Skip to main content
. 2019 Jun 10;17(6):e3000317. doi: 10.1371/journal.pbio.3000317

Fig 4. Modulation of the branched-to-linear actin network balance by capping protein.

Fig 4

The underlying data can be found within S1 Data. A. Fluorescence snapshots of actin networks assembled around WASp-coated microbeads in the presence of fluorescent actin, Arp2/3 complex, profilin, and variable concentrations of capping protein. Images were taken 30 min after the initiation of the experiment. Scale bar: 5 μm. B. Fluorescence snapshots of actin networks assembled around formin-coated microbeads in the presence of fluorescent actin, Arp2/3 complex, profilin, and variable concentrations of capping protein. Images were taken 30 min after the initiation of the experiment. Scale bar: 5 μm. C. Quantification of (A). Rate of actin assembly around WASp-coated microbeads as a function of the capping protein concentration, normalized to the maximum value. D. Quantification of (B). Rate of actin assembly around formin-coated microbeads as a function of the capping protein concentration, normalized to the maximum value. E. In vitro deviation index, calculated as a function of the capping protein concentration. F. Snapshots of the actin cytoskeleton organization in wild-type, cap1Δ, cap2Δ, and capping protein overexpressing budding yeast cells fixed and labeled with fluorescent phalloidin. Scale bars: 2 μm. G. Quantification of (F). Average number of actin patches and cables per cell. H. In vivo deviation index for cap1Δ, cap2Δ, and capping protein overexpressing cells. Arp2/3, actin-related protein 2/3; WASp, Wiskott–Aldrich syndrome protein.