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Abstract

Myocardial infarct (MI) related indices determined by late gadolinium enhancement (LGE) MRI 

have been widely investigated in determining patients suitable for implantable cardiovascular-

defibrillator (ICD) therapy to complement left ventricular ejection fraction (LV EF). In comparison 

to LGE-MRI using inversion-recovery fast-gradient-echo (IR-FGRE), T1 mapping techniques, 

such as multi contrast late enhancement (MCLE), have been shown to provide more quantitative 

and reproducible estimates of infarct regions. The objective of this study is to use individualized 

heart computer models in determining the efficacy of IR-FGRE and MCLE techniques in 

predicting the occurrence of post-MI ventricular tachycardia (VT). Twenty-seven patients with MI 

underwent LGE-MRI using IR-FGRE and MCLE prior to ICD implantation and were followed up 

for 6–46 months. Individualized image-based computational models were built separately for each 

imaging technique; simulations of propensity to VT were conducted with each model. The 

imaging methods were evaluated by comparing simulated inducibility of VT to clinical outcome 

(appropriate ICD therapy) in patients. Twelve patients had at least one appropriate ICD therapy for 

VT at follow-up. For both MCLE and IR-FGRE, the outcomes of the simulations of VT were 

significantly associated with the events of appropriate ICD therapy. This indicates that, as 

compared to conventional measurements such as LV EF, the simulations of VT corresponding to 

both MCLE and IR-FGRE were more sensitive in predicting appropriate ICD therapy in post-MI 

patients.
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1. Introduction

Regions of the myocardium may lose viability due to sustained tissue ischemia as a 

manifestation of coronary artery disease, resulting in myocardial infarction (MI). Infarct 

regions and surrounding tissue may act as a substrate for post-MI ventricular tachycardia 

(VT) and fibrillation (VF) (Fishman et al 2010), which may eventually lead to sudden 

cardiac death (SCD). In particular, electrical conduction in the heart through the infarcted 

regions may lead to anatomically defined re-entry circuits causing VT (Brunckhorst et al 
2003). For individuals at high risk for SCD, prophylactic insertion of implantable 

cardioverter defibrillators (ICDs) decreases mortality. Among the non-invasive techniques 

developed to identify patients with chronic MI at risk for SCD, left ventricular ejection 

fraction (LV EF), below 35%, remains the primary deciding factor for ICD implantation 

(Moss et al 2002). However, many primary prevention patients with low LV EF may not 

benefit from ICD implantation, as previous studies have shown that only 20% of the patients 

out of the study cohort have received ICD shocks for rapid VT and VF at an average annual 

rate of 7.5% (Bardy et al 2005, Fishman et al 2010). Thus, recent research has focused on 

developing alternative non-invasive risk stratification strategies based on the direct 

measurement of infarct mass or volume (Goldberger et al 2014).

Magnetic resonance imaging (MRI) has superior soft tissue contrast and has been 

established as one of the key modalities to detect abnormalities in the structure and function 

of the post infarct heart (Wu et al 2008, Wu 2017). Previous studies using late gadolinium 

enhanced cardiac MR (LGE-CMR) imaging using inversion-recovery fast-gradient-echo 

(IR-FGRE) sequence have demonstrated that both the infarct core (IC) and the surrounding 

semi-viable tissue, also termed ‘border zone’ (BZ), play an important role in cardiac 

arrhythmogenesis (Schmidt et al 2007, Ismail et al 2012). However, the LV blood pool 

contrast is usually a limiting factor in the conventional LGE-MRI using IR-FGRE technique. 

While saturation pulses can help, they rely on wash-in of saturated spins, which can yield 

artifacts in BZs of slow flow adjacent to the myocardium. While employing recently 

reported gray blood (GB-LGE) techniques may improve myocardial scar identification and 

localization, most widely used sequences are still conventional black-blood LGE (BB-LGE) 

and (bright-blood) LGE (Fahmy et al 2018). For the BB- and bright-blood LGE techniques, 

it is especially challenging to distinguish MI from the blood pool, leading to inaccuracies in 

MI segmentation (Bandettini et al 2012). Therefore, quantitative assessment of the infarcts 

using IR-FGRE requires precise manual or semi-automated segmentation of the 

myocardium as a pre-processing step. Due to this high dependency on manual myocardial 

segmentation, the method may also suffer from intra-observer variability (Detsky et al 2009, 

Kellman and Hansen 2014).
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Quantitative imaging techniques, such as T1 mapping, measure intrinsic physical properties 

of the underlying tissue. T1 mapping techniques, as compared to IR-FGRE, have been 

shown to be more reproducible in determining MI mass (Kellman et al 2005, Kellman and 

Hansen 2014). The T1 mapping techniques enable quantitative assessment of myocardial 

tissue on a voxel-wise basis, reducing the need for manual segmentation of the myocardial 

boundaries (Detsky et al 2009). Multi-contrast late enhancement (MCLE) is a T1 mapping 

technique, which enables infarct and cardiac wall assessment in a single acquisition with 

reduced scan times (Detsky et al 2009, Connelly et al 2009). In the MCLE technique, the 

pulse sequence contains an inversion pulse that nulls the signal from the LV blood pool. Due 

to the nulling of the signal, there is good a contrast between the sub endocardial infarcts and 

the LV blood pool (Detsky et al 2009).

Computational modeling of hearts with MIs has emerged as a promising non-invasive tool to 

simulate electrical activation of the heart and determine the propensity for re-entrant 

arrhythmias such as VT (Vadakkumpadan et al 2013, Arevalo et al 2016, Trayanova et al 
2017). The computational models are built based on cardiac MR images and can be non-

invasively interrogated to yield mechanistic insights into the electrical activity of the heart 

(Trayanova 2012). Currently, most widely used image-based biomarkers of cardiac structure 

and function have been limited to global indices, such as LV EF, infarct mass, LV mass, and 

end-diastolic volume (Yan et al 2006). Compared to global indices of cardiac function, 

computer simulations of VT enable biophysically detailed analysis of electrical activation of 

the heart. A recent pilot study has shown that these models, as compared to global indices, 

are more sensitive in predicting ICD therapy (Arevalo et al 2016). To accurately represent 

patient-specific structural changes, these models must incorporate accurate 3D geometric 

reconstructions of cardiac structure and MI geometry (Ukwatta et al 2014, 2015). With the 

use of computer simulations of VT, there is potential to investigate and compare LGE-MRI 

using IR-FGRE and MCLE methods in predicting inducibility of VT in post-MI patients. 

Therefore, the objective of this study was to evaluate individualized computational heart 

models in determining the efficacy of LGE-MRI using IR-FGRE and MCLE techniques in 

predicting the occurrence of post-MI VT.

2. Methods

2.1. Study subjects and image acquisition

Our study consists of twenty-seven patients with prior MI eligible for ICD implantation for 

primary or secondary prevention. The CMR study protocol was approved by the institutional 

research ethics board at Sunnybrook Research Institute (Toronto, ON, Canada) and all the 

subjects provided written informed consent. Patients with MR-incompatible implants were 

excluded from the study. After the CMR examination and ICD implantation, the subjects 

were followed up in an ICD clinic on a quarterly basis. While there is overlap, four patients 

in our study are different from the previous study (Yang et al 2013).

The CMR studies were conducted using a 1.5 T GE Signa HDx system (GE Healthcare, 

Milwaukee, USA) with ECG gating and using an eight-channel phased-array cardiac coil. 

The CMR protocol has been described previously (Detsky et al 2009, Yang et al 2013). The 

CMR protocol included LV functional parameter assessment using cine steady state free 
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precession (SSFP), as well as LGE-CMR using an inversion-recovery fast-gradient-echo 

(IR-FGRE) and MCLE post double-dose Gd injection. Typical CMR parameters for each 

method is shown in table 1. For SSFP acquisition, a short-axis oblique 20 phase-resolved 

images over the whole cardiac cycle were acquired in a breath-hold. Ten to twenty minutes 

after a double-dose intravenous bolus injection of Gd-DTPA (Magnevist®, Bayer Inc., 

Canada; Equivalent to 0.2 mmol kg−1), LGE-CMR images using IR-FGRE were acquired 

followed by MCLE images, using the same short-axis oblique localization as the cine SSFP 

images. Depending on the null point of normal myocardium, the inversion time (TI) varied 

from 200 to 300 ms in IR-FGRE. Approximately 20 heartbeats (18 s breath-holds on 

average) were required to produce a single LGE-CMR image using IR-FGRE. For MCLE, a 

segmented SSFP readout was used following an inversion-recovery pulse, providing 20 

cardiac phase-resolved images at different TIs. The MCLE pulse sequence required 

approximately 13 heartbeats to acquire. The first heartbeat established a steady state and the 

12 following heartbeats enabled acquisition of 20 separate images during different phases of 

the cardiac cycle at different effective TIs. Data acquisition was continuously implemented 

in a segmented fashion between each TI. The MCLE sequence implemented a delay time of 

500 ms and total sequence acquisition required a breath-hold of about 11 s.

According to clinical guidelines, all the patients received a single or dual ICD implantation. 

All patients were followed in an ICD clinic at intervals of three months and more frequently 

(if device shocks were delivered) for 6–46 months with a median follow-up of 30 months. 

Two experienced electrophysiologists reviewed the ICD data for the relevant ventricular 

arrhythmic events. The primary outcome measure was appropriate ICD therapy, which was 

defined as a shock for VT, VF, or any ventricular arrhythmic event identified as sustained 

VT or VF (Yang et al 2013). In this study, appropriate ICD therapy refers to an ICD event 

which was triggered for a single rhythm episode regardless of the total number of actual 

shocks that were needed for termination of tachycardia (Yang et al 2013).

2.2. Image processing of MRI data

Cine SSFP images were analyzed using CMR (Steinbeck et al 2009) software (Circle 

Cardiovascular Imaging, Calgary, Canada), where LV functional parameters of LV EF, LV 

volumes at end-systolic (LV ESV) and enddiastolic phase (LV EDV), stroke volumes (SV) 

and LV mass at end-diastolic phase were measured.

In IR-FGRE and MCLE images, the epi- and endo-cardial boundaries of the LV and RV 

were manually contoured in the image slices by an expert using the ImageJ software 

program (National Institutes of Health, Bethesda, MD, USA) as shown in figure 1. From the 

20 phases of the MCLE images, a diastolic phase after signal recovery was chosen for 

myocardial segmentation. Due to the inherent differences of IR-FGRE and MCLE, two 

different approaches were used for infarct segmentation.

For the IR-FGRE images, the infarct was segmented as IC and BZ using the full-width at 

half maximum (FWHM) method (Schmidt et al 2007), for which the pre-segmented LV 

myocardium was used as the initial region. The expert chooses a region of interest in the 

remote healthy myocardium and the peak intensity in the infarct. The IC was considered as 

the regions with intensities above the half of the peak intensity of the infarct. The BZ was 
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computed as the regions with intensity above peak of the remote region but below the half of 

the peak intensity of the infarct. Figure 1(b) shows segmentations of the IC and BZ regions 

for an example IR-FGRE image.

The MCLE images were first pre-processed one slice at a time to create the T1* and steady 

state maps (Detsky et al 2009). From the 20 phases across the cardiac cycle, more than three 

phases at the diastolic window with minimal cardiac motion were chosen for exponential 

curve fitting. Having more phases with minimal cardiac motion will lead to superior T1*

maps. Figure 2(a) shows a basal slice of an example MCLE image and ten phases with 

minimal cardiac motion chosen out of 20 phases. Data fitting of signal intensities acquired at 

multiple inversion times is then used to create the T1* and the steady state maps as shown in 

figures 2(b) and (c). The infarcts were segmented as IC and BZ using a clustering approach 

based on fuzzy c-means, using both T1* and steady state maps (Detsky et al 2009). Unlike the 

infarct segmentation approach for IR-FGRE, the precise segmentation of the myocardial 

boundaries is not required for MCLE. The algorithm considers four clusters representing the 

IC, BZ, blood pool and healthy myocardium. This algorithm determines the probability of 

each voxel belonging to each of the clusters based on a distance metric in a scatter plot of T1*

and steady state values. The IC and healthy myocardium regions were classified as voxels 

with probabilities greater than 75% of belonging to the clusters of the IC and health 

myocardium, respectively (Detsky et al 2009). The BZ region was defined as voxels with a 

probability smaller than 75% of belonging to either IC or healthy myocardium and a 

probability of greater than 25% belonging to the other cluster (Detsky et al 2009). Figure 

2(d) shows segmentation results of the IC and BZ regions using the fuzzy c-means clustering 

approach for the T1* and steady state maps.

Using the segmented geometry of myocardium and infarcts, finite element models (FEM) 

were built separately for both IR-FGRE and MCLE images. To create a three-dimensional 

(3D) model, ventricular geometry was reconstructed from the myocardial boundaries at an 

isotropic resolution of 0.4 mm using an interpolation method based on variational implicit 

functions (Ukwatta et al 2016). Finally, the 3D geometry of the infarct was reconstructed 

from the infarct segmentations using an interpolation technique we developed based on 

LogOdds (Ukwatta et al 2015). The 3D geometry of the total infarct region and IC was first 

reconstructed using the LogOdds method. The reconstruction for the BZ was then obtained 

as the relative complement of the IC, where infarct reconstruction was considered as the 

union. All image processing tasks were performed in the Matlab computing environment 

(Mathworks Inc., Natick, MA, USA) installed on a personal computer equipped with a 2.3 

GHz Intel Core i7 CPU, 12 GB of RAM and the Windows operating system.

2.3. Simulation of cardiac electrophysiology

The pipeline for generating models from IR-FGRE images has been described previously 

(Arevalo et al 2016, Trayanova et al 2017, 2018). Using the ventricular reconstruction, and 

the infarct reconstructions, two FEMs, one incorporating infarct geometries reconstructed 

from IR-FGRE, and the other with infarct zone geometries built from the MCLE, were 

created. Figure 3 shows two FEMs created from IR-FGRE and MCLE images of a patient 
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heart, where the geometries of the IC and BZ appears different. The fiber orientations for the 

models were estimated using a rule-based method (Bayer et al 2012).

We conducted simulations of VT similar to the previous approaches (Arevalo et al 2016, 

Trayanova et al 2017, 2018). Electrical propagation was modeled using the monodomain 

formulation (Plank et al 2008). Intracellular conductivities in the normal myocardium were 

assigned such that the resulting conduction velocity matched those recorded in human 

ventricular experiments (Moreno et al 2011). To represent connexin 43 remodeling and 

lateralization in the remodeled BZ, transverse conductivity was decreased by 90%, resulting 

in increased tissue anisotropy (Yao et al 2003). The IC was modeled as passive tissue with 

zero conductivity.

The Ten Tusscher human ventricular action potential model was used to represent the 

membrane kin etics in the healthy myocardium (ten Tusscher et al 2004). For the remodeled 

BZ, the action potential model was modified to represent electrophysiological changes that 

have been observed experimentally (reduction in peak sodium current to 38% of the normal 

value (Pu and Boyden 1997), in peak L-type calcium current to 31% of normal (Dun et al 
2004), and in peak potassium currents IKr and IKs to 30% and 20% of the maximum (Jiang 

et al 2000), respectively) (Arevalo et al 2016). These modifications resulted in BZ action 

potential morphology that had decreased upstroke velocity, decreased amplitude, and 

increased duration, consistent with experimental recordings (Decker and Rudy 2010).

Simulations of VT induction were also performed in all models by applying at the apex and 

RV insertion point a programmed electrical stimulation (PES) protocol similar to the one 

used in the clinic (Wellens et al 1985). The PES protocol consisted of six pacing (S1) stimuli 

with a coupling interval of 350 ms, followed by a premature stimulus (S2) whose cycle 

length was shortened until sustained VT was initiated or the last stimulus failed to capture. If 

needed, two additional extra-stimuli were delivered to attempt arrhythmia induction. An 

arrhythmia was classified as sustained if it persisted for at least two seconds (Arevalo et al 
2016). All simulations were performed using the open-source software package CARPentry 

on a parallel computing platform (Rodrguez et al 2005, Bishop et al 2007, Rantner et al 
2012, Arevalo et al 2016, CARPentry Developers 2017).

A true positive (TP) is considered as simulated sustained VT matching the appropriate ICD 

therapy (i.e. shocks for VT or VF) at follow-up. A true negative (TN) is considered as non-

inducibility of the simulated heart model matching no delivered shocks to the patient. An 

event is denoted a false positive (FP) when the simulation incorrectly predicts appropriate 

ICD therapy. An event is considered a false negative (FN) when the simulation fails to 

predict an appropriate ICD therapy. For both MI MRI imaging technique, we computed 

sensitivity (TP/(TP+FN)), specificity (TN/(TN+FP)), positive predictive value (TP/(TP+FP)) 

and negative predictive value (TN/(TN+FN)) of the simulations of VT.

For the patient characteristics and imaging indices, we expressed continuous variables as 

mean ± SD and categorical data as numbers (percentages). For statistical analysis, we used 

and the Student’s t-test for continuous variables and Fisher exact test for categorical data. 

We also conducted multiple logistic regression to evaluate the prediction of appropriate ICD 
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therapy in patients based on two types of measurements: one involving the NYHA 

functional class, LV EF, LV EDV, and LV ESV and the other involving IC and BZ masses. 

All statistical analyses were performed using IBM SPSS Statistical version 19 (IBM 

Corporation 2010), in which results were considered significant when the probability of 

making a type I error was less than 5% (p < 0.05).

3. Results

Table 2 shows a summary of patient data set characteristics including CMR-derived LV 

functional information. For each characteristic, the statistical significance was tested for the 

patients with and without ICD therapy. None of the indices were significantly different 

between the patients with and without ICD therapy similar to previous observations (Yang et 
al 2013).

Table 3 lists CMR MI heterogeneity measurements for patient groups with and without ICD 

therapy. The MIs were normalized to LV mass. Similar to the results of the previous study 

by Yang et al (2013), The BZ mass determined by MCLE was significantly different 

between the groups with and without ICD therapy. None of the other infarct masses 

determined by both the MRI techniques was significantly different between the patients with 

and without ICD therapy, although such quantities were typically larger in patients 

undergoing appropriate ICD therapy.

We performed multiple logistic regression where NYHA functional class, LV EF, LV ESV 

and LV EDV were considered as independent variables. The model failed to show a 

statistically significant difference (p = 0.375) between the patients with and without 

appreciate ICD therapy. The model yielded a sensitivity, specificity, positive predictive 

value, and negative predictive value of 66.7%, 61.5%, 61.5%, and 66.7, respectively. In the 

receiver operating characteristic (ROC) analysis, the area under the curve (AUC) was 0.67 

with 95% confidence intervals of 0.54–0.83.

Figure 3 shows activation maps of a single beat of VT for models, corresponding to both 

MCLE and IR-FGRE images, with re-entry circuit activity shown with white arrows near 

infarct location. The activation maps in simulations were derived by determining, at each 

node of the finite element meshes, the instant in time at which the upstroke of the action 

potential at that node reached a threshold of 0 mV. Due to errors that occurred in creating the 

FEM of the heart using the scanIP software (Synopsys, Mountain View, CA, USA), two 

patients out of 27 were excluded from further analysis.

Summary of results for computer simulations of VT for models built with LGE-MRI using 

IR-FGRE and MCLE are shown in table 4. The p-values corresponding to heart models built 

using both MCLE and IR-FGRE indicate that there is a significant association between 

simulated VT inducibility and the appropriate ICD therapy. For heart models built using 

MCLE, the odds ratio indicates that the patients with simulated VT inducibility have about 

27.5 times greater odds of having appropriate ICP therapy than the patients with no VT 

inducibility. The simulations using MCLE images yielded a higher sensitivity and 

specificity, as compared to the ones using IR-FGRE images.
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We also evaluated the predictability of appropriate ICD therapy of BZ mass using cut-off 

thresholds from 10% to 17% as shown in table 5. Sensitivity and specificity of predicting 

appropriate ICD therapy from BZ volume at these various thresholds for both MRI 

techniques were smaller than that of using the simulations of VT. We also performed 

multiple logistic regression where IC and BZ masses were considered as independent 

variables. For IC and BZ masses determined by MCLE, the model obtained a sensitivity, 

specificity, positive predictive value, and negative predictive value of 69.2%, 66.7%, 69.2% 

and 66.7%, respectively. In the ROC analysis, the AUC was 0.73 with 95% confidence 

intervals of 0.49 to 0.87. For IC and BZ masses determined by IR-FGRE, the model reported 

a sensitivity, specificity, positive predictive value and negative predictive value of 83.3%, 

61.5%, 66.7% and 80.0%, respectively. In the ROC analysis, the AUC was 0.71 with 95% 

confidence intervals of 0.50–0.87.

4. Discussion and conclusion

For individuals at high risk for SCD, ICD implantation is a life-saving intervention, 

terminating VF and/or VT and restoring normal rhythm (Steinbeck et al 2009). The LV EF < 

35% metric is the key deciding factor for ICD implantation in primary prevention patients. 

Average annual ICD firing rates of primary prevention patients are around 7.5%, where 

about 20% of the patients received shocks (Bardy et al 2005). Recent studies have shown 

that patients with LV EF > 35% may also benefit from ICD implantation (Deng et al 2016). 

Therefore, there is a need to develop novel risk stratification strategies to identify patients at 

risk of SCD (Fishman et al 2010). In particular, studies have shown that infarct mass relative 

to LVM determined by LGE-MRI techniques as a sensitive measurement in predicting 

appropriate ICD therapy (Boyé et al 2011). However, predicting the ICD therapy in a given 

individual will require defining cut-off thresholds for infarct mass, which highly depend on 

the segmentation method and may not be sensitive or specific enough in predicting therapy 

on a personalized basis. Therefore the objective of this study was to evaluate individualized 

heart computer models in determining the efficacy of IR-FGRE and MCLE techniques in 

predicting the occurrence of post-MIVT.

Due to the advancement of computational modeling along with the development of whole 

heart MRI acquisition, virtual models of the patient hearts can be created for a detailed 

assessment of cardiac electrophysiology in the heart (Arevalo et al 2016, Trayanova et al 
2017). In this preliminary study, we demonstrated that computer simulations of VT in 

patient-specific models could be used in stratifying patient risk for SCD using computer 

simulations of VT inducibility. Simulations of VT inducibility interrogate the detailed 

electrical activation of the heart in the MI-remodeled cardiac substrate, which is directly 

dependent on the reconstruction of infarct and ventricular geometry (Prakosa et al 2014, 

Ukwatta et al 2015, 2016).

We compared measurements determined by MCLE and IR-FGRE to demonstrate any 

potential differences in the two techniques should the clinicians decide to choose one of the 

methods as an alternative to the other in the diagnosis and prognosis of post-MI patients. In 

this study, we observed that our results on patient characteristics and infarct masses were 

comparable to the ones reported by Yang et al (2013). Except for the BZ mass determined by 
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the MCLE technique, none of the other indices was statistically significant between the 

patients with and without appropriate ICD therapy. The differences in MI masses determined 

by MCLE and IR-FGRE may arise due to several factors: difference in information content 

in the T1* map and steady state data in MCLE versus just signal intensity in IR-FGRE, 

different ways of processing a two distinct features spaces (two parameter fit versus a single 

value); choice of image segmentation methods; signal intensity in IR-FGRE is a nonlinear 

function of T1 and can be confounded by undesirable factors such as coil shading; and 

differences in image resolution. Even when the same image processing method (e.g. 

FWHM) was used to segment both T1 mappings, we experimentally observed differences in 

the estimation of BZ and IC masses.

One of the main errors in infarct quantification in IR-FGRE stems from the manual 

segmentation of the LV endocardium. The MCLE technique uses SSFP readout immediately 

after an inversion pulse, which permits visualization of infarction as an area of fast T1 

recovery with the simultaneous nulling of blood pool and viable myocardium. A T1 

mapping technique, such as MCLE, does not require precise myocardial segmentation and 

hence may avoid such potential errors in infarct quantification.

For both MCLE and IR-FGRE, the outcome of simulations of VT (i.e. simulated VT 

inducibility) was significantly different between the patients with and without ICD therapy. 

Simulations of VT inducibility, as compared to cut-off thresholds defined on peri-infarct BZ 

mass, had a better operating point for sensitivity and specificity irrespective of the MRI 

technique used to quantify the infarct. This suggests that, as compared to patient 

characteristics and infarct masses, the simulations of VT were more sensitive in predicting 

appropriate ICD therapy in post-MI patients.

Furthermore, the simulations of VT inducibility using MCLE images yielded higher 

sensitivity (83.3% versus 66.7%) and specificity (84.6% versus 76.9%) in predicting 

appropriate ICD therapy compared to those using IR-FGRE images. While this trend is 

inconclusive due to the limited number of data points in our study cohort, it is in agreement 

with the higher predictive capability of mass-based measurement determined by MCLE 

technique (Yang et al 2013), which may be partially due to the larger BZ mass determined 

by the MCLE technique. Arevalo et al (2013), using computer simulations of VT, have 

shown that larger BZs in models lead to increased inducibility of VT.

This study has several limitations. Our study was retrospective and included only a small 

patient cohort due to resource constraints. Although we observed significant differences in 

some indices, such as BZ mass determined by MCLE, statistical analysis could have been 

more robust with a larger number of patients. Due to the limited number of data points in our 

study cohort, the sensitivity and specificity values are sensitive to single data points. 

Therefore, the results should be interpreted as hypothesis generating. Although we observed 

virtual models built using MCLE yielded higher values for sensitivity and specificity, it is 

not possible to determine which MRI technique is more accurate in quantifying infarct 

structure, without digital histopathology data of the hearts. One clear indication is that 

irrespective of the imaging method, the addition of simulations of VT using MRI-

determined MI maps has great potential for improving specificity.
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Our image processing pipeline consists of several manual segmentation steps. From those 

steps, the most time consuming one was the segmentation of the LV and RV, which was 

subject to high observer variability. Automated image analysis methods may have alleviated 

the measurement burden while potentially increasing the reproducibility of the 

segmentations.

A previous study (Ukwatta et al 2016) has shown the effect of the choice of image 

segmentation method on the outcomes of simulations of VT simulations. Therefore, the 

choice of image segmentation methods may have influenced the outcomes of VT 

simulations in our study. While it is interesting to investigate the effect of choosing different 

levels of intensity thresholds on the outcomes of simulations, it will be very time consuming 

thus is prohibitive in practice. Currently, a simulation of VT for a single heart model takes 

about six hours of computational time on a parallel computing platform. This also prevents 

us from optimizing the parameters of the pipeline.

The reported sensitivity and specificity depend on VT simulations on the number of points 

used to virtually stimulate the heart, where previous studies have used up to 18 pacing points 

(Arevalo et al 2016). There is a potential for individualized heart models to further improve 

the sensitivity and specificity by investigating the optimal operating point while the number 

of virtually stimulated points are varied.
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Figure 1. 
IR-FGRE and MCLE images were segmented using semi-automated image analysis 

methodologies to build patient-specific models of the heart. All parts (a)–(d) are the same 

slice and phase of a cardiac cycle. For the IR-FGRE images, the infarct was segmented using 

the FWHM technique from pre-segmented myocardium. (a) Manually segmented 

myocardium of the LV and RV shown in color blue and green, respectively. (b) The IC and 

BZ are shown in green and yellow, respectively. For the MCLE images, the infarct was 

segmented using the fuzzy c-means clustering approach. (c) segmented myocardium of the 

LV and RV shown in color blue and green, respectively. (d) The IC and BZ are shown in 

green and yellow, respectively.
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Figure 2. 
(a) Basal slice of an example MCLE image and ten different phases with minimal cardiac 

motion chosen out of 20 phases; (b) T1* map and (c) steady state map that were generated 

using the exponential curve fitting approach for the image slice in (a); and (d) segmentation 

of the infarct is performed using a fuzzy c-means clustering approach, which utilizes T1* map 

and steady state map for classification. The segmented IC and BZ regions are shown in 

green and yellow, whereas the healthy myocardium and blood pool are shown in blue and 

red.
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Figure 3. 
(Left) FEM models, created using IR-FGRE and MCLE images, depicting IC and BZ 

locations in green and yellow, respectively. (Right) Corresponding activation maps of a 

single beat of VT for a model with re-entry circuit activity shown with white arrows near 

infarct location.
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Table 1.

CMR imaging parameters for three types of MRI acquisitions used in this work.

SSFP IR-FGRE MCLE

Bandwidth (rBW) ±125 kHz ±31.5 kHz ±125 kHz

Flip angle 45° 20° 30°

Views per segment (VPS) 16 20 16

TR/TE (ms) 3.7/1.6 6.0/3.0 3.3/1.4

Field of view (FOV) (cm) 32 32 32

Image matrix 256 × 192 192 × 192 192 × 192

In-plane resolution (mm2) 1.5 × 1.5 1.5 × 1.5 1.37 × 1.37

Slice thickness (mm) 8 8 8

Number of slicers per acquisition 8–10 8–10 8–10

Total data acquisition time per slice 10–20 s breath-hold 10–20 s breath-hold 11 s breath-hold

Number of excitations (NEX) 1 2 1
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Table 2.

Patient characteristics of the 27 study subjects. For each characteristic, the statistical significance was tested 

for the patients with and without ICD therapy. None of the indices was significantly different between the 

patients with and without ICD therapy.

Patient characteristics Total (n = 27) With ICD therapy (N = 12) Without ICD therapy (N = 15) P value

Age, years old 62.3 ± 11.2 63.7 ± 9.3 61.2 ± 12.8 0.58

Male 24 (89%) 10 (83.3%) 13 (86.7%) 0.8

Primary prevention 16 (59%) 6 (50%) 10 (66.7%) 0.49

NYHA functional class 1.44 ± 0.97 1.8 ± 1.0 1.2 ±0.9 0.15

Anti-arrhythmic 5(18%) 2(16.7%) 3 (20.0%) 0.83

Smoking 15 (56%) 6 (50%) 8 (61.5%) 0.62

Hypertension 20 (74%) 10 (83%) 9 (60%) 0.34

Diabetes 5 (18%) 2 (16.7%) 3 (20.0%) 0.83

Hyperlipidemia 22 (81%) 11 (91.7%) 11 (73.3%) 0.24

QRS duration (ms) 113.7 ± 28.6 120.7 ± 36.4 108.1 ± 20.1 0.27

Left bundle-branch block 5(18%) 3 (27.3%) 2(13.3%) 0.51

CMR LV function

LV EF (%) 25.7 ± 8.65 22.1 ± 8.5 28.6 ± 9.2 0.053

LV ESV (ml) 174.9 ± 79.8 203.5 ± 82.7 157.6 ± 76.2 0.11

LV EDV (ml) 231.8 ± 81.1 256.2 ± 82.2 212.2 ± 77.4 0.17

LV SV (ml) 56.5 ± 18.2 52.7 ± 18.9 59.6 ± 17.6 0.34

LVM (g) 106.6 ± 32.2 110.9 ± 34.8 103.2 ± 30.8 0.55
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Table 3.

Infarct masses estimated using the MCLE and IR-FGRE techniques, reported separately for the 27 study 

subjects with and without ICD therapy. The reported masses were normalized by the left ventricular mass 

(LVM). From all the reported indices, only the BZ mass determined by MCLE was significantly different 

between the groups with and without ICD therapy.

With ICD therapy (n= 12) Without ICD therapy (n = 15) P value

MCLE IR-FGRE MCLE IR-FGRE MCLE IR-FGRE

BZ/LVM (%) 17.4 ± 6.5 11.1 ± 6.3 12.0 ± 5.6 9.8 ± 5.3 0.044 0.58

Core MI/LVM (%) 29.8 ± 8.6 22.7 ± 14.9 23.1 ± 12.9 19.5 ± 11.7 0.094 0.60

Total MI/LVM (%) 47.2 ± 13.1 33.8 ± 20.7 35.1 ± 18.3 29.7 ± 17.3 0.081 0.54
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Table 4.

Summary of results for computer simulations of VT for predicting appropriate ICD therapy using models built 

using LGE-MRI using IR-FGRE and MCLE for 25 study subjects. Due to errors that occurred in creating the 

heart models, two patients out of 27 were excluded from this analysis. For both MCLE and IR-FGRE, Fisher 

exact test results showed that the simulated VT inducibility was significantly associated with the events of 

appropriate ICD therapy.

MCLE IR-FGRE

Number of patients 25 25

TP 10 (40%) 8 (32%)

TN 11 (44%) 10 (40%)

FP 2 (8%) 3 (12%)

FN 2 (8%) 4 (16%)

p value 0.0012 0.0472

Odds ratio 27.5 6.67

Confidence interval of the odds ratio [3.24 233.47] [1.14 38.83]

Sensitivity (%) 83.3 66.7

Specificity (%) 84.6 76.9

Positive predictive value (%) 83.3 72.7

Negative predictive value (%) 84.6 71.4
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Table 5.

Sensitivity and specificity of predicting appropriate ICD therapy using peri-infarct BZ mass cut-off values 

ranging from 10% to 17% for MCLE and IR-FGRE for 25 study subjects. Due to errors that occurred in 

creating the heart models, two patients out of 27 were excluded from this analysis.

MCLE IR-FGRE

BZ/LVM (%) Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%)

10 91.7 25 75 50

11 83.3 33.3 75 58.3

12 75 33.3 66.7 58.3

13 75 58.3 58.3 66.7

14 66.7 75 50 75

15 50 75 41.7 75

16 50 75 41.7 75

17 33.3 83.3 33.3 83.3
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