. The full EEG recording session lasted 10–15 

minutes. video time-locked to the EEG was acquired in order to assist in subsequent data 

processing and was also used for PSR coding.

EEG data were recorded using a 128-channel HydroCel Geodesic Sensor Net (Electrical 

Geodesics Inc., Eugene, OR). To improve each child’s comfort, four of the electrodes, 

channels 125–128 had been removed from the net. These electrodes were originally located 

below and lateral to the eyes. Placement of electrodes conformed to the International 10–20 

System (Jasper, 1958). A combination of a Net Amps 300 amplifier and Net Station 4.4.5 

software on a Macintosh Pro PC was used to record the EEG. The high impedance nature of 

this system allows us to accurately record a child’s EEG while keeping impedances below 

100 KΩ (Ferree, Luu, Russell, & Tucker, 2001). The EEG was sampled at 500 Hz. Data 

were referenced online to a vertical reference in a location equivalent to Cz.

All offline data processing and analyses were performed using EEGLAB (Delorme & 

Makeig, 2004), and MATLAB scripts. Data were high pass filtered to remove frequencies 

below 1Hz, and low pass filtered to remove frequencies above 120Hz, using a finite impulse 

response filter, as implemented in EEGLAB. Continuous data were then visually inspected, 

and any channels which were noisy throughout the recording were removed (e.g. periods of 

extremely high amplitude, characteristics artefactual activity such as 60Hz). Following 

channel removal, data were re-referenced to an average reference and interpolated to the 

international 10–20 system 25 channel montage. Data were again visually inspected for 

sections of data that showed electromyogram artifacts, and these sections were removed 

from the recording. EEG data retention was calculated as the length of the EEG recording 

following artifacts removal, divided by the length of the original recording for each 

participant. The experimenter was blinded to participant details throughout the data cleaning 

process.

Spectral Power Analysis

Four channels (F3, F4, O1 and O2) were selected for spectral power analysis, with each 

channel representing a distinct area of interest (left and right, frontal and occipital areas, 

respectively). Welch’s method, using 2 second Hamming windows with 50% overlap, was 

used to compute spectral power. This method resulted in power spectrums with 
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approximately 0.5Hz frequency resolution for each of the four channels. Due to the 

influence of many non-neural anatomical factors on absolute power values (Nunez & 

Srinivasan, 2006), relative power values were instead used in all analyses in order to 

facilitate between-participant comparison of spontaneous EEG power. Relative spontaneous 

power was calculated by determining the proportion of total spectral power (1–55Hz) 

accounted for by each given frequency in the power spectrum of every channel. Relative 

power values were then summed for frequencies falling within the alpha range (8–12Hz).

Statistical Analysis

Perceived state ratings (PSR).—Due to the skewed distribution and low frequency of 

scores above 2, PSR scores were collapsed into two groups for analysis: low (rating = 1) and 

high (rating 2–5) groups. The frequency of high and low PSR scores were compared across 

groups using Fischer’s exact test, in order to account for the low expected cell frequency of 

high PSR.

EEG data retention.—Separate analyses were carried out for each group. Pearson’s 

correlations were used to test the relationships between EEG data retention (seconds 

remaining after artifact rejection/total seconds of recording x 100) and child characteristics 

(age, VIQ, NVIQ). T-tests were used to compare data retention between 

highandlowPSRgroups.

Spectral power.—Repeated measures ANOVA was used to compare spectral power in the 

alpha band, with group as the between subjects factor, hemisphere and region as within 

subjects factors. T-tests were used to compare regional alpha power between high and low 

PSR groups.

Results

EEG Data Retention

minimum of 2 minutes of resting EEG data were collected from 34 participants with ASD 

and 16 TD participants (87% of ASD participants, 100% of TD participants). An additional 

5 ASD participants enrolled in the study but were unable to complete the EEG recording 

session, due to behavioral dysregulation. Figure 3 shows data retention rates by group. T-test 

results indicated that significantly more data were retained in the TD group (t=4.86, 

p<0.001, d=1.3). Additionally, significantly more channels were retained in the TD group 

compared with the ASD group (TD M(SD)=108(5.8), ASD M(SD)=97(10.9), t=4.82, p<.

001, d=1.3).

Perceived State Rating

100% of participants in the TD group and 67% participants with ASD received a PSR score 

of 1. Given the skewed distribution of scores and the low frequency of scores above 2, PSR 

scores were collapsed into two groups for analysis: low (rating = 1) and high (rating 2–5) 

groups. Fisher’s exact test was used to compare R scores (high vs. low) between groups. 

Participants with ASD were significantly more likely to have PSR scores above 1 than TD 

participants (p=0.002). Figure 4 displays the distribution of PSR scores in the ASD group. T-
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tests were used to compare child characteristics between high and low PSR groups in the 

ASD group. Chronological age (t=0.46, p=0.65), NVIQ (t=1.84, p=0.08) and VIQ (t=2.10, 

p=.06) did not differ between high and low PSR groups, although there was a trend towards 

lower VIQ in the high PSR group. Spearman correlations indicated that PSR as rank-ordered 

variable (1–5) was also not significantly associated with age or IQ (verbal, non-verbal and 

full scale), consistent with the PSR group comparisons. Because all TD children had at PSR 

score of 1, it was not possible to compare the characteristics of TD children across PSR 

groups.

Factors Relating to EEG Data Retention

Pearson correlations were used to examine the relationships between percentage of data 

retained and child characteristics (chronological age, VIQ and NVIQ). To correct for 

multiple comparisons, p-values below 0.01 were considered significant. In both TD and 

ASD groups, percentage of data retained was not related to chronological age, VIQ or NVIQ 

(Tables 4, 5). Figure 5 displays EEG data retention by full-scale IQ in the ASD group. In the 

ASD group, significantly less data were retained in children with high PSR scores compared 

to those with low PSR scores (t=3.22, p=0.003, d=1.1).

Spectral Power

Repeated measures ANOVA was used to compare relative spectral power in the alpha band, 

with group (TD, ASD) as the between-subjects factor, and hemisphere (left, right) and 

region (frontal, occipital) as within-subjects factors. There was a main effect of region 

(F=33.40, p<0.001) on alpha band power, and a main effect of group (F=8.76, p=0.005). 

However, there was no main effect of hemisphere (F=0.74, p=.39) and no significant 

interactions (p-values 0.23–0.70). lpha power was therefore collapsed across hemispheres 

for the remaining analyses, resulting in two regions (frontal and occipital). Children in the 

TD group had significantly higher alpha power in both regions compared with children in 

the ASD group (Frontal t=3.41, p=0.003, d=1; Occipital t=2.37, p=0.02, d=0.7). In both 

groups, alpha power was higher in the occipital region compared with frontal (TD t=−2.16, 

p=0.04, d=0.2; ASD t=−3.05, p=0.01, d=0.4). Within the TD group, chronological age was 

associated with both frontal (r=0.82, p<0.001) and occipital alpha power (r=0.62, p=0.01). 

This association was not present in the ASD group (p-values 0.4–0.8). In the ASD group, 

there was a significant association between frontal alpha power and NVIQ (r=0.45, p=.01). 

There was no relationship between NVIQ and occipital alpha power, or VIQ and alpha 

power.

T-tests were used to compare regional alpha power between high and low PSR groups in 

ASD participants. Participants in the low PSR group had higher frontal alpha power 

compared to those in the high PSR group (t=2.49, p=0.02, d=0.6). Occipital alpha power did 

not differ between those in the high and low PSR groups (t=0.08, p=0.94). PSR as a rank-

ordered variable (1–5) was significantly negatively associated with frontal alpha power 

(rho=−0.4, p=.02) but not occipital (rho=−0.02, p=.9), consistent with the results of the PSR 

group comparisons. Figure 7 displays regional alpha power in ASD (divided by PSR group) 

and TD participants.
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Discussion

In this study, we developed an observational rating system to quantify participant state 

during the EEG recording. Our rating system captured overt behavioral signs of vigilance or 

agitation displayed by participants. We then examined factors relating to EEG data retention 

in a cohort of school-age children with ASD across a wide range of language and cognitive 

levels, and we compared them to age matched TD children. Supportive behavioral strategies 

were used to maximize participants’ ability to complete the research protocol. We 

investigated how both state and child characteristics influenced EEG data retention, as well 

as how state and child characteristics related to each other. Finally, we examined the 

relationship between state during the EEG recording and alpha spectral power. Our study has 

three main findings: 1) Overall, children with ASD were more likely to have elevated (more 

agitated) state ratings compared to TD children, 2) EEG data retention was related to state 

during the recording (as measured by PSR), but not to age or IQ, and 3) Alpha power was 

reduced in children with ASD compared to TD children, with the greatest reduction in 

power occurring in the children who had elevated state ratings.

Given appropriate preparation and supportive strategies, EEG data were successfully 

collected in 87% of participants with ASD, including children with significant cognitive and 

language impairments. Although less data were retained in the ASD group as a whole, 

within the ASD group, age and IQ were not related to the percentage of EEG data retained. 

Instead, the percentage of EEG data retained related only to the child’s state during the 

recording. Although not significant, there was a trend for children with lower VIQ to 

demonstrate more agitation during the EEG session, suggesting that while verbal ability was 

not directly related to data retention in our sample, it may nonetheless be a relevant factor. 

This may be due to the fact that children with more limited language have a difficult time 

understanding the testing environment, and are less able to express their feelings. 

Specialized behavioral strategies, such as the use of visual supports and social stories, are 

likely especially important for this subgroup of the population. Given the increasing interest 

in using EEG to study neurophysiological profiles in minimally verbal children with ASD, 

these encouraging results suggest that, with supportive behavioral strategies, most children 

with ASD can successfully complete a research protocol regardless of verbal ability.

In addition to an association with EEG data retention, we demonstrate that state during the 

EEG recording was inversely related to relative alpha power, with greater levels of perceived 

agitation and vigilance corresponding to reduced alpha power. Within the ASD group, 

frontal alpha power was also associated with non-verbal IQ. However, given that NVIQ did 

not differ based on state rating, this association cannot account for the reduced alpha power 

observed in participants with increased agitation. Alpha suppression has been consistently 

linked to attention and vigilance (Boiten, Sergeant, & Geuze, 1992; Klimesch, 1999), 

suggesting that our finding of reduced alpha power in children with an elevated state rating 

may reflect that these participants were less “at rest” during the EEG recording. 

Additionally, frontal alpha power has been related to emotional regulation, with higher 

power associated with more effective emotion regulation (Dennis & Solomon, 2010). Given 

that many individuals with ASD have difficulty with emotion regulation (Berkovits, 2016), 

the relationship between alpha power and level of agitation observed in our study may index 
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the capacity to self-regulate in the face of the specific demands of the EEG testing 

environment.

It is important to note that alpha power significantly differed between ASD and TD groups 

even when children with an elevated state rating were removed from the analysis, indicating 

that state did not exclusively drive the difference observed between ASD and TD groups. 

Researchers have consistently measured spontaneous alpha as a putative biomarker of 

healthy brain development, reflecting thalamo-cortical connectivity (Foxe & Snyder, 2011), 

and regulating the temporal structure of many basic cognitive processes (Klimesch, 2012). 

By quantifying and controlling for the potential confound of state during the recording, we 

can present a more compelling argument that the group differences in spontaneous alpha 

reported here do in fact reflect differences in basic neurophysiology.

There is rapidly growing interest in discovering clinical relevant biomarkers in 

neurodevelopmentaldisorderssuchas ASD, both for the purpose of stratifying participants 

and for detecting treatment effects. Projects such as European Autism Interventions – 

Multicentre Study for Developing New Medications (EU-AIMS), and the Autism 

Biomarkers Consortium for Clinical Trials (ABC-CT) are large-scale multi-site studies 

which seek to develop reliable and objective measures of social function and communication 

in people with ASD, laying the foundation for future clinical trials (Loth et al., 2017; 

McPartland et al., 2018). Along with careful clinical characterization and behavioral 

measures, these studies collect data on a wide variety of potential biomarkers (including eye 

tracking, EEG and brain imaging methodologies) in children with ASD, in order to identify 

clinical and biological meaningful subgroups and to inform treatment research. Despite 

standardization of data collection procedures across sites and across time points, there is the 

potential for variability in state both across participants, and across time within the same 

participant. For example, participants may become less anxious with repeated visits, 

affecting biomarker measurements. Good biomarker candidates are those that are either 

robust to variations in behavior during biomarker acquisition, or have a measurable and 

consistent relationship with confounding factors (McPartland, 2017). Observational 

characterization of state during biomarker acquisition will contribute towards this goal by 

elucidating the relationship between variations in participant state and the biomarker of 

interest.

Limitations and Future Directions

Although we observed a range of participant states during the EEG recording, most 

participants showed minimal levels agitation. This low rate of agitation reflects the 

effectiveness of our supportive behavioral strategies to prepare participants. Because 

participants were enrolled in ongoing studies, these strategies could not be altered to capture 

a more representative range of state. dditionally, we used a consistent set of behavioral 

strategies with all participants. Although this ensures a uniform testing situation, it precludes 

the possibility of ascertaining whether certain strategies differ in their effect on data 

retention and EEG variables. Further research, in which behavioral strategies are 

systematically manipulated, is needed to evaluate the effects of specific preparation and 

practice strategies on the participant’s state during the recording. This research will also 
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provide information on which strategies best match different participant needs. For example, 

participants with limited language may especially benefit from the use of visual supports, 

while participants with high levels of anxiety and sensory sensitivities may benefit more 

from incremental practice. Such research will facilitate the development of consistent 

strategies and protocols for recording EEG in challenging populations.

Within the ASD group, we found differences in alpha power between high and low PSR 

groups. However, high and low PSR groups also differed in terms of the amount of data 

retained. It is therefore possible that reduced data retention moderates the observed 

relationship between state and alpha power. We attempted to reduce the possibility of this 

confound by including only participants with at least 30 seconds of clean data, a threshold 

which should yield a stable estimate of spectral power. Additionally, we found that high and 

low PSR groups differed in frontal alpha power, but not occipital. If the group difference 

were an artifact of differences in data retention, we would expect all regions to be affected 

equally.

Our measure of state was based on observation of the child’s behavior during the EEG 

session. Although a high level of inter-rater reliability was demonstrated for PSR scores, 

inclusion of a physiological marker of state (such as heart rate or galvanic skin response) 

would further strengthen the validity of these ratings. Additionally, such physiological 

measures may detect variability in state that cannot be captured by an observational rating 

system. Future research incorporating such physiological measures can provide additional 

detailed information about the relationship between participant state, EEG data retention and 

outcome variables.

Finally, it is important to note that to some degree, state can be a function of developmental 

traits, and therefore cannot be fully disentangled. For example, children with ASD who have 

increased sensory sensitivities may show increased arousal during the EEG recording, in 

which case variation in state is indexing an underlying behavioral trait. Although state was 

not associated with child characteristics in this sample, further research that includes 

measures of additional characteristics such as sensory sensitivity, repetitive behavior or 

anxiety can further clarity the extent to which observed state differences may reflect 

underlying developmental traits.

Implications

EEG has the potential to serve as a powerful biomarker in neurodevelopmental disorders 

such as ASD by elucidating neurobiological mechanisms (such as excitation/inhibition 

imbalance and disrupted network formation) that may underlie and even precede the 

variability observed in clinical characteristics. Given that 30% of the ASD population 

remains minimally verbal, it is crucial that research investigating neurobiological 

mechanism include these participants, as they may represent unique genetic and 

neurobiological etiologies.

In this study, we documented that language and cognitive impairment were not significant 

factors influencing the success of EEG data collection, while state during the recording was 

significantly related to data retention. Given that cognitive and affective states can also 
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influence EEG variables of interest (as in the case of alpha spectral power), consistent use of 

specialized behavioral strategies to increase participant success in the testing environment, 

coupled with characterization of the participant’s state during the EEG recording itself will 

strengthen the quality of the information gathered and the conclusions that can be drawn 

from this line of research.
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Highlights

• In children with ASD, ‘state’ during the EEG recording influences the amount 

of EEG data retained.

• Children showing a more agitated state had reduced alpha spectral power, 

suggesting that they were less “at rest”.

• Amount of EEG data retained was not related to language or cognitive ability.
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Figure 1: Conceptual outline of factors contributing to the EEG signal
Caption: As a measure of synchronized, post-synaptic neural activity, EEG is a method to 

assay neural mechanisms, which are thought to serve as intermediary between biological 

processes and observed behavioral characteristics. In order for the EEG signal to be 

interpretable, there needs to be a sufficient signal-to-noise ratio. Several studies have 

outlined specialized behavioral strategies suitable for acclimating participants to the EEG 

environment and therefor increasing successful EEG data acquisition. Participant ‘state’ 

during the EEG recording has the potential to contribute to the EEG signal as well, serving 

as a confound when drawing conclusions about underlying neurobiological traits. Although 

state may also be modulated through the use of behavioral strategies, measuring state during 

the recording is necessary in order to understand its relationship to data quality and 

contribution to the observed EEG signal.
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Figure 2: Histograms of verbal and non-verbal IQ scores in the ASD group
Caption: Histograms demonstrating the range of verbal and non-verbal IQ scores in the SD 

group. The ASD group included participants with a wide variety of verbal and non-verbal 

cognitive abilities.
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Figure 3: Percentage of EEG data retained by group
Caption: Scatterplot showing the percentage of EEG data retained (seconds remaining after 

artifact rejection/total seconds of recording x 100) by group (TD, ASD). Significantly more 

data was retained in the TD group (t=4.86, p<0.001). Additionally, there was more 

variability present in the ASD group.
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Figure 4: Frequency of Perceived State Ratings in the ASD group
Caption: Bar graph showing the frequency of Perceived State Ratings in the ASD group. 

PSR 1 indicates that the child showed no or very minimal signs of agitation during the 

recording. Higher ratings correspond to increasing levels of agitation. 67% of participants in 

the ASD group were rated as having a PSR of 1.
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Figure 5: Relationship between EEG data retention and IQ in the ASD group
Caption: Scatter plot showing EEG data retention (percent of data retained after artifact 

rejection) by IQ score in the ASD group. EEG data retention was not significantly related to 

IQ in the ASD group, after correcting for multiple comparisons (r=0.39, p=0.03).
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Figure 6: Power spectral density plots by region and group
Caption: Average relative power spectral density for ASD group (red), and TD group (blue), 

shown for frontal and occipital regions with the alpha band highlighted. Children in the TD 

group had significantly higher alpha power in both regions compared with children in the 

ASD group (Frontal t=3.41, p=0.003, d=1; Occipital t=2.37, p=0.02, d=0.7).
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Figure 7: Relative alpha spectral power by region and group
Caption: Bar graph showing relative alpha spectral power in frontal and occipital regions, in 

the TD group, ASD group with low PSR scores and ASD group with high PSR scores. 

Children in the TD group had significantly higher alpha power in both regions compared to 

children with ASD (regardless of PSR score; p-values 0.003–0.036). Within the ASD group, 

participants in the low PSR group had higher frontal alpha power compared to those in the 

high PSR group (t=2.49, p=0.02). Occipital alpha power did not differ between those in the 

high and low PSR groups (t=0.08, p=0.94).
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Table 1:

Resting State Paradigms Used in EEG Studies of ASD

Study Resting State Paradigm Participant Characteristics

N Age (years)
M(SD)

IQ
M(SD)

Barttfeld et al., 2011 Eyes closed 10 23.8(7.6) 101(15)

(Burnette et al., 2011) Eyes open and eyes closed
(averaged)

35 12.2(.2) 105(15)

(Cantor, Thatcher,Hrybyk, & Kaye, 1986) Eyes open 9 7.9(2) 37(11)

(Chan, Sze, & Cheung,2007) Eyes open, visual stimuli (fish
swimming animation on a
monitor)

66 9.7(3) 83(22)

(Coben, Clarke,Hudspeth, & Barry,2008) Eyes closed 20 8.9(2.3) 93(17)

(Daoust, Limoges,Bolduc, Mottron, &Godbout, 2004) Eyes closed, in bed prior to sleep
EEG

10 22.2(4) >80

(Dawson et al., 1995) Live bubbles being blown 28 11(4) 60(24)

(Duffy & Als, 2012) “Awake and alert” (no other
information)

463 Range 1–18 Not reported

(Lazarev, Pontes, &deAzevedo, 2009) Eyes closed 14 9.7(2.3) 91(28)

(Murias, Webb,Greenson, & Dawson,2007) Eyes closed 18 22.7(4.4) 107(14)

(Orekhova et al., 2007) Visual stimuli (bubbles/fish
swimming animation on a
monitor)

20 5.7(1.4) “% mental
delay”
20(24)

20 4.6(1.1) 27(19)

(Pop-Jordanova,Zorcec, Demerdzieva,& Gucev, 2010) Eyes open, eyes closed 9 4.9(1.4) Not reported

(Stroganova et al.,2007) Visual stimuli (bubbles and fish
swimming animations on a
monitor)

20 5.7(1.4) “% mental
delay”
20(24)

20 4.6(1.1) 27(19)

(Sutton et al., 2005) Eyes open and eyes closed
(averaged)

23 11.4(1.5) 110(21)
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Table 2:

Participant Characteristics

Age (months) VIQ NVIQ

Group M(SD) Range M(SD) Range M(SD) Range

TD 90.60(21.01) 59–126 116.81(16.22) 95–146 113.25(16.18) 88–141

ASD 84.39(20.86) 55–126 55.05(32.79) 12–137 69.37(31.88) 20–145
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Table 3:

Perceived State Rating

Score Characteristics

1 -Content/happy for over 90% of session
-No verbal/non-verbal protests
-Attentive

2 -Mildly annoyed during 10–30% of session
-Brief verbal/non-verbal protests
-May briefly touch net in irritation
-Easily re-directed

3 -Agitated for 30–50% of the session
-Periodic verbal/non-verbal protests with long periods of calm in between
-May touch net in irritation
-Can eventually be redirected

4 -Consistently agitated for 50–70% of the session
-Repeatedly touches/pulls at net in irritation
Frequent verbal/non-verbal protests
-Difficult to redirect

5 -Agitated for over 70% of the session
-Frequently attempts to remove net
-Continual verbal/non-verbal protests without any sustained periods of calm
-Not able to fully re-direct
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Table 4:

Correlations between Data Retention and Child Characteristics – TD Group

1 2 3

1. Age —

2. VIQ 0.43 —

3. NVIQ −0.48 0.29 —

4. Percent Data Retained 0.27 −0.26 −0.15
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Table 5:

Correlations between Data Retention and Child Characteristics – ASD Groups

1 2 3

1. Age —

2. VIQ 0.41 —

3. NVIQ −0.32 0.80** —

4. Percent Data Retained 0.17 0.43 0.29

**
p<.01

Res Autism Spectr Disord. Author manuscript; available in PMC 2020 January 01.


	Abstract
	Introduction
	EEG Data Collection in Pre-Verbal Children
	Resting State EEG in ASD

	Methods
	Participants
	Assessments
	Perceived State Rating (PSR)
	EEG Procedure
	EEG Acquisition and Processing
	Spectral Power Analysis
	Statistical Analysis
	Perceived state ratings (PSR).
	EEG data retention.
	Spectral power.


	Results
	EEG Data Retention
	Perceived State Rating
	Factors Relating to EEG Data Retention
	Spectral Power

	Discussion
	Limitations and Future Directions
	Implications

	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Figure 7:
	Table 1:
	Table 2:
	Table 3:
	Table 4:
	Table 5:

