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Opening a new window on  
MR-based Electrical Properties 
Tomography with deep learning
Stefano Mandija   1,2, Ettore F. Meliadò1,3, Niek R. F. Huttinga1,2, Peter R. Luijten3 & 
Cornelis A. T. van den Berg1,2

In the radiofrequency (RF) range, the electrical properties of tissues (EPs: conductivity and permittivity) 
are modulated by the ionic and water content, which change for pathological conditions. Information 
on tissues EPs can be used e.g. in oncology as a biomarker. The inability of MR-Electrical Properties 
Tomography techniques (MR-EPT) to accurately reconstruct tissue EPs by relating MR measurements of 
the transmit RF field to the EPs limits their clinical applicability. Instead of employing electromagnetic 
models posing strict requirements on the measured MRI quantities, we propose a data driven approach 
where the electrical properties reconstruction problem can be casted as a supervised deep learning 
task (DL-EPT). DL-EPT reconstructions for simulations and MR measurements at 3 Tesla on phantoms 
and human brains using a conditional generative adversarial network demonstrate high quality EPs 
reconstructions and greatly improved precision compared to conventional MR-EPT. The supervised 
learning approach leverages the strength of electromagnetic simulations, allowing circumvention 
of inaccessible MR electromagnetic quantities. Since DL-EPT is more noise-robust than MR-EPT, the 
requirements for MR acquisitions can be relaxed. This could be a major step forward to turn electrical 
properties tomography into a reliable biomarker where pathological conditions can be revealed and 
characterized by abnormalities in tissue electrical properties.

Non-invasive measurements of human tissue electrical properties (EPs), namely conductivity σ and relative per-
mittivity εr, are a challenge that attracted several research groups in the past decades1,2. These properties deter-
mine how electromagnetic (EM) fields, such as the MR radiofrequency fields (RF: 64–300 MHz), interact with 
human tissues. Tissue EPs depend on the tissue structure and composition (water content and ionic concentra-
tion). In particular, at RF frequencies where MRI works, tissue conductivity is modulated by the total ionic con-
centration, which varies in presence of pathologies. Several studies already showed a change in tissue conductivity 
in presence of tumors3–8. Therefore, non-invasive measurements of tissue EPs could in principle be used as a new 
biomarker in oncology for diagnostic purposes and treatment monitoring7.

The possibility to non-invasively measure tissue EPs at RF frequencies with clinical MRI systems was first 
suggested in the early 1990s9. However, systematic research only started in the last decade, creating a new branch 
of research called MR-Electrical Properties Tomography (MR-EPT)10. Using standard MR hardware, MR-EPT is 
able to reconstruct tissue EPs from measurements of the RF transmit magnetic field, i.e. the circularly polarized 
transverse magnetic field referred to as the +

B1  field. This field consists of incident and scattered field terms, where 
the latter component includes contributions from conduction and displacement currents, and thus contains the 
desired EPs information.

By applying the homogenous Helmholtz equation to the measured +
B1  field, EPs map can be reconstructed9–11. 

According to this analytical reconstruction model, tissue EPs maps can be obtained by computing second order 
spatial derivatives of the measured +

B1  field11,12. Spatial derivatives are computed by applying a filter (in this case a 
2nd order finite difference filter) to the +

B1  field data, resulting directly in EPs maps. However, this operation is 
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highly sensitive to the intrinsic noise in the MR measurements, and consequently the reconstructed EPs maps 
lack precision13,14. To mitigate the impact of noise in the reconstructed EPs maps, large derivative filters in com-
bination with image filters and large voxel sizes are commonly used2. Unfortunately, this comes at the cost of 
severe errors at tissue boundaries, thus making MR-EPT reconstructions challenging, especially for highly spa-
tially convoluted tissue structures such as the human brain14. Furthermore, for clinical MRI systems (1.5 and 3 
Tesla) permittivity reconstructions are not feasible, since the electromagnetic imprint of related displacement 
currents is too low at these frequencies.

Recently, alternative analytical reconstruction techniques have been presented to improve the quality of 
MR-EPT reconstructions15–19. However, these techniques require complex RF setups (multi-transmit array), and 
high field MR scanners (7 Tesla) are needed to achieve sufficient signal-to-noise-ratio (SNR). From a fundamental 
point of view, these analytical reconstruction techniques are attractive due to their direct forward mathematical 
formulation allowing fast reconstructions. However, these methods are sensitive to noise in the input data and 
therefore require relatively high SNR levels that are not always feasible at clinical MR field strengths.

To overcome this requirement, algebraic algorithms employing a more general inverse approach based on 
iterative minimization have been suggested20–23. These methods behave better under noisy conditions. However, 
this comes at the expense of a higher computational load, challenges related to local minima and more complex 
electromagnetic modeling. Moreover, these algebraic algorithms need a-priori information (e.g. incident MR 
electric field), which is not always available. Although some promising results from simulated data have been 
presented, accurate in-vivo reconstructions have not been shown yet.

Inspired by MR fingerprinting, a different reconstruction method called dictionary-based EPT has been 
recently proposed24. This method formulated the EPT reconstruction problem as a classification problem and it 
reconstructs tissue electrical conductivity on a 3D patch level by assigning the conductivity value that corre-
sponds to the simulated +

B1  profile that best matched the measured +
B1  profile. First results showed the potential 

of such a matching approach for conductivity reconstructions. No permittivity reconstructions were presented 
yet. The presented methodology, which exploits a priori data, is not based on data driven learning strategy as in 
deep learning, where large amounts of realistic data is used to train neural networks.

Instead of relying on analytical or algebraic reconstruction techniques derived from electromagnetic theory, 
and given the potential of data driven approaches, in this work we investigate the feasibility of using a data driven, 
supervised deep learning (DL) approach for EPs reconstructions. Deep learning has recently been successfully 
applied to inverse problems including MRI image reconstruction25–30. To the best of our knowledge, this is the 
first time that deep learning is used for EPs reconstructions. Hereafter, we refer to this approach as Deep Learning 
Electrical Properties Tomography (DL-EPT).

Given the promising performance of Convolutional Neural Networks (CNNs), and in particular of 
Conditional Generative Adversarial Networks (cGANs)31, in this work we train a cGAN to perform EPs recon-
structions. Contrary to state-of-the-art MR-EPT techniques which require electromagnetic quantities that are not 
directly accessible from MRI measurements (e.g. the phase of the MR transmit field, ϕ+


), in DL-EPT a surrogate 

analytical reconstruction model can be learnt using only MR accessible quantities (e.g. the magnitude of the MR 
transmit field +

B1 , and the transceive phase ϕ+


). Electromagnetic simulations including realistic RF coil models, 
phantoms and body models are used to generate the training dataset. Nowadays, these datasets can be easily gen-
erated by exploiting the availability of sophisticated electromagnetic solvers, which allow realistic electromagnetic 
simulations (e.g. Sim4Life; CST; COMSOL; Remcom). In this way, a high degree of a-priori knowledge, such as 
the MRI coil setup, can be introduced.

In this work, DL-EPT reconstructions from simulations on phantoms and human head models as well as from 
phantom and in-vivo MR measurements at 3 Tesla using a clinically available MR setup are presented. The accu-
racy and precision of the reconstructed EPs maps are assessed, and the impact of different SNR levels has also 
been investigated. For comparison purposes, Helmholtz-based MR-EPT reconstructions (H-EPT) are presented 
as a reference for the phantoms and the head models simulations. Although the aim of this study is a proof of 
principle of DL-EPT, and not an investigation into optimal network and choice of learning parameters, several 
options are considered. In particular, two cGANs are employed: cGANmask, and cGANtissue. The former has in 
input the MR transit +

B1 field magnitude, the phase ϕ+


 (proportional to the transceive phase ϕ±~  measurable in 
an MR experiment), and a binary mask (1: tissue, 0: air). In the latter, the binary mask is replaced by pseudo Spin 
Echo MRI images providing tissue contrast information. To the best of our knowledge, with this work we show 
for the first time that deep learning can provide improved reconstructions of electrical conductivity and permit-
tivity using clinically available MRI scanners, coil setups, and realistic SNR levels.

Results
In Fig. 1, H-EPT and DL-EPT reconstructions are presented for the phantom model 42 including realistic noise 
(see Supplementary Materials and Methods – Phantom and Head Models). This phantom was used for in-silica 
testing of the cGANmask, and was not included in the training set. Additionally, reconstructions from MRI meas-
urements at 3 T are presented for a cylindrical, homogeneous phantom with the same EPs values. The mean and 
standard deviation (SD) values of the reconstructed EPs maps are also reported in Fig. 1. To avoid boundary 
regions that cannot be reconstructed accurately in H-EPT, a smaller region of interest was considered for this 
evaluation (see Supplementary Fig. S7).

Phantom H-EPT reconstructions from simulated data show accurate mean EPs values after exclusion of 
boundary regions. However, the reported high SD values indicate lack of precision in the reconstructed EPs val-
ues due to severe noise amplification (see profiles in Supplementary Fig. S7). The need of high SNR levels is one 
of the main limitation of current analytical MR-EPT reconstruction methods.

https://doi.org/10.1038/s41598-019-45382-x
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On the contrary, DL-EPT reconstructions from simulated phantom data are less affected by noise. As reported 
in Fig. 1, DL-EPT reconstructions show a much better precision (low SD) at the cost of a small inaccuracy in the 
reconstructed mean EPs values (relative error <5%).

DL-EPT reconstructions from MR measurements confirm the results observed in simulations, thus demon-
strating the feasibility of reconstructing EPs from MR measurements using DL-EPT. Additionally, permittivity 
reconstructions are now feasible at 3T, contrary to standard MR-EPT methods.

In Fig. 2, H-EPT, cGANmask, and cGANtissue EPs reconstructions are shown for the head model Duke M0, 
which was used for in-silica testing including noise. This head model was not included in the training set. Mean 
and standard deviation values for the white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) are 
reported in Table 1.

H-EPT conductivity reconstructions are severely affected by noise and boundary errors, as previously 
observed for the phantom reconstructions. Although average H-EPT conductivity and permittivity values for 
WM and GM have a relative error <10% with respect to input (ground truth) values after excluding boundary 
regions, the high standard deviations indicate that H-EPT is not suitable to reconstruct EPs on a voxel basis for 
highly spatially convoluted tissues.

If DL-EPT is used employing the cGANmask, the precision of EPs reconstructions is greatly improved (much 
lower SD). If tissue contrast information (i.e. pseudo Spin Echo MRI images) is provided as additional input 
for the neural network (cGANtissue), the precision of the reconstructed EPs maps is further improved, and 
the computed mean EPs values (Table 1) agree with the input (ground truth) values. As shown in Fig. 2 and 

Figure 1.  Conductivity and permittivity maps reconstructed using Helmholtz-based MR-EPT (H-EPT) (b,f) 
and cGANmask (c,g) for the phantom model 42. Ground truth EPs maps (a,e). cGANmask EPs reconstructions 
from MRI measurements at 3 Tesla (d,h). The reported numbers are the mean ± SD of the reconstructed EPs 
values inside a region of interest (see Supplementary Fig. S7).

Figure 2.  Head Model Duke M0 conductivity and permittivity reconstructions at 3 Tesla: (a,e) Ground truth, 
(b,f) H-EPT, (c,g) cGANmask, (d,h) cGANtissue.

https://doi.org/10.1038/s41598-019-45382-x
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Supplementary Fig. S10, the use of tissue contrast as a-priori information leads to less boundary errors, which are 
instead a major source of error in H-EPT reconstructions.

In Fig. 3, DL-EPT reconstructions from in-vivo MR measurements at 3T on a healthy subject are shown. Mean 
and standard deviation values are also reported in Table 1. DL-EPT reconstructions from other two healthy sub-
jects are presented in the Supplementary Results – EPs Reconstructions (Supplementary Fig. S11 and Table S7). 
The presented results show good quality EPs maps ad exception for the head periphery and the ventricles where 
cGANmask demonstrates less performance. If tissue contrast information is provided, errors at tissue boundaries 
are considerably reduced. This confirms what was previously observed for the reconstructions from simulated 
data and shows the feasibility of using DL-EPT to reconstruct in-vivo EPs from MR measurements.

Finally, in Fig. 4, a comparison between H-EPT and cGANmask EPs reconstructions for the head model Duke 
M0 with a tumor inclusion (sphere, radius 1.5 cm) is presented. Reconstructed mean EPs values and standard 
deviations of the tumor inclusion are also reported in the figure.

Correct identification of the tumor region is difficult for H-EPT reconstructions, which are highly corrupted 
by noise. Instead, cGANmask EPs reconstructions clearly show a tissue-tumor contrast, especially in the permit-
tivity map. The presented DL-EPT reconstructions show an underestimation for the tumor conductivity value 
(relative error ≈ 15%), while the reconstructed tumor permittivity value is more accurate (relative error <5%). 
As a reference, DL-EPT reconstructions using the same network parameters and the same Duke model without 
tumor inclusion are reported in the Supplementary Materials (Supplementary Fig. S13).

Conductivity σ [S/m] Permittivity εr [−]

WM GM CSF WM GM CSF

mean (SD) mean (SD) mean (SD) mean (SD) mean (SD) mean (SD)

H-EPT Duke M0 0.33 (0.85) 0.64 (1.27) 3.22 (4.97) 52.9 (130) 67.8 (124) −43 (350)

cGANmask Duke M0 0.34 (0.15) 0.56 (0.18) 1.83 (0.42) 52.5 (3.9) 72.9 (6.5) 84.1 (3.1)

cGANtissue Duke M0 0.34 (0.03) 0.60 (0.05) 2.03 (0.14) 53.1 (1.3) 74.3 (2.1) 84.4 (1.2)

cGANmask in-vivo subject 1 0.39 (0.08) 0.49 (0.16) 0.85 (0.48) 57.3 (7.2) 61.3 (7.9) 70.4 (10.0)

cGANtissue in-vivo subject 1 0.37 (0.04) 0.53 (0.18) 1.67 (0.47) 54.4 (3.2) 66.0 (6.9) 80.1 (4.9)

Reference 0.34 (−) 0.59 (−) 2.14 (−) 52.6 (−) 73.4 (−) 84 (−)

Table 1.  Reconstructed EPs values for the Human Brain WM, GM and CSF. Mean and SD (inside brackets) of 
the reconstructed EPs values in the WM, GM, and CSF for the head model Duke M0 using H-EPT, cGANmask, 
and cGANtissue, and from in-vivo MR measurements on the first subject using cGANmask, and cGANtissue. A 3 
voxels erosion was performed for each tissue type to avoid boundary regions, since these regions cannot be 
reconstructed accurately with H-EPT.

Figure 3.  DL-EPT conductivity and permittivity reconstructions from MR measurements on the first subject 
using cGANmask and cGANtissue (a–d). The correspondent MRI magnitude image is also shown as a reference (e).

https://doi.org/10.1038/s41598-019-45382-x
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Discussion
In this work, a novel approach for EPs reconstructions is presented, namely deep learning electrical proper-
ties tomography (DL-EPT). This technique is based on a data driven learning task, where the training data are 
obtained from a large number of realistic electromagnetic simulations. We show for the first time that DL-EPT 
allows high quality conductivity and permittivity reconstructions of human brain tissues at clinically available 
MR field strengths using standard MR hardware. This has been investigated using in-silica data from realistic 
phantom and head models, as well as phantom and in-vivo MR measurements at 3 Tesla. The presented results 
show good accuracy and most notably precision in the reconstructed EPs maps on a voxel basis, demonstrating 
a large improvement with respect to MR-EPT techniques. Furthermore, DL-EPT is noise-robust and preserves 
boundary information, while these two aspects are the major issues for conventional MR-EPT techniques.

DL-EPT differs significantly from conventional MR-EPT techniques employing analytical or algebraic recon-
struction models. The popular Helmholtz MR-EPT technique, an example of an analytical reconstruction tech-
nique, requires the computation of spatial derivatives on measured data14. This computation is performed by 
convolving the measured, complex +

B1  field with large finite difference kernels such as the 3D kernel adopted in 
this work11, or the Savitzky-Golay kernel32. These kernels, combined with image filters to further suppress the 
impact of noise18,22, lead to a much coarser effective resolution (order of 1 cm) and result in severe errors at tissue 
boundaries. On the other hand, algebraic MR-EPT reconstruction techniques employing iterative minimization, 
such as CSI-EPT20, should be more noise-robust. However, these methods require a large degree of regularization 
to stabilize noise augmentation in specific regions. Furthermore, these reconstruction techniques employ forward 
models formulated in electromagnetic quantities that are not always accessible with MRI, such as the phase of the 
transmit +

B1  MR field and the incident electric field. Currently, high quality experimental reconstructions using 
MR-EPT reconstructions are not yet available at clinical MRI field strengths (1.5 and 3 Tesla).

Given these limitations for MR-EPT reconstructions, we investigated the feasibility of using supervised deep 
learning to reconstruct EPs from accessible MR quantities. Crucial for the success of DL-EPT is the training part 
where a large degree of a-priori knowledge can be introduced by simulating a realistic coil setup and including 
realistic head models. The training requires a high number of unique complex +

B1  fields, which can be obtained by 
means of sophisticated, realistic electromagnetic simulations. Realistic electromagnetic simulations are nowadays 
possible with commonly available electromagnetic simulation software, and therefore represent an elegant solu-
tion to overcome the need of a high amount of MR data for training. Another fundamental advantage is that the 
DL-EPT reconstructions have additional flexibilities in the choice of the input parameters, i.e. the training can be 
performed based on quantities that are accessible with MRI measurements (e.g. transceive phase). This is contrary 
to conventional MR-EPT reconstructions models based on electromagnetic theory, which prescribes rigidly the 
required electromagnetic quantities that need to be measured.

Our results indicate that not only conductivity reconstructions at clinical MRI field strengths (1.5 and 3 
Tesla) are feasible, but also permittivity maps can be obtained using DL-EPT. The latter were not yet feasible 

Figure 4.  Ground truth EPs maps for Duke M0 with a tumor inclusion and H-EPT and cGANmask EPs 
reconstructions. The tumor contour is highlighted with a white circle in the reconstructed EPs maps. The 
numbers reported in the figure are the mean ± SD of the tumor EPs values.
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with conventional MR-EPT approaches due to insufficient SNR levels at clinical field strengths13,33. Preliminary 
investigations indicate that DL-EPT is more noise-robust than conventional MR-EPT reconstructions for SNR 
levels achievable in clinical MRI experiments (SNR ≈ 100). This is highly appealing, as it would permit to relax 
the requirements in terms of MRI data acquisition, allowing EPs measurements in clinical settings. Erroneous EPs 
reconstructions appear at SNR levels around 20 (see Supplementary Results – Impact of SNR). Low SNR values 
combined with CSF pulsation34 could be the cause of the observed inaccuracies at the periphery of the head and 
around the ventricles when cGANmask is used. More accurate EPs reconstructions at tissue boundaries can be 
obtained by including MR image information (tissue contrast) as a-priori knowledge. Future works should inves-
tigate whether other strategies are possible, e.g. providing the network with only boundary information instead 
of full tissue contrast information.

Of course, the use of a-priori knowledge during training could also create biased reconstructions for cases 
not included in the training phase. This would generally be the case for patients with pathologies. To test this 
risk, we provided the cGANmask with a pathological case that was not present in the training set, i.e. a head model 
including a brain tumor with altered EPs. In case of overfitting, which is a known issue for deep learning, recon-
structions would not work anymore. Preliminary results at 3 Tesla seem to indicate that DL-EPT can provide a 
better tumor-normal tissue contrast than MR-EPT.

The presented results indicate the potential of DL-EPT for EPs reconstructions at clinical field strengths and 
standard MR coil setup. However, more studies are warranted to further validate and generalize DL-EPT.

It has to be further investigated what the impact of different learning parameters is on DL-EPT reconstruc-
tions and whether a single network can be trained to generalize to other field strengths and coil setups. We believe 
that a larger amount of diverse training data is needed for these purposes. Although optimum tuning of network 
parameters is beyond the scope of the current work, first results indicate that the quality of EPs reconstructions 
using cGANmask improve for different choices of learning parameters (Supplementary Fig. S13 and Table S9).

Additionally, it should be investigated whether the inclusion of in-vivo data during training would be benefi-
cial to allow more accurate in-vivo EPs reconstructions. In-vivo measurements are affected by artifacts such as 
pulsation and motion, which are not present in simulations. MRI measurements of the +

B1  field are also corrupted 
by noise propagation and systematic errors which depend on the adopted +

B1  measurement technique35. These 
artifacts and variations in +

B1  fields may play a crucial role, resulting in less quality DL-EPT reconstructions from 
in-vivo MRI measurements compared to DL-EPT reconstructions from simulated data. For accurate in-vivo 
reconstructions, these artifacts may have to be included in simulations. Furthermore, it could be considered to 
include in-vivo EPT reconstructions in training data, even though the lack of ground truth EPs values for in-vivo 
cases might increase the level of complexity36.

Moreover, it will be fundamental to understand whether it will be necessary to include an exhaustive database 
of realistic pathological models (e.g. brain tumors) in the training set for accurate DL-EPT reconstructions of 
patients. We hypothesize that including more different training data might allow reducing the observed inaccura-
cies for cases not present in the training set. Future works should address these questions.

In this work, 2D DL-EPT reconstructions were performed due to the available network and computational 
power. However, given the 3D nature of the EPT reconstruction problem, the use of 3D neural networks for 3D 
DL-EPT reconstructions should be further studied, and the benefits of 3D patch-based approaches compared to 
image-based approaches, such as the one adopted in this work, should be addressed. We believe that 3D patch 
based approaches might allow better generalization of local features and less discontinuities in EPs reconstruc-
tions between slices.

In conclusion, to the best of our knowledge, this is the first demonstration of the feasibility of reconstructing 
in-vivo EPs from MR measurements using supervised deep learning. Although this work is a first proof of princi-
ple without aiming at identifying the best network architecture, which is beyond the current scope, the presented 
results indicate major improvements in the quality of the reconstructed EPs maps compared to MR-EPT 
approaches. Even permittivity reconstructions are now feasible at 3T with a standard and widely available coil 
setup. We showed that DL-EPT is noise-robust, thus the requirements in terms of SNR can be relaxed. This will 
allow faster imaging protocols and higher spatial resolutions. Moreover, DL-EPT can be trained with the trans-
ceive phase, thus circumventing the issue of measuring the +

B1 phase, which is not directly accessible with MRI. 
The major finding of this work is that the application of supervised training for EPT reconstructions greatly 
improves the quality of the EP maps. This could have great impact in MR diagnostics as it would turn electrical 
properties mapping into a new reliable biomarker to locate and characterize pathological conditions based on 
differences in tissue ionic concentrations resulting in different tissue electrical properties.

Materials and Methods
Database construction.  A database consisting of 42 homogeneous phantom models (diameter: 12 cm, 
length: 12 cm) and 20 head models with piecewise constant EPs values was created in Sim4Life (ZMT AG, Zurich, 
CH). Different EPs values were assigned to each phantom model and to the WM, GM, and CSF of the adopted 
head models (Duke and Ella, the Virtual Family37) (see Supplementary Materials and Methods – Phantom and 
Head Models). These models were placed inside a realistic birdcage body coil model resonant at 128 MHz, thus 
mimicking the experimental MR setup. With this setup, FDTD simulations were performed in Sim4Life to obtain 
realistic 3D +

B1  field magnitude and transceive phase (ϕ+


) maps. Thermal noise was included by independently 
adding Gaussian noise to the real and imaginary parts of the simulated fields (noiseless +

B1 field magnitude and 
transceive phase).

The final SNR was 90 for the obtained +
B1  magnitude and the precision of the obtained phase ϕ+


, proportional 

to the transceive phase, was 9 × 10−3 rad (see Supplementary Materials and Methods – Database Construction). 
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This mimics realistic SNR levels in MR experiments. By means of these simulations, 2170 unique 2D complex +
B1  

field distributions were generated (25 slices for each phantom model and 56 slices for each head model).

Neural network.  The neural network used for EPs reconstructions was a Conditional Generative Adversarial 
Network (cGAN)31. In this type of networks, two sub-networks (generator G, and discriminator D) compete with 
each other in a min-max optimization game during the training phase, in order to learn a conditional generative 
model. The generator network tries to generate EPs maps from the input images, while the discriminator network 
tries to discriminate the generated EPs maps from the EPs maps in the training set (ground truth). Like in Isola et al.31,  
the generator was a U-Net and the discriminator was a convolutional PatchGAN classifier. In Pathak et al.38, 
it was shown that using a cGAN combined with a L2 norm resulted in sharper images compared to a U-Net39. 
Afterwards, in Isola et al.31 it was demonstrated that the use of the L1 norm preserved the boundaries better in 
the reconstructed images. For EPs reconstructions, it is important to achieve good accuracy at tissue boundaries. 
Based on these observations, we combined a cGAN with both L1 and L2 norms, yielding to the following cost 
function (F):

  λ λ λ= + + .F argmin max (G, D) (G) (G) (1)G D cGAN cGAN L1 L1 L2 L2

 G D( , )cGAN  is the GAN objective, L1  and L2  are respectively the L1 and L2 distance between the ground truth 
and the output, and λGAN, λL1, and λL2 are the corresponding weights (see Supplementary Materials and Methods 
– Choice of cGAN).

This network was implemented in TensorFlow40 and trained in about four hours on a GPU (NVIDIA Tesla 
P100 16GB RAM). After training, 2D EPs reconstructions could be performed in less than 1 minute for a volume 
of 256 × 256 voxels in plane and 56 slices.

We first investigated the effect of providing the network only with EM quantities (cGANmask). Then, we inves-
tigated the impact of providing the network with additional information, i.e. MRI tissue contrast (cGANtissue). 
Although network optimization is beyond the scope of this work, we also investigated the impact of few different 
learning parameters on DL-EPT reconstructions for cGANmask (Supplementary Fig. S13).

DL-EPT: cGANmask.  For the training, 2014 2D complex +
B1  field distributions were generated using all the 

simulated models, except for the phantom models 12, 24, 38, and 42, and the head model Duke M0. The inputs 
for the neural network were: the +

B1  magnitude, the phase ϕ+


 (proportional to the transceive phase), and a binary 
mask (1: object, 0: air). Since only a binary mask was provided as third input and not information about tissue 
structure, we define this network as cGANmask. To reduce the complexity of the problem, two networks with the 
same input data were trained separately for conductivity and permittivity reconstructions using the same combi-
nations of λ-weights.

For the validation, the complex +
B1  field distributions of the phantom models 12 and 24 were used. Although 

the aim of the paper was not to find the best combination of λGAN, λL1, and λL2 weights, we investigated the impact 
of various combinations of these parameters on the reconstructed EPs maps. The parameters combination with 
the lowest average normalized-root-mean-square error (NRMSE) computed over the conductivity and permittiv-
ity reconstructions from the validation set was selected for testing: λGAN = 2, λL1 = 100, and λL2 = 200 (see 
Supplementary Materials and Methods – Choice of cGAN). Among the combinations tested, we investigated 
whether setting λGAN = 0, i.e. employing a less sophisticated network (U-Net)39, would be sufficient for EPs recon-
structions (see Supplementary Results – Comparison U-Net and cGANmask).

For testing of the selected cGANmask, the complex +
B1  field distributions of the phantom models 38 and 42, and 

Duke model M0 were used. The performed realistic electromagnetic simulations provide a controlled environ-
ment in which knowledge of the ground truth, i.e. conductivity and permittivity, is possible. This ensured correct 
assessment of the accuracy (absolute errors: ∆σ, and ∆εr) and precision (standard deviation SD) of the performed 
EPs reconstructions. Additionally, this network was tested using phantom an in-vivo MR measurements. The 
adopted phantom was a homogeneous, agar-based phantom: diameter: 13 cm, length: 15 cm, σ: 0.88 S/m; εr: 80, 
obtained from probe measurements at 21 °C (85070E, Agilent Technologies, Santa Clara, CA, USA). In-vivo MR 
measurements were performed on three healthy subjects (male, mean age 26, SD 2.6), after obtaining written 
informed consent. This was approved by the local institutional review board of the University Medical Center 
Utrecht, and carried out in accordance with the relevant guidelines and regulations.

Furthermore, to test the generalizability, we investigated the feasibility of detecting a tumor without having 
trained the neural network with brain tumor models and without providing any information on tissue struc-
ture. For this purpose, a head tumor model was created by placing one sphere inside Duke M0 (radius 1.5 cm, 
σ: 1.4 S/m; εr: 73). For this test, the parameter combination with the lowest average NRMSE value computed 
over conductivity and permittivity reconstructions in the WM, GM and CSF of Duke M0 was chosen: λGAN = 2, 
λL1 = 1000, and λL2 = 2000 (see Supplementary Table S9). DL-EPT reconstructions for Duke M0 using these net-
work parameters are shown as a reference in the supplementary materials (Supplementary Fig. S13).

DL-EPT: cGANtissue.  Since MRI images show good contrast between different tissues, we investigated 
whether providing tissue contrast information as third input instead of adopting a simple mask would improve 
the EPs reconstructions for the human brain. We therefore trained a cGAN using only the 1064 2D complex +

B1  
field distributions of the brain models (except for Duke M0, which was used for testing) and the combination of 
λ-weights previously chosen for the brain reconstructions from simulations and MR measurements, thus allow-
ing direct comparison with the results obtained using the cGANmask. Hence, the inputs were: the +

B1  magnitude, 
the phase ϕ+


 and pseudo Spin echo magnitude images obtained after assigning to each tissue type the corre-
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sponding magnitude value that would be measured in those tissues with a Spin Echo sequence (see Supplementary 
Materials and Methods –MR Sequences). We define this network as cGANtissue, since the third input provides 
tissue contrast information. This network was tested on Duke M0 and in-vivo MRI data.

MRI measurements.  MRI measurements were performed with a 3 Tesla MR scanner (Ingenia, Philips 
HealthCare, Best, The Netherlands) with the body coil in transmit and a 15-channel head coil in receive mode. 
The +

B1  magnitude was measured using a dual-TR (AFI) sequence41. To map the transceive phase, two single echo 
Spin Echo (SE) sequences with opposite readout gradient polarities were combined11: (φSE1 − φSE2)/2, thus mini-
mizing the impact of eddy-currents related artifacts. To convert the receive phase measured with the head coil to 
the body coil, as if the body coil would have been used both for transmitting and receiving, the vendor specific 
algorithm CLEAR (Constant Level of Appearance) was used. The sequence parameters for the phantom and the 
in-vivo MRI measurements are reported in Supplementary Materials and Methods – MR Sequences.

MR-EPT reconstructions: H-EPT.  For comparison purposes, standard Helmholtz-based MR-EPT recon-
structions (H-EPT) were also performed for the simulated phantom models 38 (see Supplementary Results – EPs 
Reconstructions) and 42, and the head model Duke M0 with and without tumor inclusion according to11:
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−
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with ω: Larmor angular frequency, ε0/μ0: free space permittivity/permeability, and r: x/y/z-coordinates. To com-
pute the second order spatial derivatives, a 3D noise-robust kernel was used (7 × 7 × 5 voxels)11.

Data Availability
Data are available from the corresponding author upon reasonable request.
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